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PREFACE

The beginning of the theory of filtering is generally rather closely associated with the development of the Wiener
filter, and, as so often happens, this development was motivated by applied issues, namely, the development of improved
fire control techniques in World War II. In this application the (radar) sensors have stochastic (noise) inputs. Additionally,
the objects (targets) being tracked were buffeted by stochastic (wind) disturbances. The criterion for optimum (Wiener)
filter design was the minimization of the time average of the error squared, where the error was defined as the difference
between the true target position as a function of time and the best or optimum estimate of the target position generated
as a function of time by the Wiener filter. The development of the Wiener filter was based on the solution of the Wiener
flopf integral equation for the case of stationary stochastic processes whose descriptive statistical parameters were
invariant with time. The Wiener Ilopf integral equation was formulated as an integral equation for the weighting
function of the linear time variant system which would minimize the ensemble average of the error squared in the case
of lion hk4iLOnary stochastic processes, that is, stochastic proce.ws whose descriptive statistical parameterb werc fwtaiUls
of time. By limiting the stochastic processes under consideration to stationary stochastic processes it was possible to
take the Fourier transform of the Wiener Ilopf integral equation, which was formulated in the time domain. Therefore,
it was possible to go from the time domain to the frequency domain, in the case of stationary stochastic processes, and
more readily solve the Fourier transformed Wiener Hopf integral equation for the transfer function of the (time
invariant) Wiener filter.

Now while the development of the optimum filter for stationary stochastic processei is useful in many applied
instances there are many applied instances where nonstationary stochastic processes are involved. Thus the development
of the optimum filter in this case was also essential.

In the period after World War II until the late 19 50's a great deal of effort was expended on the international
scene to developing the optimum filter in this case. While there was much in the way of interesting research results
published in the technical literature, it remained for the development of the Kalman filter, presented in published
pupers and reports in and around l0)60, for an effective solution to this problem in the continuing time case and a
computationally efficient solution in the much more pervasive discrete time case. The discrete time case is much more
pervasive today, of course, because of the implementation of virtually all Kalman filter applications by digital computes
The continuous time Kalman filter may be viewed as being generated by the differentation of the Wiener tfopf integral
equation. What results in the process, very simply. is the struc-ture of the Kalman filter, and that is what is really desired
in any event, namely, the implementation of the Kalman filter in the continuous time case. In the case of the Kalman
filter in the diserete time case this is very simply generated by noting that the minimum variance filter, that is the filter
which minimizes the ensemble average of the error *quared at discrete times, is the conditional expectation of the system
state at Any particular discrete time conditioned on the specific observations or measurements which have resulted at all
discrete times up to and including the discrete time at which the minimum variance estimate is being determined by the
Kalman filter. Bty utilizing certain rather straightforward and basic expressions this Kalman filter estimate can be
genetated earher readily in a convenient expression form as a linear function of the Kalman filter estimate of the system
state at the just preceding discrete time, for instance, plus the noisy observation or mo ureent of the system state
(vector) at the present time.

The next area (or which th, theoretical foundation had to be developed was that of filtenr for nonlinear dynamic
systemL. Regardlen of whether a dynamic systems of interest is linear or nonlinear the minimum variance estimator is
the conditional expectation of the dynamic system state (vector), conditioned on the previous observation# or
measurements of the noisy system state measurement vector. In the caw of the Kalman filter this is rather easily
genetated as a convenient expression as noted above. In the cas or nonlinear dynamic wstetrs this is an extremely
difficult task. in general, and, with rare exceptions. has to be dealt with through some approximate and effective
linearization technique. Speciflcally, in order to generate the conditional expectation, an expreson for the conditionai
probability density function hu to be generated. This is done thtough the use of the Ito calculus which, basically,
correctly recopizes terms which appear to be second order terms s first order terms in going to limiting ptocesse in
the process of deteloping the equation which describes the evolution of the conditional probability density function.
and thus generating this equation correctly. This equation, which is the equation for the evolution of the conditional
probability density funotion, is known as the Fokker Planck equation. Since it is a nonlinear partial differential
equation of high otder if the system state vector is of high order its solution Is a matter of very considerable computa-
tional complexity, and is mry difficult to implement in any given system application, as a rule. This then forces the
geration of effective approximate linearization techniques which are quite capable of providing adequate accurate
filterf. Such approxinmate filters have been generated and ate known as extended Kalman filters higher order extended
Kalmwa fditer, or art descsibed by other termu depending on the approximation technique.
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I Once this theoretical foundation for Kalman filtering techniques, nonlinear filtering techniques and effective
approximation techniques therefore was put in place, the problem became that of developing system application
techniques, dealing effectively with computational issues and techniques, and it is the intent of this NATO AGARDo-
graph to treat effectively all of the above issues and techniques with particular emphasis on application to complex
problems and systems of paramount interest to the NATO community. As such this NATO AGARDograph represents
a unique document on the international scene.

A great debt of gratitude is owed by the editor to many individuals. First of all the co-authors of this rather
prodigious undertaking all deserve an immeasureable vote of thanks and gratitude for their formidable contributions
to this volume. Next the editor would like to express his gratitude for the support and encouragement of his fellow
NATO AGARD Panel members in addition to the Panel Chairman, Geoffrey Howell, and Deputy Panel Chairman,
Ronald Vaughn. Additionally, the continual first class support of Bernard Heiot, the Panel Executive, on this rather
elaborately complex undertaking is greatly appreciated. Finally, the Editor's secretary, Bernice Roos, was of indispensable
help and support on this undertaking.

CORNELIUS T.LEONDES
Editor



[ CONTENTS

Page

i! PREFACE

Sby C.T.Leondes iii

Reference

PART I - ADVANCED TOPICS IN THE THEORY OF NONLINEAR FILTERS AND KALMAN FILTERS

NONLINEAR FILTERING THEORY
by V.Krebs 1

EXACT AND APPROXIMATE NONLINEAR ESTIMATION TECHNIQUES
by D.F.Liang 2

THE THEORY AND TECHNIQUES OF DISCRETE-TIME DECENTRALIZED FILTERS
by T.ILKeff and LChin 3

PART I - COMPUTATIONAL TECHNIQUES IN NONLINEAR AND LINEAR FILTERS

ADVANCES IN COMPUTATIONAL EFFICIENCIES OF LINEAR FILTERING
by LChin 4

DESIGN OF REAL-TIME ESTIMATION ALGORITHMS FOR IMPLEMENTATION IN
MICROPROCESSOR AND D)ISTRIBUTED PROCESSOR SYSTEMS

by V.S.Gytys 5

GLOIIAL APPROXIMATION FOR NONLINEAR FILTERING WITH APPLICATION TO
SPREAD SPECTRUM RANGING

by W.M.Bowls mid J.A.CartelI 6

SYSTEM IDENTIFICATION OF NONLINEAR AERODYNAMIC MODELS
by T.LT"nkle. J.H.Vitwenw and S.NFnklin 7

TECINIQUES AND METHIODOLOGIES FOR TUE ESTIMATION OF COVARIANCES,
POWER SPECTRA AND FILTER-STATE AUGME'NTAIlON

by V.Reb! s

PART III - ADVANCED NONLINEAR AND KALMAN FILTER APPUCATION AND MEILIODOLOGIES

REDUCED ORDER ULMAN FILTER DESIGN AND PERFORMANCE ANALYSIS
by P.S.Maybeck 9

DESIGN AND PERMFORMANCE ANALYSIS OF AN ADAPTIVE EXr - i t LNAN
FILTER FOR TARGET IMAGE TRACKING

by P.S.Maybeck t0

TECHNIQUES FOR THE DEVELOPMENT OF ERROR MODELS FOR AIDED STRAPDOWN
NAVIGATION SYSTEMS

by W.Ledum II

USE OF FILTERING AND SMOOTHING ALGORITUIMS IN THE ANALYSIS OF MISSILIE
SYSTEM TEST DATA

by EMA)wa.. C.LModkr wW J.F.Ka , r. i 2

INERTIAL NAVIGATION SYSTEM ERROR MODEL CONSIDERATIONS IN
KALMAN FILTER ApcaTIONS

by -.RA*Mk 13

OPTIMAL FILTERING AND CONTROL WIIQUES FOR TORPEDIO-SWI
TRACKING SYSTEMS

by ILLUNduIdNt S ad R.KeM 14



Reference

SEPARATED-BIAS ESTIMATION AND SOME APPLICATIONS 
15

by B.Friedland

COMPARISONS OF NONLINEAR FILTERS FOR SYSTEMS WITH NON-NEGLIGIBLE

NONLINEARITIES
by D.F.Ling6

KALMAN FILTER SATELLITE ORBIT IMPROVEMENT USING LASER RANGING

MEASUREMENTS FROM A SINGLE TRACKING STATION

by K.FWskker snd B.A.C.Ambosius7

STATE ESTIMATION OF BALLISTIC TRAJECTORIES WITH ANGLE ONLY

MEASUREMENTS
by M.R.Saiaz 

18

NEW SMOOTHING ALGORITHMS FOR DYNAMIC SYSTEMS WITH OR WITHOUT

INTERFERENCE
by K.Denw*



NONLINEAR FILTERING THEORY

by

Volker Krebs

Bodenseewerk Gerttetechnik G14BH

Postfach 11 20, D7770 iberlingen

Federal Republik of Germany

SUMMARY

After a historical review of the development of estimation theory, an introduction to non-
linear filtering theory is presented by means of a deductive approach.

First the so-called general estimation problem is defined which is concerned with the
extraction of useful information from noisy measurements. Having then introduced nonlinear
stochastic dynamical models for the signal process, the exact mathematical solution of
the general estimation problem is outlined which yields the Kushner-Stratonovich equation
respectively the Bayesian recursive estimator. From these equations the practical nonlinear
filter approximations are derived in a deductive way. Most important are the local approxi-
mate filters of first order (typet extended Kalman Filter) and second order filters. In
addition, there are global approximate filters (Bayes-law calculators) available. Several
approximation methods for these estimators, such as orthogonal series expancion, Gaussian
sums, point masses and splines are briefly discussed.

1. INTRODUCIION

Nonlinear filtering theory has been developed since the beginning of the sixties, nearly
during the same time as the theory of optimal linear filters such as Wiener filters and
Kalman-Bucy filters.

Nonlinear filtering is the theoretical as well as practical solution of the so-callftd
general estimation problem which is concerned with the extraction of useful Information
from noisy measurements of certain signals.

This general estimation problem which will be discussed in more detail in the next para-
graph, covers many problems in the field of communication- and control engineering a-c..1,
cations such as

- suppreesion of noise by filterinq

- estimation of states of linear or nonlinear stochastic dynamical systas

- parameter estimmtion for stattraA or dynamical systems.

Interest in partitular modes of the general estimation problem, especially in celestial
n •dates back a long tiaes probably even to the work of Claudius Ptolefaeus /I/

.'t the st-mnd century. He ssumead a geocentric model structure of the universe which re-
quired th assumsption of spicycloids forl the planets* orbital motion. Having ustd measured
data from obsetvations, Ptolms•nus evaluated the orbital parameters of the planet Mars.
which allowed the prediction of the planet's position with reasonable seuracy.

in the astronomy of modern times it has been Leqendre /2/ and Independently Cause i3/,
who developed in 179S the method of iasst squares for the minimisation of the observation
errors by determining the orbit of celestial bodies. The least squares or regression ana-
lysis technique may be regarded as the fundamntals of todays optimal estimation and fil-
tering algorithms. Gauss already recognized the possibility of a dual approach to re-
gression analysis,

It may be considered as
1) a deterministic optimlsation problem (minlmizing the sum of the squared errors)

ii) a stochastic estimation problem (evaluation of the moat probable parameter estimates
"which lplies calculation of a probability density function and determination of itsSzaXuR). :

Am reported by Deutsch /4/ and Sorenson /5/. Gauss anticipated by that to my extML 00 WAi-
mum-likelihood estimation technique suggested by R.A.Fisher /6/ in 1912.

In the forties of our century the least squares principle was appliel by Kolgorov /I/
and Wiener /I/ to the problem of separating vido-baad noise and signal processes, 1. e.
to the filtering prow-on. In the aequl the Wiener-solmogotov filter or Wiener filter
which may be realized as an electrical notrk has found many applications in commusica-
tion e"nginering.

The extereion of the Wiener-Kolmogorov theory by KaIman /9/ 16O. and Klmm and M ucy /10/
1561 to linear aultivarJable Lnstationary processes by Introducing the state space con-
cept# was an Important llrovement and has opened a vide field of alplications in the
subsequent years /11/. This is because the Kalman filter is a recureive algorithm which is



easily to be implemented on a digital computer. A survey of the history of early aero-
space Kalman filter applications is given in /12/.

As mentioned before, the theory of nonlinear filtering has been developed independently
hbt nearly inparallel to the linear theory. This is probably due to the fact that the
approach to either of the theories is quite different.

For the understanding of the (linear) Kalman filter on the one hand, a lmast squares
approach may be used where no deeper insight into probability theory is required (see
e. g. /13/, /14/). The nonlinear filtering theory on the other hand is usually based on
a probabilistic approachi the solution of the nonlinear filtering problem requires then
the calculation of the probability density of the state conditioned on all available ob-
servations and the initial probability density function. The mathematical tools for tack-
ling this problem are partial differential equations and stochastic integrals.

Advances in the area of nonlinear filtering are due to Stratonovich /15/, Kushner /16/,
Ducy /17/t Wonham /18/ and many others. However, it should be mentioned that the roots
of this theory may be traced back to the begirning of the twentieth century and the
study and mathematical description of diffusion processes (Einstein /19/). This is because
the differential equation of a diffusion process and the mathematical model of a signal
process affected by white noise (which is the basic model for all optimal nonlinear esti-
mation algorithms) are equivalent.

After this historical review of the development of estimation theory we will give an
outlook of the organisation of this contribution.

In the following paragraph we will first introduce the general estimation problem and
its mathematical solution which will lead us to the Fokker-Planck respectively Kushner-
Stratonovich equation in the time-continuous case and the Bayesian recursive estimation
equations in the time-discrete case.

Then we will discuss local approximationh for nonlinear estimators i. e. easy implemen-
tabie practical filters such as first order filters (type extended Kalman filter or ite-
rated extended Kalman filters) and higher order filters.

SFinally we will shortly outline ome possibilities of global approximation* for discrete-
time nonlinear filters (Dayes-law calculators) such as orthogonal series expansion, Gaus-
sian sumspoint aasseaand sines.

-. Tm SOLUTION OF Tat IRMLIMEAJ FZLTERIX G PROBLI

2. I The qtuisr?. vakiaation probl(-ý

GiveA a igWaL f(t) which is disturbed by *dd',tivu noise Ot). Thes *u of both eiqnals

y(tt) a(t) + alt) (A)

Is observed (measured). In the mwet simple case, the general eatimation problem consists
of the evaluation of the signal o(t ) by processing of the information contained in all
available measurments

Vi t IA,- (o ..... I to) .. m [y . ov't(2
through an estimator. Thus the desired ideal output of the estimator (Fig .1)

fM(t) sat 1 ) t(3)

will in reality be an estimate of this value, demted by

f fa (04(tilt), " i(tiljYt). (4)

This estimate has to be optimal in some sense which leads to the interpretation of the
general estimation problem as Am optimization problen. A cost functional J(R) which de-
".ands on the set imatia rror

:•,• : " I•tl)S-afti} - ;(tilt) S

has to be defined and m1listed with respect to this error.

As shown in P19.1, we have three different types of estimation (prediction, filtering
and smothing) depditLb on the instant t1 relative to the present time t.

morover, we distinguish three modae of estlmation which are related to 4. kind of sig-
"" anA oa ervation procesSe,

the discrete estimation problm where signal end observatioa are (discrete-tim.)tnO S~o W WAM



the continuous-discrete estimation problem where the signal process is a (continuous)stochastic procass and the observation is a (discrete) random sequence.

- the continuous estimation problem where signal and observation are continuous stochastic
processes.

Finally, we speak of nonlinear or linear estimation when we process the observations in
a nonlinear respectively linear manner in the estimator.

We will now follow the probabilistic approach to the general estimation problem.

Since (s(t)), tn(t)), and thus ty(t)) are considered stochastic processes we surely want
to know the probability of certain signal values se(t) under the condition of a given
realization

Yt "[Y(r), ' t ,t]

of the observation process (y(t)) . Generalized this means knowledge of the conditional
probability density of s(t 1 ) given Yt, denoted by

p Es(t),) ti I Yt].

This function embodies all statistical information about set 1 ) which is contained in the
available observations.
The solution of the general estimation problem is consequently given by equations tor theevolution of this conditional probability density function p 1s(tl)* tlYtL, starting with
the initial information p [C (to), to ]•

If we know the conditional density we can obtain in a lomparatively simple way special estima-
too of the signal (Fig.2), e. g.

-w • the most probable estimate (Maximum A Posterori est~~tojhich indicates the maxi-
m of the aposteriorl density p rs(tj4) itl

M- V the 4inimum Variance estimate which indicates the center of gravity of the area

under- the deasity p re(t 1 ) I t).

The minimum variauce estimate is of special importance since the underlying quadratic loss

Jr(),- (C'I) a R ( (a(tj)4(tj 1 t)] 2) (6)

weights larger errors I-n a stronger way than smeller ones, Is Independent of the sign of
the error, and is last but not least mathematically well tractable.

ItIs easy to show (e. g. /23/) that the minimum variancs estimate is given by the oonditlo-
nal mean (which we will indicate in the sequel by the symbol A ),and we have

uiMv(t)- a (sety) IYt) ,- If(t it). (7)

Moreover,we note that the conditional mean is an unbiased estimate, that Is

C s~1 )- ~tIt1 Cs~~) - t t'st 1 i)I I- o

2.2 Dynamical models for signal and noise

For a p1titl development of the equations of evolution for the coa-ditional probability
density function We have to specify mathematical models for the signal and not*s processes.
A model which is sufficiently close to the "real world* on the one hand, and analytically
tractable on the other hand, is given by a Itarkov process in state space notation which
may be described in ContinUOUs iMe by a nonlinear vector stochastic differential equation
of dif fusion type

t(•) " - G LXt(t) c ! W I C) , t to

x and f are n-voctors, ( is of 6imension n k q and (y__t) , t A is a q-vector white
dausslifn nois* procee. with & tv_(t))a 0 and qti(t).-(v).- 0(t-').

tquation (9a) can neither be integrated in the Rieran "ense nor in the Risemann-
Stieltjes senses it reqires for proper handling the introduction of a stochastic inte-
Vral (WbMc is due to the delta oorrelation of the white .noLse),thus we better write 9q. (a)
as o (IM stochacstic dferental equation

dsxt) - fx(t),t~dt + r-L(t),t]d4(t) , t !P t (9b)



where t (t)) is . Wiener process with

EjdLS(t)Q) 2 , E dI(t)dQM T (t)l -( (t)-dt. (9c)

Eq.(9b) is formally equivalent to Eq.(9a) with w(t):-dp/dt.

The initial state x(to) is often assumed a Gaussian random variable with known mean x(to)
and covariance mat•ix P(to) but it can be characterized as well by any other distribU-
tion p C!X(to), to).

Moreover, we have a nonlinear m vector observation process including additive measure-
ment noise,

x(t) U n L(t)C +t 4~t

(10a)

where {v(t), t;to) is Gaussian white noise with E fv(t)) - 0 and E Wv(t)vT (c)j -R (t-V)
which we write in the same way as before as an It8 differential equation-

d(t)- hj.ý(t) ,t:dt + d-(t) (10b)

this is formally equivalent to Eq. (00a) with the definitions

Y #j_ - v (t),- dX t
dt dt

and the Wiener process {q(t) with

E d-(t)) - 0 ,E d 3 (t)d T (tM) - R (t)-dt. (000

It is assumed that I (t)j . I J' t)), and x(to) are uncorrelated respectively independent.

The mathematical model Zq. (9), (10) is the hasix for the solution of the nonlinear filtering
problem in continuous time. This model is i•bedded into the general estimation problem which
appeara obviously by comparing Fig.3 with Figil.

.o•,ete -ode k

In the cas-discrete case we have the stochastLc vector difference equation

x ~ ~~ ~ ~ ~ tk k-1% 'xt '1)..

as mathematical model for the signa) sequence respectively the nonlinear plqt under con-
seideratLa, The Initial state x(to) is normally distributed with knc-m mean W(to) and U'O-
variance $"trim P!(t) or has any other distribution.

The naoLnetr observation sequence Is 91r"e by

k h:!Ctk).# t wiO*k- . lb

The dimensions of the vectors correspond vhoas of the continuous case. The noise
(v(t ,)) and tw(tk )) are white Gaussian sequences with Sere mean and Covarianene atrices

ti." rte0- gti)I wvtk), vtdk) end x (to) are assumed uncorrelated reep. independent.

CogntloiUoue-d i8erete model

Now we have a eombination of continuous process dynamics and discrete mosurements. Thus
out system m*del is given by Eq.(Ob) and tq.(ilb).

2.3 The 1fkkor-Plank equation

this equation, which to equally known as KolmogowvIs forward equation is a first but
Important t"p twards the solution of the nonlinear filtering problem in contnuoe time.
It describes the evolution of the transition probability density pr(t), tIx(to). to]
of the Harkov process generated by the %t8 differential equation (9bT. assuming that the
initial prmbs• ity density Is knom. fts measurements Eq. (lOb) are not yet considered.

the Irokker-Planck equation in its most simple form traces back to the work of Einstein
/19/ on Brownian motion ln 190S. Further research on diffusion processes and the devi-
vation of the correspo.ding partial differential equation was giv"e by Fokker /20/ 1914,

Planck 1211 1917 and Y.ObaOtoov /22/ In 1931.



This differential equation reads

n n 2 T
af- ( 2 2Ti (12)

+

with pt- p r x(t) , tIx (to) , to]I

and a delta imkplse as initial condition for the density, which means that the initial
value x(tol - 2 is given.
With t~e lntroduction of the so called forward diffusion operator

a:. fc ,-- 1 . ), (13)

10 ildul i j

of the diffusion process (E1(t), t &t?) generoated by the It6 differential equation (9b),
the Tokker-Planck equation can be wr tten as

-r t(pl

An analytical solution of this equation Is possible only in a few simple cases where the
process model is linear, I. *.

1 C Eft)0, tl t (t) -1(t)

and the matri 0 in Sq. (9b) is independent of the state vector x (t,

STo apply the Fokker-Planck wpation, w demonstrate the transition of the pro-b tydensity funct!04o for a tipl*e sawmpl taken from /241.

Given a first order linear process anoel as Indicated in F1%.$. We axe lo*kIng for the
evolution of p xt(t), t Ix(t41-xo) as solution of the )ok.Lar-Planck Oquation.
9q. (12) has the fotm

UkoW, the Wiener process to Gtussian* and as we knov normally diut.-tiu two. ra•a•n nor-
mally distributed vhil passing through a linear systent thus, the Gausslan assumption
tor the transition probablIity p. #) ().tA* 0 ) is straight foreard. Ihis yields (ato Zc•.(IS)
two o*d•ra" y dffeOrential tquati teor the proagt Lton of mean via va iance with the so-lution

Irig. ilkuatrates the evolution of the corresponding transition ptrobabilit)- densilty.
lb.time history of the in..t value x desc•ribeS the characteritic motion of the systm
While th variance incrases~ due to the diftuaicn frwm tero to V'• It-e) Q/2a.

•.4 The Zl~uhner-St~atorovieh equation

thie equation repreeet~s the theretical solution of the nonlinear tilteriu p~roblut itt
coaibts~s time.
Nowth systa model sqI. 9b) i cons¢idered with the obser•ation Sq. fl~b) included an the

qe<utiOn of evolution for the p~robability density" p I•.t ')t] of theu state t_ conditioned
on a realivetion •t et(:t) tO stS t) Of the observation process is looked for.
The fitor deriv-atton of-this equationt wa given by Stratonovich /1 5/ In 1s6e, iht unforturna-
tely waS slightly elrrornu b7 onitting mo terms. SsJheer /;iS/. /16/ obtaine the eact
equation In 1964. Buy /11/ deveoped the sen equtin i 196$ using the so called repre•
eantatios t, eoren.

M UMM ••mm mm m n m * m mml



The conditional probability density of the state given the observations satisfies the
Kushner-Stratonovich equation

S;p~x,t dtlZt,4z(t)] - p~x,t1,z.] - dp = J!(p)dt+[Ch- ]TR-1 (dz-ý dt}p
- --t. . . . .(17)

This is a stochastic partial differential equationf it is stochastic because of the Wie-
ner process 1•(t)j contained in the differential observation dz and partial due to itsS•Fokker-Planck part. Analytical solutions of this equation pract~cally do not exist but it

can be used for deriving the exact equations for the moments of the probability density;
this is for instance important to obtain minimum variance estimates.

In view of Eq. (17) the principal behavior of the nonlinear estimator may be summarized
as follows.

- The conditional probability density p [Ex,tiZtj changes as a result of the dynamics of
the process model and due to the observations.

- The measurement information is used in form o% the residual (ds-hdt)
his residua' is weighted with the matrix [h-] _R-1. In case of stronger noise ( URII large)

we tave a weaker influence of the measurements. If the measurements are useless
S(R"-C)we obtain predic-tion according to the Fokker-Planck equation.

- The estimator is nonlinear because the nonlinear vectors h = h(x) and f(x) as well as
G(x) require nonlinear processing of the measurements.

2.5 Minimum variance estimation

With regard to the realization of practical nonlinear filters we are interested in charac-
teristic values of the conditional probability density function p Ex,tI At]-

As mentioned in paragraph 2.1 the minimum variance estimate is the conditional mean which
represents the first moment of the conditional density, Thus we are looking for the equa-
tion of evolution of

x(tlit) := E _x(t,) lt) ; tI > t * (lea)

In addition, we need the second moment, the conditional covariance matrix

_(tl t) E{ r(X_(tl)- (tj ) • •1 -• T•t ] , } E" (-T(t1')•(1!} 1b

where
-•- •_Ii•:=•(•)_•(••) 08c)

is the estimation error. This is because the matta.ix P is a measure of the accuracy of the
estimaten, since the mean of P

•..E{_P~tllt)} E(E{j(t~l t)jT(tl;•)_t ) qt V(_(tllt)_T(tilt)) (led)

contains the variances of the components of the estimation error vector (ibc) as diago-
naal elaeents.

--Kushnei /16/ proposed in 1964 to develop equations for the moments of the conditional den-
as.ty, which would yield a system of ordinary stochastic differenJtial equations instead of
the partial stochastic differential equation (17). Buoy /17/ obtained these equations for
the first and second moment in the sualar case and Baus, Norum and Schwartz /26/ treated
the yeneral vectu case in 1966.

The conditional mean (i. e. the minimum variance esttmate) and the conditional covariance
matrix satisfy the. ordinary stochastic differuntial equations

T' Tdi,(t) ( f[ (t),tgdt4C)(t)h -xt)hT a(t)(dz(t)- dt: 09A)

EdP(tjt)])1 -u(r,1xj-f LX) +(:cif J-x If J)4(2G 22 )if (x.11i ij) R(t)(xj-hxj)d

0+9b)

+ C. ix tY~ijh-i xh-xxjh2ý1i Rt)-(di(t)-hdt)



with given initial conditions
A
E(to), P(tolto)

and the more simple notation
2E(t) :" X "(t It)

For technical realization of a minimum variance estimator w•e need, however, further approxi-
mations (which will be discussed in para. 3) since Eq. (19) requires knowledge of the whole
conditional densityl this is quite obvious because the expectation operations in (19) e. g.
for the f vector are defined by

A i
f(x):- E {f(x) I Zit J.. f(x)ptx(t),tIZt] dx1...dxn (20)

..- -- e

2.6 The linear minimum variance estimator

We now consider as a special case a linear system model which we may write like Eq.(9a),
(10a) using white noise instead of the Wiener process, in the form

x(ti= F(t) x(t) + G_(t~w_(t) ,t •to (21a)

y(t)= H(t) xM(t + v(t) , t -to (21b)

The optimal minimum variance estimator for this system model which is easily obtained
from Eq.(19), is given by

dP.)(t) + K((t) (yiQ - H (t)(t)} (22a)

dp(t) P(t)F t) + G(t)(tT(t)R(t)H(P(t) (22b)
1 (t)P(t) + P~t)H (tt) +t)H~t)P(t) (t)b

K t :u P (tNT (t) R-1(: t > to 0 (22c)

initial conditions x(to)t P(to).

These are the equations of the well known Kalman-Bucy filter which goes back to Kalman and
Buoy /10/#1961 in the continuous case an Kaliman / 9/, 1960 in the discrete case.

It is not our purpose to discuss the optimal linear estimator in this contribution in more
detail because our main objective is nonlinear estimation. However# we will give an im-
pression of the structure of this linear filter.

This will be used later as a reference for the understaniing of the local nonlinear filter
approximations.

Fig.6 shows the signal flow of the data processing in the Kalman-Bucy filter. It has the
structure of a control loop where the *plant' equals the system model under consideration.
The controller is of (matrix) proportioanl type (K(t)) and updates the system model in the
computer using the r*esiduals I ). The time variable Kalman gain K(t) is obtained as
solution of the matrix Riceti uIýIferential equation (22b) for P, whlch may be solved off-
line since P does' naither depend on the observations nor on the estimate 9.

The stationary solution of this equation yields a conatant gain for the filter which Is
then equivalent to the Wiener filter /7/, /8/.

Finally it should be emphasited that the linear minimum variance filter is the exact solu-
tion of the general estiAstion problem provided that

- the system model is linear

- !_(to) and the whito noise w(t), v(t) are normally distributed and uncorrelated.

In this case, the cod itional denilty p [xt I )t is Gaussian which only requires first
and second moments (i and P) for its representation. he we know Eq. (22) for g and P con-
tain no appr-ximations, i.* e the ,waluatlon of thees moments is e"act.

2.7 The Bayesian recursive estimation equations
tThe development of %he rec*.rslon relations for the conditional probability density
p tX(tk) I Ytk] in the time-discrete case is a much simpler taok than in the continuois
case.
This is due to the fact that 46 do not need stochastic integrals alid stochastic differen-
tial equations but sums and difference equations, moreover, the discrete white noise is
physically mseaningful.

We consider the discrete system model, Eq,(11). The recursion equations for filtering (up-
dating after measurments) and predicLtion (between measurements) can be obtained by using



Bayes' theorem of probability theory.

a) Filtering (calculation of the a posteriori density at t-tk)!tk) i = .2 _ I t -_

k-_ , k k,1,2,...

~k) ~ k ~ "k- 1
normalization:

k) - k) "! (23b)k -tkI f _V~ ryt) 2(Y .P tk) 11 d4(tk)

Initial conditions: p (x~to) IY l. p Ix(to)]
"0-1

b) Prediction (calculation of the a priori density in the absence of measurements)

PCX(tk+1 ) : l PLtk+1 tk k tk d_ kk ... (23c)

Analytical solutions of Eq. (23) are available only for linear systems with Gaussian ini-
tial % onditions and disturbances which yield the Kalman filter.

For the general nonlinear case we have to look for numerical solutions of these equations
which will lead us to global approximations of nonlinear filters (see para.4). There, the
main problem is the amount of storage capacity needed for storing of the multidimensional
conditional probability densities and the calculation of the nonlinear convolution inte-
grals in Eq. (23). A good survey on the methods of density approximation is given by Soren-
son /27/ in 1974.

Eq.(23) can, however, be used to develop the exact equations of the conditional mean and
covariance matrix P for the nonlinear minimum variance estimator.

2.8 Continuous-discrete estimation
This mode of eitimation is of special importance because in many applications the under-
lying mathematical model of the system has continuous dynamics while the observations are
usually taken at discrete time instants.

The system model for contlnuous-ditczete estimation is given by Eq.(9b) and Eq. (01b).
Obviously, the filtering equation is Eq.(23a) of the discrete estimation problem and pre-
diction over one time interval is accomplished by the Fokker-Planck equation (12).

3, LOCAL APPROXIMATIONS OF NONLINEAR FILTERS

Ateor having available the exact solution of the general estimation problem, we are now
looking for practical recursive algorithms which can be directly implemented on a compu-
ter to give us on-line estimates of the state vector X.

For this purpose, we have to approximate the density functions as well as the nutliueur
system functions.

One frequently used apV'roach to these approximations Is carried out in the following stepst
i) approix1mation of the cooditional probability density function p (x(t) ,t I It I by the

moments of the distribution
A-A

iL) consideration of the first and second womrt (x and P), i. e. minimum variance estima-
tion, and neglecting or approximation of higher order moments

iWi) approximation of the nonlinear system functions f Cx(t), t] , h [•(t), t], G (E(t),t]
by series expansion around appropriate reference-potnts reap. traoectories.-

This approximation is called lo.el approximation since the resulting filtering algorithzs
are only applicable in the surrounding of the reference point.

3.1 PFizt order filter approximations

Obviously first order approximations are the simplest ones asn&threore
most oaten used In prae.tlesl apIPici.iene. In tW shqa.i e I' p,.rr sent sow0 of the L.or
important f ilter algorithms whith have teen developed .Ie the beginning of the sixties.

3.1.1 The continuous minimum varian.e filter(extended Kalmam-Dhy filter)

The underlying system model is given by the (1t0) stochastic differential equations (9b)
and (lOb%. WV search for an apprx•ls tion for the (exact) minimum variance filter equations
(19) assusing
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i) the conditiona, probability density p rx(t),t I Zt] is almost symmetric and concentra-
ted near its mean. Thus odd central moments are-negligible.

ii) The system functions f(x), and G(x). 2 .GT() are expanded in Taylor series around the
oonditional mean _ up-to terms of-firsat order.

This expansion e. g. for f(x) yields

S-tL-i(ttF • •(t)-w(t] + (24)

and, taking the conditionalexpectation we obtain
1! u(t) ,t] :- Eff x(t), tlbz =t fLj(t), t]
-.. . .. (2 5a)

since the first central moment E jx- A Zt) is zero due to assumption i.

in a similar way we obtain

r.Wt h [:x(t) ,t] (25b)

and
Lr9 G t].t Wt9) G (t) t2c

Bearing in mind that r T ^ +T( a
hT (__)hTý; rhc)] + _T T r _+P(t t)T T (25d)

we immediately obtain wi",. Eq. (25) the differential equation for ý from Eq. (19a)l and
similarly tne equat in for the covariance matrix P, taking into allount that P(tit) does
not depend immed.ately on the observations (the factor before rdz-Kdt3 in E4(q9b becomes
zerý). " a jonsequenoe: the conditional covariance matrix P(tItT iquals the unconditional
matrix P(t).

Thus we hWve th- eq.ationr for the frst otder minimum variance filter

Wtl- Jf~L) .tjdt 4 !Iato)I:L - b[X:(t) ,t~dtI (2 6a)

df (t) $j[.j(V, -j. 3(~ ~$ •
-dr - - - 7- 0 4 pit)

"i " (t Pit)
S(I - - it 126b)

!i)- fit ) .- I

* bt~ ~-,(26c)

VýItla CORA. i tol . ?(to) I t A o

For taohr.lcal reli•iation. both differential egqations have to be soved on-line since the
gain matrix 9 dapenfs on the conditional mean 9. This is differ mt from the (linear) Fal-
man-buoy filfar where I can b& calculated alf-Cne vithoot taking any observation.

Apart from this, the first ordar sinitam varian,.a filter is very similar to tho KalxA.-
Buoy filter which is easy to see by cvpwarng the block diagrams of both filters, FIJ.*
and Fig.6.

Actually, the fsilter equations for the minimum variance fltter (26) can be gained uainq the
error mcdel of the a-stem iuations (9b), (00b) and the I-ear Kalman-mucy filter eaqv'tions
(22). The eror at (t is defined as the derivation of ..h state veotor x from tha comdi-
tional meand, I.-e.

Sxlt- '(t) - (27)

now we have vith s•. j9b)

and in viev of Xq.(24) and (Ua) with 0(.) O(.) we may write
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dx(t) - 6x(tW + G_(t) ,tl W(t)
x=x (28a)

which in fact is a linear stochastic differential equation for the error Sx. In an analo-
gous way we obtain the linearized measurement equation

C•~t x€•-•_•IX.. x --Mt + -V tM . (28b)

Now the Kalman-Bucy filter equations (22) are directly applicable to the error model (28)

and, taking into account that

Jx - E {J-2_x tJ 2_

We obtain equations (26), the first order minimum variance filter.

Because of this possibility of developing the minimum variance filter by an extension of
the linear filter theory to a linearized nonlinear system, this filter is also well known
as extended or modified Kalman-Bucy filter.

3.1.2 The linearized Kalman-Bucy filter

The assumptionsi and ii for the approximation are the same as for the minimc, variance
filter witn the exception chat the linearization of f(x), h(x) and G(x) Q G (x) is now
carried out about a known nominal trajectory _(t). Thus trajictory can be ipecified by the
differential equation.

dR(t) - _f (t),tidt, •(to) - (29)

If the first order approximation of the deviation from the nominal trajectory

SX(t) - x(t) -(t) (30)

is small enough we Obtain an appropriate linear system model for this deviation in accordance
with Eq.(28) and hence by application of the Kalman-Bucy filter (Eq.(22))the
equations of the linearized Kalman-Buoy filter.

{t)] -£ . .(31a)

d& * )rto ralett)f (-

T -1 ~ gt9 7~ (31c)

!i~t) A

I'.m I III* . .. . I ] I
lit) ~ t 1)

i) Since the nominal trajectory 1(t) is usually not a constant, the linearized Kalman-
Buoy filter is time variable

i1) The filter gain matrix 1(t), however, can now be calculated beforehand (off-line)
without taking observations. This is the difference to the extendd alu•arn-lqcy
filter where we need as a reference for the linearization the conditioaal mean Rt)
which we only obtain by on-line filtering.

iII) The filter is useful especially in aerospace applications where the nominal trajecto-
ry R(t) Is often known. In general, it Is not a simple task to define this trajectory
properly. However, if the deviation Ax becomes too large the linearization conditios
are no longer vaiL6 and useless eetUantes result.



3.1.3 The continuous-discrete extended Kalman-Bucy filter

Because of the practical use of the continuous-discrete mode of estimation we will now
present the estimation equations for this filter.

The system model consists of the (continuous) nonlinear stochastic differential equation
(9b) and the (discrete) observation equation (11b).

The development of this estimator is straight-forward using the well-known discrete Kalman
filter equations (which we did not give in this contribution) for
updating (filtering) of the estimate after an observation on the one hand and the con-tinuous extended Kalman-Bucy filter for predictfon on the other hand.
The latter equations are obtained by setting R- in Eq. (26a), (26b) equal to zero. Thus
suming up, we have the equations of the continuous-discrete extended Kalman-Bucy filter

i) Filtering (updating at the instant tk of an observation)

!(t kltk) - ft- (t Ott k. ) Et• t

(3 2a)

(32b)
1(t k) Pi ~k~t k-OtT(y)

LH it -") P (tkI tk-P et-k)"-t•÷ t k(32 c)
!- kt1 tk) 11(itk ) iil t k) k - Oo.A.I....

IAU cood•. i j it a to-d.•) itto)

-eiit0# t k t - k (tk I

Lh[itt ,k.14

ii) Prediction (between observations tk 4 t . tk+i)

k~k

S(31b)

3 .1.4 The iterated extended galsan-buty filter
There are several possibilities of improving the estimates of the extended Raitman-flucy
filter by local Iterations. The basic idea for thase algorithms is the reduction of the
estimiation error* by an iterative r#-linearisation of the system noaalinearitios hca) and/
or fx uabout improved reference values.
We will donstrate this for the meaturament noolneaity h(.

in the filteriaq equations (32) of the coytinuous-discrote etended Kalman-eucy filter
ethe reference N fr the evaluation of h(r ) aind the Jacbian matrix (M) Is the predic-
ted state Vont~ r (tkItrs¶) based on the formation of the bservateion I 1•kt h) at the
instant tker¶. nn vvU) of the filtering equation for the linearized slaman-oudy filter with
reference value V(tk) (see e. g. /24/ p.183) we may write th orresponding equation (32a)



of the extended Kalman-Bucy filter in the form

i - + KX I: It (tic tk {vti) - _bC(tk I t_)1,tk3 -
(34)

: _(tk)

-O0

Now, the updated estimate x(tkIt•,) on the average wtll be better (i. e. closer to the
actual value x(tk)) than the predicted estimate .(tkltk.I) . Hence we relinearize about
A A 2)
x(tIt )and wtl obtai an improved updated estimate xitjjt ) by processing the observa-
tion y~tk) once again through the filtering equation (34) with X(tk):.•(t tk). For thispurpose the gain matrix K (Eq. (32c)) has to be recomputed as we•ll using xtkttk).

J(2) It•w ih d A 3The iteration can then be repeated by linearization about Xt t which yields xtkIt).
Generally the iteration procedure will be terminated when a fArtaer improvement is not
possible, i. e. I (t) (I-t I

lI.( % 1 ) - (( Y t 1% ) 1 Sy -, 0 (3 5 )

Hence we sum up the equations of the iterated extended Kalman-Ducy filter with iteration
of the measurement model.
i) Filtering (updating at the instant tk of an observation Y(tk))

O kbt ) , ' "tk t - ' i(tk| -- -" -

Ii) (k )""-- 32... Mktk),•• Y ]. (3 -..,

* • .llat•h.- 1 )] |(36b)

,t-1... -t) • 'ki t) 1 ttkl kk • tt lk

* (t)I y (c~) i)

C ovria.nomatrixt evaluation only once after having terminated the iterations, I. e.

+ ,U)Eq. 32b wit Al

It%1t.C) (36c)

I)

Li) Prediction (between observation t tItltk+0) Eq4 (3akoldas, starting the integration
with the ftinal itezatea fIltor estimates - IjVfrc. Eq. (36a) and F(tkltk)
from Eq. (36o).

The iterated filter considerably reduoes the influence of the measurment nonlinearity
h(x) on the estiation quality. This was demonstated by Deuhas and Pines /32/ in 1966.

If the system nonlinearity f(1) is, however# strongly nonlinearfurther ImprOVement may 'ie
achieved by iterating the prehlction equations as well. The resulting estimator was first
developed by Wishner, Tabacsynski, and Athans /29/ In 19686 it is known as "Jz• gkgjL
4terain-nfilter", while Jaswinski called it "iteratd linea& er t oolther (/3/,
it.240). The discrete-timte version of this estimator is called discrete condaltional- an

oration-filter (Bags and Mael" /,30/o P.470). Usually, these iterated filter algor;tass
converge very fasts the main imrovement is already often reached after one or two Itera-
tions /29/. Tbhs, they r#Apesent a veery useful tool for nonlinear filter applications.



3.2 Higher order filter approximations

As already pointed out, first order approximations have the advantage of a comparatively
small amount of computational berden . Moreover, these filters can be developed by an ex-
tension of the linear filtering theory. Thus, deeper insight in the treatment of sto-
chastic differential equations fe. g. the Ito stochastic calculus) is not necessarily re-
quired. As a consequence - with regard to nonlinear filter approximations - the extended
Kalman filter type estimators have found wide spread applications.

On the other hand, smaller estimation errors may result if second partial derivatives of
the nonlinear system functions f(x), h (x) are included in the estimation algorithms.

There exist a lot of different higher order approximation filters; as an example we will
give in the sequel two important types, the continuous second-order minimum variance
filter and the continuous-discrete modified Gaussian second-order filter.

3.2.1 The continuous second-order minimum variance filter
This filter was developed by Bass, Norum and Schwartz/26/ and independently by Jazwinski
/31/ in 1966.

The system model is again Eq. (9b), (lOb).

Assuapt ionst
i) The conditional probability density function p (x(t), tI ! t2 is almost syummetric

and concentrated near its mean. Thus, odd centrat moments are negligible.

ii) The system functions f(.S), h(2x) and G(x)_q Gx) are expanded in Taylor series around
the conditional mean u-p to terms of second 0oder.

The assumption i is the same as for the first order minimum variance filter, However, even
central moments of fourth order which will appear now (due to the second order suries ex-
pansion) are neglected, i. e.

The expansion of the nonlinear fVanctions and expectation operation e. g. for f(x) yields

CV01t) + :)2 P(tlt)

with the definition

and the Hessian matrix

we get after soma calculation with Eq. (37) from Eq. (19a), (19b) the equations of ths.e.o-
tiog1 e -econd-orde.r imuu variance flta6.

us secoIkilr• p ittim



(40a)

4!(+.t) [jii .... Prtlti dt)

d - ,i(40b)

- )h(:jCC) .e -T

g Pttjt)) !

-!C) R(tlt)!4'(j(t) ,t]P"1Ct) (40c)

LaltJ a o00d.1 o,1. V,• •c.,) - te, - 0o

aall j ) (tac. tj

Comparing this flter with the first-order filter (Eq.(26)) we see in which way the second
order terms are now added for better approximation of the nonlinear functions f and h.
This is deonstrated also by Fig.8 in comparison vith Fig.. Moreover, the equation
(40b) for the conditional covariance matrix P(tlt) is now a stochastic differential equa-
ti- since it contains the observations.

3.2.2 The continuous-discrete modified Gaussian second-order filter

This filter was given by Jaxwinski /32/,1966 and independently by Fisher /33/o 1967 and
Athans, Wishner, lertolini /34/ in 1968. It has the advantaqe that no stochastic differen-
tial equation is included in the estimation algorithm. Thus, it is easy to implement on
a digital computer.

Now the oontinuous-diAcrete system model, Eq.(9b) and (l0b) applies,

Assumptionst

I) The conditional probability density function p [t(t),tIYtk3 Is (approximately) Gaussian.
Thus odd central moments are negligible and ourth centril moments will. be approximated
by elwnts of the covariance matrix P.

,•: (xi-ll( (xk-1k) n-i 11 .

P P + j (41)
•i- = Pk' ii ell'i~k + Pkl'pij"

ii) The nonlinear system functions f(g), h(x) and 0()NI reap. G(x) W G(x) are expanded in Tay-

lor serail around the conditionil miea 1(tltk..), tk.1  t-4iE up ti terms of s

order.I:odi
I,
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iii) The filter equations for x(tkltk) and P(tkltk) at an observation will be developed
by assuming a power series in 2(tkltk-1) which is carried to the first order only.
The covariance equation will then be modified by omitting the immediate influence
of the measurement Y(tk) on P(tkltk), i. e. the second term in the power series for
P(tkltk) is dropped.

The result of assumption iii is an updating (filtering) equation of the form
•(tkltk) - a(tk) + K(tk)E[(tk)-t(tktl)]

P(tkltk) - Cttk).

These are in fact linear r~gression equations for the vector case, which yield the best
minimum variance estimate X(tkltk).

The general formulation for a, K and C can be found in Farison /35/. From Eq.(42) and
/35/ we finally obtain after somie calculation the filtering equations of the modified
Gaussian second-order filter, making uue of Eq.(38), (39) and (41).
The prediction equations can be derived from the continuos minimum variance filter (40)
by omitting the terms which characterize the influence of the observations. Since we often
have additional known input signals u(t) in the system (besides the stochastic inputs
w(t), v(t)) we will take them into account in the prediction equations, supposing, that
Now in-Eq. (9b) we may write

____- _ _X(t), _(_),t_ X ___(t) ,_t]+_B_ (t),_t]__ t _ (43)

Resulting, we obtain the continuous-discrete modified Gaussian second-order filter.

2 i) Filtering (updating at the instant tk of an observation y(tk)

;1titit) - ~ ~I- I Ictt~ -

(44b)

tit) Et T I~t,, t I

- ,h It- -•Byt]l%.A .

It

li I- 114hIki • i }-0} iIl i 
0"

Pt 8etIto11 to tia.1
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ii) Predicition (between observations tk •t <tk+1)

dxt I tk)
-t- -f[-x~tltk )'t] 8, • (jk)tut

.) f•i- tit k It .01k (4 5a)
S tk) P(tkt

1 S2_____ k)I )! t P~ik

k) T

dt t P(t )k + P'(t~th)r )dPt~tkt )

• t I t).t ] (t)GT (!x(t)t ] tkI ] 
(45b)

detfnition I_(t),

3 a (t) -! 1 :

Remark: the approximation of (G 2 G T is possible by

a) expanding G Q GT up to second order and taking then the expectation opel'ation.
This yieldi a rorm as in Eq. (40b).

ii) expanding G up to second order, generating the product G 2 Ga and taking the expecta-
tion

iii) expanding G only to first order, generating the product G Q ST and taking the expecta-
tion.

The procedure i is more convenient than ii while iii is of advantage with regard to the
existence and uniqueness of the solution /36/.

The structure of this modified Gaussian second-order estimator is illustrated in Fig.9.
if we omit the blocks containing the Recond order terms

32 f ; 2 (8 u) 2h

T ' -P r : P - * (46)

we get the continuous-discrete extended Kalman-Bucy filter.

As mentioned, the extended Kalman-Bucy filter has often been applied due to its simple
stnxfwe amd low cmiutatLknal birden. A good waNey of early nonlinmar filter applicatiAws is given e0q.
by Sorenson/37/ in 1973.
One pop11a field of applicatima of molinear filterirq is the ombined eatimation of states nd paramters
in linear and nonlinear systems. In this case, a dynamical model for the unknown parameters
is asasued, the parameter equations are added to the system model, and the *state variables*
of this augmented model are estimated. However, the application of only a first order filter
ay cause biase estimate /38/ as a result of omitting higtm order tas like (46) in the filter appmi-
ation. That is why modifications of the extended Kalman filter have been proposed /39 /. On

the other hand, second order filters such as the modified Gaussian second-order filter have
been sucesfully applied for parameter estimation problems /40/, /41/o /42/.

It should be noticed however, that second-order filters are generally less robust than
first order ones and that they have a smaller region of convergency. Therefore the initial
conditions *vald not be too bad and a special initialization procedure like a least squares
parameter estimator will be of advantage /43/.

Apart from the filters derived in the preceding paragraph, there exist, of course.various
other approximations which can not be discussed in this paper but are contained to a large
extent in stada~rd textbooks on estimation theory /23/, /24/,/30/,/44/). We Just mention
stochastic approximated filters(/45/, /46/) where stochastic approximated polynomials are
substituted for the Taylor series expansion of the nonlinear systems functions f () and
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4. GLOBAL APPROXIMATIONS OF NONLINEAR FILTERS (BAYES-LAW-CALCULATION)

The only consideration of the first and second moments of the density as we did in
the local filter approximations of paragraph 4 is of questionable value if the a priori
density p CE(to),tol and/or the noise processes Jw(t)j , {Y(t3 are not Gaussian, i. e.
asymetrical or even multimodal.

In these cases, the implementation of the Bayesian recursive estimation equations (23)
may bo necessary. This requires the approximation of the complete conditional densities.
As a result the validity of the estimator is not restricted to certain reference
points in the state space, hence we speak of global approximations of nonlinear filters.

Assuming the time-discrete nonlinear system model (Eq.(11)) we obtained the corresponding
Bayesian estimation equations (23) which have to be calculated in the following steps.

i) ttz evaluation of the filter density p rx(to) [Ito ] after the first observation
""(to) according to Eq. (23a).

- calculation of the product

- normalization by solution of the nonlinear convolution integral (23b)

ii) evaluation of the a priori (prediction) density p(xl(tI)l(to0~by periorming the
nonlinear convolution in Eq. (23c) with

iii) tt:calculation of the new filter density p (x(tj)_ I Yt1 ) using the observation
S(t)} as under i) etc.

For thepractical solution of the estimation problem, one has first to define appropriate
finite collections of points for the approximation of the a priori density p (x (to)].
In the two-dimensional case, we can illustrate this by a grid in the xl-x2 plane where
the gridpoints are the references on which the approximation can be based. This grid can
be maintained or redefined for every sampling interval (floating grid)? the latter is
often numerically more effective /47/. With known grid, the method of approximating the
density has to be established as well as the method of numerical integration.

4,1 Orthogonal Series expansion approximation

The approximation of the density function by orthogonal functions or polynominals has
frequently been proposed in the past. Sorenson and Stubberud /48/ used the Edgeworth-
series which consists of Hermite polynomiAls. However, the coupling of a Hermite poly-
nomial with a Gauss-Ilemite quadrature /49/, /50/ seems te be more encouraging.

Moreover, a Fourier series expansion may be of use for applications with periodic proba-
bility density functions (9. g., n phase-aodulation problems) /51/.

However, the inherent disaevantage of all these approximations by orthogonal series ex-
pensions is the fact, that the resulting density functions are not really density func-
tions. They can, for instance, assume negative values which finally yields divergency
of the estimator. In order to avoid this phenomenon, the number of terms in the series
have to be increased which unfortunately auqments the computational burden at the sama
time. Therefore, another approach has been suggestedl it is the

4
4.2 Gaussian sum approximation

In this case the densities in the Bayes-law calculator are approximated by non-orthogonal
functions i. e. a weighted sum of Gaussian probability densities. This has been proposed
by Alepach and Sorenson /52/, /53/. For example a deneity p(t) is approximated by

q
pa () i-i NX(X-^'Pi1

with the definition

(5 ~ l~ 2if"(t! (./ {~x.)¶(-J 47b)

and the nonneative weighting coefficients aq, characterized by
q

. aj " I(47c)
Jul
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This approximation is motivated by the fact that Pa converges uniformly to p for a large
class of densities.

The mean values 2_ represent the grid points for the approximation. These grid points
are selected uniformly over the region where p j)is significantly different from zero.
The covariances Pi are defined to be diagonal (6'-.) and @".is selected to minimize the
deviation between p and Pa. The coefficients vi are Zhosen to be proportional to the values
of the density function at the grid points ki, and the number of terms q has to be increased
until a suitable approximation is obtained.

The quality of the Gaussian sum approximation is illustrated in Fig.1O where a uniform
distribution is approximated by this method /54/.

Now in view of the filter realization using Gaussian sums the proceeding can be the follo-
wingt

i) the a priori density p[f_(to)]is approximated by Gaussian sums.

ii)the ovaluation of the filter density requires the calculation of the product

The result is unfortunately no longer a normal distribution. Therefore,

ii the density pv [y-b(x) ] will be linearized around each grid pointl than an extended
Kalman filter can be-applied at each grid point to calculate Xi(to I to) and Pi(to Ito),
the terms of the Gaussian sum approximation of the a posterkti density p Lx(toT to]

iv) After that the prediction density p~x(tl) I toj is evaluated in a similar way as under

The result of the Gaussian sum approximation for realization of Dayes-law calculators eaten-
tiall• requires the parallel operation of so many extended Kalman-filters as we have terms
in the Gaussian sum.

In view if Fig.10it should be noticed that nearly 50 (M) extended KalMah filters are neces-
sary for the implementation of a Gaussian sum approximate filter with upiform a priori pro-
bability density.

4.3 Poi-t mass approximation

This approximation may be reqarded as a special case of the Gausuian sum approximation
where the different probability densities at the grid points are Dirac d impulses with gi-
ven area (the point masses). esnce, the resulting density is always positive.

For example, the approximation of the a posteriori density can be written as

q
pt~(j~! I ~ (t~ tt).611(t )4j(t 't )I 48

i-I

with the qgrid point ( ,..,) and the corresponding point maeset Ed.

This approximation has been given by Sucy /SS/. For reduction of computational burden, a
'floating grid' has blen suggested in /47/. The grid is centered at tOwe actual position of
th* conditional mean X and the eigenvectors are used to define the principal a4Me of the
grid. With the grid points given, the Sayesian recursion relations are readily evaluated.
which is essentially equivalent to using a rectangular integration rule to accomplish the
numenical quadrature..

4.4 Spline approximation

In this approximation the grid points are the mesh points for the interpolation of the pro-
bability densities with multidUmenslonal cubic spline functions. This approximation has been
suggested by De 1igueiredo and Jan /56/ in 1971 for realization o• dscre*te-cLae nonlinear
filters.

The probability densities approximated by splints assime no negative values and the pmteri-
"al treatment of the pVIn. based filters is compawatively simple.
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EXACT AND APPROXIMATE
NONLINEAR ESTIMATION TEOMNQUES

BY
Dr. D.P. Liang

Defence Research Establishment Ottawa
Shirley's Bay, Ottawa

SUMMARYCanada KlAOZ4

This chapter presents a unified approach to derive estimation algorithms for discrete and
continuous nonlinear systems with and without delays, corrupted by white noise as veil as non-White
noise processes.

In the case of continuous system , filtering algorithms are derived for nonlinear systems
without delays, imbedded in white noise, correlated noise and noise free processes. The filtering
equations obtained for nonlinear systems with white noise processes are exact, but for non-white noise
processes the results obtained are approximate.

In the case of discrete-time systems, nonlinear estimation algorithms, that directly yield
the fixed-lag, fixed-point end fixed-interval smoothing and the filtering algorithms, are derived for
nonlinear delayed systems with measurements corrupted by white noise and correlated noise processes.
The derivation is straightforward and clearly indicates the close links between three different class-
ification of smoothers and the filtering estimator.

For systems with polynomial, product-type or state-dependent sinusoidal nonlinearities, thef proposed algorithms can be practically realized without the need of approximation under the assumption
that the estimator errors are Gaussian. Such an assumption is sigpificantly different from the most
conOly Used assumption that the state is Gaussian.
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SECTION 1: GENERAL INTRODUCTION

1.1 INTRODUCTION
The importance of linear estimation theory as represented by Kalman-Bucy filterll] is now

well recognized. It has found extensive applications in aerospace systems, such as Apollo and space
shuttle; guidance and navigation systems; econometrics, seismology and meteorology, biomedical,
communications, and many other practical scientific and engineering problems.

However, dynamic system models and measurement models for the majority of realistic control
problems are inherently nonlinear. Most of the work in nonlinear estimation is very theoretical, some
no more than a philosophy of approach rather than a procedure leading to the derivation of practical
estimations.

One of the main lines of attack to the nonlinear estimation problem is the probability approach
pioneered by Stratonovich 121, and subsequently taken up by Kushner [31, Wonham [4] and Bucy [5]. The
truly optimal nonlinear filters for systems corrupted with additive white noise, were given in Kushner
L3,6], however, their exact solutions required infinite dimensional systems which are practically
impossible to realize except in trivially simple cases. For practical realization, extensive work has
been carried out to approximate the nonlinear filters. One group of papers [7-9] attempts to obtain the
numerical solution using the so-called Bayesian point of view. They assume to have a completely valid
probability description of the system, so that Bayes rule can be applied to obtain a recursive description
of the a posterio-I probability density function. However, in many realistic problems the mathematical
model of the system contains uncertainty that cannot be priorly modeled by probability distribution
functions. Furthermore, the Bayesian approach has the disadvantage of imposing a rather severe comput-
ational burden for even simple systems. Another group of methods 110-141 essentially approximates the
mean and variance of the a posteriori density functions based on perturbation relative to a prescribed
reference. The majority of these techniques employ the Taylor's series expansion of the dynamic system
and measurement nonlinearities, neglecting second- and higher - order terms. Recently, Sunahara [15]
proposed to replace the nonlinear functions by quasi-linear functions via stochastic linearization. In
general, methods based on Taylor's series expansion suffer from the defect of replacing global distribut-
ion properties of a function by its local derivatives aggravated by corruption of noise processor. Thus
it is questionable whether the more sophisticated approximation [161 provide useful improvements relative
to the widely applied first-order approximation known as the extended Kalman filter.

In the areas of nonlinear smoothing estimation, Leondes et al. [17] derived the exact functional
equations for the smoothing density functions and the smoothed estimates; but their solutions are pro-
hibitive except in trivially simple cases. Other works on nonlinear smoothing were presented by Kailath
and Frost 1181, Lainiotis 119] and Lee (20],

As far as state estimation problem% for systems with time delays are concerned, Kwakernaak
[21] used the wethod of orthogonal projection to derive filtering equations for linear continuous systems

with multiple time delays, which, when solved, also yield smoothing estimates. Priemer and Vacroux [22,
231 later considered the estimation problems in linear discrete systems containing multiple delays in
the message model. Farooq and Hahalanabis [24] rederived the estimation algorithms of Priemer and
Vacroux using the state augmentation technique, however, it was pointed out in [221 that the augmentation
of state vectors has the effect of increasing the dimensions of the system, and thus lCad to a filter
that is couputationally inefficient. Biswas and Mahalanabis [251 presented fixed-lag smoothing algorithms
for the continuous systems with time delays by first discretizing the continuous systems and then employ-
in& the state augmentation technique. This was further extendedto the fixed-intmrval smoothing problem
by Faroog and Balasubramanian [26). Approximate smoothing and filtering equations were also derived by
Yu et al 127] for a general class of nonlinear functional differential systems.

1.2 SCOPE OF THIS CHAPTIR

This chapter is devoted to the derivation of nonlinear estimation algorithms for discrete and
continuous nonlinear dynamic systems with and without delays in the message models, corrupted by white
Gaussian noise, correlated noise and colored noise processes.

Section 2 follows the presentation of [28, 30) and deals with continuous-time nonlinear systems
without delays corrupted with additive white noise as well as non-white noise processes. The basic
approach sake* use of the matrix minimum principle togiether withthe Kolmolotov 1311 and Kushner 13,6)

equations to minimize the error-variance, taken to be the estimation criterion. However, the exact
algorithms derived in such a manner require infinite dimensional systems to realize, which is computation-
ally impossible. In order that the estimation algorithms can be physically realized, it is assumed that
the conditional probability density futctions of the estimator errors are Gaussian. Techniques are
presented to show how one can exactly evaluate expectations of polynomial, product-type or state-dependent
sinusoidal nonlinearities under the above assumption.

For the purpose of assessing the performance of the proposed minimum variance filter and to
compare it with various other approximate finite dimensional filters. Liang 132) selected various types
of nonlinear systems, which were simulated on a digital computer. His results clearly indicate the
superiority of the proposed minimum variance filter over those of other filters investigated, and theor-
etical explanations are also given for the apparent poor performance characteriatics of the various other
filters considered.

Section 3 follows the presentation of (28,33) to derive discrete-time filtering and smoothins
algorithms for nonlinear tims-delayed system imbedded in white Gaussian noise processes. The main tech-
nique makes use of the matrix minimum principle to derive the optimal values of the coefficients in the
estimation algorithms uwder the requirements that the estimates be unbiased. The resulting algorithms
can be recursively evaluated under the assumption that the probability density functions of the
estimator errors are Gaussian. utamples are included to illustrate the use of the proposed estimation

algorithms, in particular, they provide better imsight as to, how one can properly substitute for the



discrete-time indices, in order to arrive at the filtering, fixed-interval smoothing, fixed-point
smoothing and the fixed-lag smoothing algorithms. Results pertaining to linear problems are directly
deduced from the nonlinear estimation algorithms, they agree well with those derived in the literature,
using other optimization techniques.

Section 4 deals with discrete nonlinear time-delayed system imbedded in correlated noise
processes 12P,34]. The derivation as well as the presentation follow that of Section 3. Similar to that
of Section 3, the linear estimation algorithms for these problems can be obtained from the nonlinear
estimation algorithms.

Section 5 summarizes results presented in Sections 2 to 4.

SECTION 2

EXACT AND APPROXIMATE MINIMUM

VARIENCE FILTERING FOR NONLINEAR

CONTINUOUS SYSTEMS

2.1 INTRODUCTION

This section is devoted to the estimation problems of nonlinear continuous systems without
delays corrupted by (1) additive white Gaussian noise, (2) correlated noise, an= (3) noise-free processes.

In Section 2.2, the noise processes are assumed to be Gaussian white, the basic approach makes
use of the matrix minimum principle to minimize the error-variance cost function, which is obtained fromSt the exact conditional probability density function, as presented in Kushner 13,61 and Kolmogorov's

Sequations (3]. Therefore, it is not unexpected that the exact nonlinear filtering equations derived for
white noise problems closely resemble those of Bass at al. [13], exkept the argument of the expectations
have been transformed from the state x(t) into its estimator error x(t). Section 2.3 shove that for
filtering problems with polynomial, product-type or state-dependent sinusoidal nonlinearities, the filter-
ing algorithms can be fully realized without any other approximations under the assumption that the
conditional probability density functions of the estimator errors are Gaussian.

In many practical situations, nonlinear dynamic systems are imbedded in non-white noise
processes. Therefore, Sections 2.4 and 2.5 deal with more general nonlinear estimation problems, they
are respectively, imbedded in correlated noise and noise free processes, and the colored noise problem
can be considered as a special case of the noise free estimation problem.

The estimation algorithms derived for non-white noise processes are suboptimal, since the change
in probability density function due to the differential measurements Uz is neglected. In the special case
that the system and measurement models are linear, the resultiug algorithms are optimal and agree well
with those of the literature [35,361.

2.2 OPTIMAL MINIMUM VARIANCE CONTINUOUS NONLINEAR FILTERING WITH WAITE NOISE PROCESSES

Consider the class of nonlinear systema described by the stochastic differential equation [371

dt• - f(x(t),t] + Gtx(t),tlw(t) (2,1)•i: dt

with the maaaure~eent given by

y(t) - h[x(t),t) + v(t) (2.2)

Where x(t) and y(t) are the n-dimensional state and %--dimensional measurement vectors, f and h
are, respectively, n-and r-dimensional nonlinear vector valued functions, and G is a vector valued
matrix.

The random vectors v(t) and v(t) are, statistically independent zero-mean white Gaussian noise
processes such that for all t, r > t

Cov(v(t), v(O)) - V (t) 64(t-)

VSCovlvlt), V(T)) - I (t) U(t-T) (2.3)

s and cov(w(t), v(')) - 0

wmsrs 8(.)is the Dirac delta function, mad the variances 'V(t) end YV(t) are non-vaptive definite and
positive definite, respectively.

The initial state vector x(t) a x is a ro-mean Gaussian random process, indapendent of w(t)
ad v(t) for t _ t, with a poaitivo dafinita variance matrix

var(x(to), X(te)} - v(t)

In the typical filtering problem, it is required to compute X(t). the unbiased estimate of
x(t) conditioned on the eot of measurements

1(t)= ly(@)Ito _ 6 <a ti,

such that the cost function for r ) to

J(T) a R([z(T) - 2(01)] '(T) (X(T) - t(r)J ('t)) (2.4)

is miniuisad. Here NH() is an arbitrary syittric positive definite matrix, T tie matrix tramspose and

m~e-/ •v~m • m •,l• mo k~4v,•mqmu



E denotes the expectation operator conditioned upon the set of measurements Y(T).

The filterlng algorithm is assumed to satisfy the general nonlinear differential equation
•(t) 19[(t), t) + K(t) y~t) (2.5)

where t[l(t), t] and K(t) are yet unknown. Then the estimation problem is to determine the time
varying nonlinear vector valued function X[9(t), t) and the gain algorithm I(t) such that the cost
function of Equation (2.4) is minimized.

In fact, the nonlinear filtering equation may be assumed to take various forms, however, once
enough information concerning 9(t) and y(t) are included in the estimator model, the resulting filtering
algorithms would be unique. For example, other dynamic filtering equations such as

i(t)= Lji(t), tQ + K(t) (y(t) - E(y(t))) (2.6)

can also be assumed. Comparing the structures of Equations (2.5) and (2.6), it is obvious that an
extra tarm -K(t) E[y(t)] is included in Equation (2.6), however, the resulting filtering algorithm using
either one of the above estimator models, would result in exactly the same nonlinear filtering algorithm.

Now, let x(t) denote the estimator error defined by

x(t) - x(t) - R(t) (2.7)

using Equations (2.1), (2.2), and (2.5), the derivatives of Equation (2.7) becomes
X(t) - f[NX(t) + 9(t), t] + G[•x(t) + i(t), t] V(t)

i• - •[itj(t), t] - K(t) (h[x()+•tt ~) (2.8)

Sincl 9(t) is required to be an unbiased estimate, it therefore requires the expectations of
both x(t) and 0(t) be zero. Hence, if the expectations of both sidesof Equation (2.8) are taken, it is
necessary thatx

L[2(t), tj - f[x•(t) + 2(t), t] - K(t) {(h[u(t) + '^(t), t)) (2.9)

where ^ ^ A

f(x(t) + x(t), t] - E(ffx(t) + x(t), tl/Y(t))

h[x(t) + x(t), tI = E(htx(t) + x(t), tl/Y(t))

Then the estimator error can be shown to satisfy the relation

x(t) -f• (t), x(t), ti + G*[x(t), x(t), t] w*(t) (2.10)

where
f*[,X(t). X(t), t] . f[(t) + x t), t] f x~t + x(t), t]

+ K(t) (htx(t) + X(t), t] - h'x(t)+ x(t).t]l

,n V A(tAnd G*(X(t), X(t), t] a NNW~t + xlt), tl - Alt)

Furthermore, Equation (2.2) can be rewritten as
y(t) - h['x(c) + x(t), t0 + v(t) (2.11)

now the filtering problem of Equations (2.1) and(2.2) has been transformed into that of Equations
(2.10) and(2.11).

Let *lX(t)i be a twice continuously differentiable function of the vector x(t); by definition

of the conditional expnctotion operator

d E(4(x(t)l) - O(x(t)) dp~x(t), t/Y(t)I d x(t) (2.12)

where p(x(t), t/Y(t)) is the conditional probability density function.

Next, the change in p(x(t), t/Y(t)1 due to the dynamic equations of (2.10) and(2.11) must be
comuted. It can be shown that 1371

6p "' p(X(t + St), t + 6t0Y(t), 0 y4 - p(x(t), t/i(t), 6y)

+ pjx(t), t/Y(t), ay1 - pIx(t), t/Y(tY) (2.13)

where the first two terms an simply the change due to the dynwaic equation of (2.10) and the last
two terms are due to the differential massureuents dy. These two changes atae given by Kolmagorow Wa~

oushner's equation 5,6. Therefore.

dif f(t)1) = I(L $I'(t)3) + +(*( (r)i(h[ (t) ++ (t)* to)
'•v~t)'a~t),)t- - ht)+(t)t+.ztt),(tll

'U (t)1,(Y(t)-A A(2 
)

where
n ,n a

fX(03in L ftER(t), x(t), t) i + ,j*('X(t), x(t), t)
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2
Y,*(t) G'T(x(t),x(t),tl a. OX(t)] (2.15)

Then the error-varkance kqyation is obtained from Equations (2.10), (2.11), (2.14) and 2.(15) by
setting 0[1(t)] x(t) x (t).

for which

dV%(t)
E{• ( t)^ '40( ) x t , t + f [ • t , ^ (t) , t ) x• ( t } + G " (t) + x (t) ,. t ]

dt
A A

V V(t) GT[•x(t) + x(t), t] + K(t) v W) KT(t) + E{'X(t) x T(t) hT1X•(t) NT Tx(t), t]

A 1-W(t) hT1x•(t) ÷x(t), t]} %v-1(t) {'1(t) - h6xu(t) + x^(t) , t)} (2.16)

where it can be shown that

E('X(C) f*T[X•() x(t) t. E{(t fTx(t ÷(t), t] - 'x(t) hT[X(t) + x(t), Q] KT(t)}

Nov the estimation problem takes the form of &n optimal control problem in which K(t) is the only
variable P.vailable for manipulation such that the cost function of Equation (2.4) is minimized.

To use the matrix minimum principle to solve this problem, a symmetric positive definite
coatate matrix P(t) is defined, and the Hamiltonian is given by

H - trace (•N(t) pT(t) }

Using the concept of gradient matrices (38] :ýhe necessary condition which the optimal K(t)
must satisfy is obtained as

K(t) w {',(t) .Tvx(t) + x(t), t]) (2.17)

note that K(t) is independent of the costate matrix P(t) and the weighting factor M(t).

Then the filtering estimate and the error-variance equation become

X(t) , f(x(t) + x ~t), t÷ + ZjX(t) h (x(t)

d x(t), Q]) Vv'f, t) (y(t) h(x(t) + x(t), tl) (2.18)
and

dEt(t) ,

dt O wt(t) f (t) + (t). t) + f(t) + w(t), t] • TX'A

v-1(t) 1{h((t)+ x(t), t] x (t))+( t) -a x(t) h (a"t) + 9]t). 2 )

respectively.

It should be noted that before the above algorithms can be physically realised, a number of
difficult expectations mant be evaluated, they involve infinite dimensional system except in trivially
simple cases. Also notice that the algorithm derived here closely ree.tbla the exact equations due to
loals t al 113). The only difference is that the argument of the expectations have been transformed
Into x(t). Such a transformation is particularly significant for filtering problem with polynomial,
product-type or state-dependent sinusoidal nonliosaritiea. Since. in such cases, the filtering algorithms
can be obtained without any further approximation*, under the aeaestion that the probability density
functions of the estimator errors are Gaussian.

Furthermore, the abovv derivation can be **tended to filtering problem vith oon-white noie"
processes. However, in such cases, the change in pix(t)b t/Y(t)) due to the differential measuremeats
ay iS neglected, and Equation (2.14) become simply

dt (a ( L X(0t)1) (2.20)
dti

It it noteworthy to mntion that when such an approximation is made, the results obtained for
the filterl8 problem torruped by white noise procesnes are equivalent to that of the stochasticSlinearisattoo due to Sunahara (15), In such a case the random forcing term in the error-variantca
equation of Equation (2.19) is naelected, wherea the filtering alloritbh of Equation (2.18) remains
unchanged.

WAan Equation (2.20) is used in plcce of Equation (2.14) to obtain the error-variance eqfAtion
and the nomlinear functions are approximated by seond-order Taylor seiet expansions. the reasuib8g
algorithm ae comly celled modified mintou wvariae filter (161.
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In order to test the performance of the proposed minimum variance filter and to compare it
with various other approximate nonlinear filters [10-13, 15-16], Liang [32) selected various types of
nonlinear system, the stochastic filtering equations are transformed to Stratonovichts forms, and then
simulated on a digital computer. The simulation results obtained from the proposed filtering algorithms
are compared to various other approximate nonlinear filters. His results indicate the superiority of
the proposed filter over those of other filters investigated.

2.3 EVALUATION OF EXPECTATIONS

The purpose of this section is to indicate how polymonial, product-type or state-dependent
sinusoidal nonlinearities can be evaluated without the need of approximation under the assumption that
the estimation errors are Gaussian.

Polynomial or Product-Type Nonlinearities

For the sake of completeness in presentation, it is worth mentioning that the expectations of
higher order power terms can be easily evaluated using the following Levsi.

Lama 1: Let{x(t), tc} be a zero-mean Gaussian process. Then all ndd order moments of x vanish, and
the even order moments can be expressed in terms of the second order monents using the following formula
(391

E{x•(t 1)...X•(tn)} - ZEI(ti )x•(t I2) ... E[•(tin l)(ttn I

where the sun Is taken over all possible ways of dividing the n points into nul combinations of pairs.
The number of torns in the sumation is equal to 1.3.5...(n-3) (n-i).

It should also be noted that Lemma 1 can be rewritten as
R{x•(t )...X(t))- }= (,(t Wt(t)) } •{(t ) ... X(t)+ E{(x )(t ) Wt

I n 1 2 3 a1 3
Ixt)t4)., ,x(tn)} ...•(X(t 1)x(t n))•.{X(t2)x(t3) ... ,x(t _1)}

which implies that nth order moments can be obtained from the expectations of n-2th order moments. This

is 4 rather useful formula in the evaluation of the expectaton. of higher order power terso.

Nonlinearity Involving Stat.-Denendent Sinuosoids

In practical application of estimation techniques, one often encounters onlinear torso Involv--
ing state-dependent sinusoids. Fortunately. the expectations of such typeof nonliaear fu~ctious coa be
rigidly obtained.

Leume 21 Let x and x2 be jointly normally distributed random variable. Thea

E ( coe(x1 4 �n2)) - Us exp (.(xl,*4) -(V 1 .+ VZ2V,)i2J1

and z ( +inx ) in - LP - vn v22+ V14 V 1 /+2 )

The above relatioaships are clearly sees fom the definition of the characterlotid function

jT T
(u)- (ea a. o ju Tx -x ju Vxu)

where

u (xi V ,. u2 *u'5 'uQ'~h

and V .. [coy (2 x

teo 3zI f an operator Ik (u) is defined such tet

them could *"ily derive thefollowing relationshipet

() k, +juv tbore e% io the kth unlt vetor,

S.." . ,-l= 1 .- .-

(it.) I (.U 1 " k ("a)" 4)0 '•(u).

J ~ ~and 1(2 .(+X)
(IV) a + 1 102+ 12) V.l I a Suultm 4
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-where we have
odd number

Using these identity relatinmships, one could easily calculate the expectations of all
Gaussian distributed state-dependent. sinusoids. For example 3

-~ V
5(x1 12 COs 131w [ V 2÷ (+÷+ j V3 1 )(x2 +j V23)] e{exp(jx3 -

{IV " {12 ( x 2 2 v31 v23)Icoa 13 - (xl V23 + 21V31) sin x3) e 33

and

1N sin x3 l10{(V12 +(Xlx2 - 131123)1 "in 3 I(~V23 +xczV3) ot1 13 /

Nonlinearity Involving State-Dependent Relays

Section 2.2 noted that the implementation of nonlinear filtering algorithm requires the
evaluation of the expectations of nonlinear vector-valued functions f and h, as well as products of
these functions and estimation errors of states.

For a number of applications, f and h may simply be sowe for** of state-dependvnt relays.
Expectations of some of these state-dependent relays are tabulated in 1401.

Illustrative .examle Consider a nonlinear systen with message and measurement models described by

x(t)-,- sin x(t)+ ,&(t)

and y(tO- I 3(t)+ v(t)

respectively. Where u(t) and v(t) are szro-mman vhite Gaussian noise pr•oesese, with variance. Vu (t) and
Vv(t), rdspectively.

Assuming that x (t) is a Gaussian proctss, then the expectations of the nonlinear functions can
be evaluated as follows .3

a - vq,(t)I2
5(e a(t)) - E(sInX(t) ) + x (t), ) - snt x(t) + (

-v ,(,)/ZMtot) sin E(s)1- - CO. k (t) X (tI e i

1tSI=) t X I - Cos',,; RI Vý.(t 9 1A
and 2

tma.ce, Iqustifot (1-16) msd (2.19) become
,e. -V (01/Z 3 s

X.(00. ,,.n x(t) it X +3V 1%1(0 + VM, (.) IT,' lilt) - 3V1t) *(X) a )

5. M ( M
sad 1 "1)I l1 )

4 RV, M | (t) (I)) v M11y(t) - 3vj%(t) (t) -a (t))

ItU

gok*tba it is the ev"tafgtio of 066 Owpe~tattoma the aftly Aaama~5Ioe needed ts tMe Gauossan
tapiompato f • th0 oetizator *lt-o. vhere• a all Ot*r faiite dlme clo-a iklgorittbi dealt. sonm of the

oiha Arer terms of the terwt-earlaee.. lWho the amoimelt (vt'tletns to 1quatlons (2.111) fad Q~.19)
ate appfoxlumted by Taylr f etrle ** lhehc. the Metults Obtalad cgs be idanaited vlth -arieus nter,

arrainae ninimearft~rt~g a~ortbn. 4.4 tbe iltortxtej 110. 12. 13. 141.

2 .4 Lilp"0 VAI1 UItA O WARPRM MU

0O&slsier tbo psameal aoeltosar rafese med&l

x(t) , fla(t).t| * Cla(t).t| c(s). £ta(s)t)t oR() (2.21)

vitA *oawtumt gVmby

y(t)- his(t) .tl+ v(t)* a(t) (2,21)

wbotheu(t) mo t(s) set tovw input tlim f Voctios, V(t) sMd v(t) era co"*late od ats processe$ V1,tub
wean u,,() and U,(a). rospectiwily. mod also

COv((t). V(O)1 *W (t) 4(t-0) (2.23)



-..d all other prior statistics follow that of Section 2.2

Following the development of Section 2.2 and neglecting the change of p([(t), t/Y(t)] due
to che differential measurements 6y(t), then the filtering algorithm is given by

x(tO= ftx'(t) + x^(t) ,t] + ;['x'(t)+ '^(t) , t] 1i (t) + Ej'x(t)+ X^(t) tQ u(t)

+ K(t) {y(t) - liv(L) - z(t) - h[x(t)+ x(t), t]} (2.24)

where the gain algorithm

K(t) =E(x(t) hT[•(t) + x(t),t]+ GIX(t)+ X(t),t]'wV(t)}Hv-(t) (2.25)

and the error-vaiance equation is given by

VIMt) =E{x(t) fT(x(t)+ x(t),t] + - x(t)+ x(t),ti xT(t)}4 E{G[x(t) + x(t), t]
x

'Vw(t)G [x(t) + x(t),t]} -K(t) 'v(t) T(t) (2.26)

In the particular case that f and h are linear, G and E are independent of the state variable,
namely

f[x(t),t]= F(t) x(t)

h[x(r),t]= IT(t) x(t)

G[x(t),t]= G(t) and
E[x(t),t]= E(t)

Then Equations (2.24)-(2.26) are, respectively,

A A

x(t) = F(t) x(t) + G(t)v w(t) + E(t) u(t)+ K(t) {y(t) -pv(t) - Z(t) - H(t) x(t)}

K(t) =iV,(t) H T(t)+ G(t) 'ýv(t)I-lV (t)
x

and

V•t) =F(t) VI(t)+ + G(t) 4(t) G - K(t)Iv(t) KT

x x x

These algorithms agree wel. with the general continuous Kalman filter (36).

2.5 MINIMUM VARIANCE CONTINUOUS NONLTNEAR NOISE-FREE FILTERING

Consider the continuous nonlinear message model of Equation (2.1) with the noise-free measure-
ment model given by

y(t)m h[x(t), t] (2.27)

where w(t) is tero-mean, white noise with non-negative definite variance Tw(t). htx(t),t) is asaumed to be
continuously differentiable in t and has coutinuous second mixed partial derivatives with respect to the
elements of x and also considered to be of full rank, otherwise an equivalent y(t) of lower disunsion
cart be used.

Since y(t) is noise freeT (t) is non-negative definite, when yft) is differentiated, eame of
its elements may not contain any whYte noise. Therefore, each sleawnt of y(t) has to be differentiated

and Equation (2.1) is used to substitute forth* dtrtv4tive of the staý.e -ariab'o, until white voiae is
obtained in the derivativ~s ot each element in y(t).

The signals obtained can be arranged into two sats. In the first set

yl (0- h IWOt. T W(0t).t+ Nlz(t).tlw(t)

which comprises all derivatives ofy(t) that contain linearly Independent whit* noise.

It is assumd that the filtering estimate P(t) is giver. by

S~x(t) - i[x(t),t] + K (t) Y1(t)÷ K2(t) yý(t

since in place of Equation (2.27), there are two sets of masureuants.

Here, y (t) ir considered as a known input, it does not contain May new iniomoation, and follow-
ing the developMat of Section 2.2, the following filtarinS algorthm Is obtained

xlt)= fit(t)÷ X(t) wt) 4 K (t)(y2(t) -9•211(t) + ;(t), Vw(t). til



with the gain algorithm

Kat(0 E{=(t) h2T'( t)+ x(t),%(t)p t) + C(t(t) + x(t),tly(t) NTIS(t)+ x(t),t]}

(.{N(N[(t) + x(t),t]Pw(t) NT [(t) + x(t),tl)-

and the error-variance equation is given as

. t,,,(t) + ÷(t),t]+ f(x(t)+ x(t), t t E(t),t]

I

(t) G E((t) + x(t),t] - K 2 (t)E(N[x(t) + x(t)t,•i(t)N [1x(t) + x(t),t]}:K(t)

In the case that the vector valued functions are linear, the results presented here agree well
with that of Bryson and Johansen (35].

SECTION 3

MINIMUM VARIANCE FILTERING AND SMOOTHING

FOR DISCRETE NONLINEAR DELAYED SYSTEMS WITH ADDITIVE WHITE NOISE

3.1 INTRODUCTION

This section deals with discrete-time filtering and smoothing estimation of nonlinear systems
tvith multiple delays imbedded in additive white noise processes. In genceal, the filtering algorithm
enables one to estimate present values of the variables of interest using present data, whereas the
smoother allows one to estimate past values. A typical suooth•ng pvoblem is the post-flight estimation
"of the flight path of a missile based on trocking system measurements during the entire duration of the
flight. If the estimates of the missile's position and velocity at one particular flight point are
desired. the estimates can be based upon all the measurements recorded, including those made before and
after that particular flight point.

In the estimation problems for linear systems without delays involving additive white noise
processes, nuerous papers have been written to deal with filtering and smoothing estimation, however,
most of them are merely rederivation of earlier recursive algorithms presented by Carlton [41], Rauch
t421 and Bryson and Frauier 1431, or reformulation of proble" using various estimation techniques.

However. Kelly and Anderson 1441 pointed out that the algorithms for both discrete and continu-
ous-tim, linear, fired-lag smoothing given in 143 , 18, 42, 45) may be unstable, and therefore impractical.
To be more explicit, althivugh the fixed-lag smoothing equations are bounded-input and bounded-output stable,
realizations of these in 142,451 contain a subsystem which is unstable in the sense of Lyapunov. In 1441,
it is pointed out that the apparent culprit Is an uncontrollable and unstable block in the smoother state
equations which can be removed without affecting the input-output characteristics.

Int23), a couputationilly stable swoothing algortthm i• derived for linear liscrete systems
containing ties delays, using the method of orthogonal projection. The *soother for linear discrete
systems without delays can be considered "s a special case of the above problem, with ttme delay index
setting to zero. The results of 1231 are rederived in a simple manner in (241. using the state auggent-
ation technique. However, the smoothers derived in such a manner are of nN dimensions, where a is the
otder of the message model and N is the amount oa the fixed-lag.

In this section, the matrix minimum principle io applied to nonlinear discrete-time *yete*s
involving time delays, with measurtment sequence imbedded in additive white noise processes. The resulting
dynamic discrete estimation algorithm*, an reported in 128. 46), are recufaive Iin nature and directly
yield the fixed-interval, fixed-lag, fixed-point smoothing and the filtering algorithms. The derivation
is straight forward and shows the close links between the smoothing and filtering est(mAtion algorithms.

I* Section 3.2, tht problem statement it presented. Section 3.3 presents the derivation of the
nonlinear *moother. sections 3.4 to 3.7, provide handy eets of refetence equations respectively, for the
fixed-1ag, ftxed-point, fixed-interval smoothing and the lilterin• elgorithm. Section 3,8 show$ the
applicability of the presented algoritims to liiear estiation problems.

ý3,2 lIRE Pra(Lal LTAThw

noe sess" amd measurement models for the discrete omlinees time-delayed syiam are given by
Sm(kSL), •= fj1e(k-o,). k~caj] + Ctm(k) ,klv+(k) (3.1)

and

y(k) -hts(k).k! + v(kN (3.2)

Here 5the state is en a-vctoriy the measurement, an m-vector;v the random input, an r-vectort; v the
measurement nojse, an e-ctorl Q, a molinear state dapesleat n a r matri•;k-l 0. ,.- in the discrete
tim inax. Th, noolusar vector valued ftmctionf .m ab are. respectively, n mnd i - otumasion*l.

The integer questitie rj arepaemat ti•e dlat•" ••tch ane ordered such that

!:ka( 2( ** U



The random vectors w(k) and v(k) are independent zero-mean white Gaussian sequences, for which

E{w(k) wT(j)}= T (k) 6kJ

E{v(k) vT (j))- v(k) &j

and

E{w(k) vT(j)%= 0

for all integers k and J, where E(.} denotes the expectation operator, 6jk the Kronecker delta, and 'V

and %w are m x m and r x r positive definite matrices, respectively.

The initial states x(O) and x(-a ) for j -1, ... , L are zero mean Gaussian random vectors,
independent of v(k) and w(k), with a positive definite covariance matrix

E~(a)X T(--ad I- Vx( ai , a 1)

for JLO, ... ,L.

The smoothing problem is to obtain x(k-t+l/k+l), the unbiased smoothing estimate of x(k-t+ 1),
with 0 < £< k+l, conditioned on the set cf measurements

Y(k+l) - {y(0), y(), ... , y(k+l)}

such that the cost function

i(k+l)= Trace IM(k) V,(k-L+I/k+l)] (3.3)
x

is minimized. Hre M(k) is some symetric non-negative definite weighting matrix, and V,.(k-t +l/k+l) is
x

V,%(k-t +l/k+l)= Ek+l[(x(k-t+l) - x(k-V-l/k+l))
x

(x(k-t+l) - x(k-t+l/k+l) (3.4)

where denotes the expectation operation conditioned on the set of measurements Y(k+l).

3.3 THE DERIVATION OF NONLIKUAR SW4OTHING ALGORITHMS

The samoothing algorithm is assumed to be constrained by the nonlinear differential equation

Lx(k-t+l/k+l)+ b• b k-t-a /k), k-" J+ tly(k+l) (3.5)

Here, the assumption of linearity in innovations is made. The nonlinear functions Lbj{x(k-L--a/k),

k-L-a ad N+1 ore yet to be determined.

In fact, the Asooth.•. equation say take various forms;howvet., it is essential that enough
information concerning z(k-L-a /k)and y(k+l) are included in the estimator moded. for examplo, it can
be shown that other dynamic *q~ationx such as

x"(k4•+I/k+l) t bj [~k-L-a /k), k-L- Xj] Iy(k~l/k) (3.6)

where y(k+l/k)" y(k+l) - EV{y(k+l)}would result in exactly the com mootbing algorithm as the one

constrained by 2quation (3.3).

Since the eystems considered here are an-linear with multiple time delays, it is realistic to
saausm that the smoothing estimate is a linear comination of thesia of nonlinear functions of

x(k-L-" 4k), to accotmt for the time delay characteristics, amd the present measurement y(k+l). Here
;(k-"-Ak) is assume d to have made optima use of all the smasuruts up to y(k).

The problem formulated in such a mannr my therefor*e lead to a smoother, optimal vith respect
to the iposed constraintso but not identical to the truly optimal one,

. Now the estimation problem is to dtet m the tie-varying nonlinear vector function"L bjsx(k-.t-aAk), k-t-.a*} and the algorithm K;,* such that the trace of V.(k-Il/k+l)k is mainimied.

tat x(k-t+l/k+l) denote the smoothing error defined by

%(k-+lI/k+l) w x(k-L+l) - %(k-L÷Z/k+I) (3.7)

Them ve obtain

x(k-lt+ Ik+l)u Gx(k-t),k-L ]w(k-t)

j. ak--t/) k-" 3 ~<1-51(b Wk~l) &M-11 + v(kel) (3.8)

Un order that %(k-*42/k+l) is an unbiased smothint estimate., it is mecesary that

b /.k401 ;,k-"3/k) 1 bts((,), k ) Wk, (3.9)



where

and
h *~ )klk k{l~~) ~l

Substituting Equations (3.9) into (3.5), the smoothing algorithm becomes
A*

x(k-t+l/k+1) x(k-t+l/k) + N.+l{y(k+l) -h~x(k+1), k+1/k]} (3.10)

for k - 0,1, ... , and 0 < 1< k+l.

Wbere x(k-.t+1k)- y f [x(k-"-i) k-9.-c /k] (3.11)

Substitution of Equations (3.10) into(3.7), yields

s(k-L+lfk+1).s '(k-t+1Ik) -K 1{'(xWk+l)/] + v(k+1)} (3.12)

where
h[x(k+1)NIk hlx(k+l), 1,+1] - h(x(k+l), k+l/k] (3.13)

Therefore, the smoothing error-variance equation is given by
I. T I.

V,(k-L+1/k+l)w V%ý(k-L+1/) - Ek,{x(k-t+1Ik) h (x(k+1)Ik]) N~k. -N~

II
+ K;+,E1 ýx~k+l)/k] TJx?[(k)/k1]}j~l (3.14)

2.
Here, +.. ia the only variable available for manipulation. The necessary condition for

minimizing the Arcl of V,, k-9.+l/k+l) and subject to the constraint of Equation (3.14) is provided by the

matrix minmum principle X(29:1. for which Ký+l is considered as the control variable.

The necessary condition can now be otained from the condition

a Trace(Vý(k-W+/W~l) -(01 (.5
9. K

where (01 is the null matrix, and the result is

-E((IZIk A i(x(k+l)/k))(Vvkl + 1 (3.16)~l

and Equation (3.14) is reduced to

V (k-t*.k~lh) -. { V jz(k-1+/)-t-a k hx~)/k1x (k-41/0 (3.18)

Li
?%(k-DL.1k4I/k)m fx ~k-to'i/ktG + Q txk-)k-(k-..¶Lk)+ fmkD) -IY(~)Gf~-)k

v~.Tj41k-.4.l/kl) f V t(k-tel k-.L)-a i (3.20)a -1a k

forj 0 .L.5tl



For k<0, there is no input to the smoother and therefore one can set x(-a /-I) to zero forj - 0,1, ... , L, which in turn leads to

x(-•- = X(-Mj)

and
V ,•( j'-a z -•/-l) - Vx(aji ,ad

x
for J,. - 0,1, ... , L.

Since the smoothing estimator is unbiased, the expectations that are in Equations (3.16)-(3.20)
can be replaced by the following

Ek{x'(k-L +1/k) h [x(k+l)/k]}= E{x(k-.t +1/k)h'T x(k+l), k+11)

T TT
E,({(x(k+l)/k]i• ix(k+l)/k]} = Ek{h[x(k+l), k+l]h T[x(k+l), k+l]} - h[x(k+l),k+l/klh [x(k+l),k+l/k]

(3.21)

and T

ATA

fT[(x(k-i .k-tL-), k-kA-ai/k T f lx(k-t-a k-l-oj/k] (3.22)

It should be noted that in the case of nonlinear systems the abo~e expectations require
infinite dimensional systems for their realization. The problem of obtaining a good approximation to the
above expectations is, therefore, of practical importance.

For practikal realization, it is assumed that the conditional probability density functions of
the smoothing error x are Gaussian, then the expectation can be obtained without any further approximation
for systems with polynomial, product-type or state-dependent sinusoidal nonlinearities.

To evaluate the above expectation, one can make use of Equation (3.7) to replace the state
variables by the sum of their respective estimators and the estimator errors. For example, in the
scalar case of

h[x(k+l), k+l] M x 3(k+l)

it can be shown that 3 2EZk('(k-t+l1k) ý [,(k+l)Ikl}= Ek('x(k-t+l/k) Ix (k+llk) + 3 x (k+l/k)

A A2 .3
x(k+l/k) + 3 x(k+l!k) x (k+l/k) + x (k+l/k))}

A2
V%(k--+l. k+l/k) x (k+lI/k) + 3 V,(k-t+l.k+l/k) V.,(k4lIk)

x x x

Notice that in the evaluation of the expectation, the only asstmption needed is the Gaussian
assumption of the estimator error. And it can be easily shown that if the nonlinearities were expanded
in terms of first or second order Taylor,* series, the last term in the preceeding equation would have
been dropped.

Similarly, it is obtained frou Equations (3.21) and (3.7)

Ikh(:J(k+li/ki Ih (x(k+l)Ik]) wE.(x(k+1)l - I.k{x (k+l))' u (15 V (k+l/k)

AZ. . .6
+ 45 V (k+4/k) x (k+I/k) +15 V (k+lI/k) x (k+lI/k)+ x (k+l/k))

- [a (k+l1k)+ 3 V (k+l/k) x(k+l/k)l 2 15 V3(k+l/k)

+ 36 V•Ck4.1/k) (k+l/k) 4. 9 V (k+l/k) x (k+l/k)

The proceeding evaluation is rather straightforward. In the particular case that higher-order
terms do not improve system accuracy, one can delete the higher-order trns and approximate the expectat-
Loos up to the arbitrary order, as desired.

3.4 THE mOiOJUA nnif-LAG smomBIN

"Replace k+, and Z by k and N, respectively, where V4•, from Equations (3.10),(3.11) and (3.16)
-(3.20) one mould than obtain the folloving recursive nolinear fixed-laS smoothing algaorithes

%(k-V/k) a i(k-NI/k-l)+ )ý(y(k) - htx(k), k/k-l}) (3.23)

x(k-U/k-l)w ( fj x(k-l -1 - aj). k-M-i- a/k-l1 (3.24)

(24411,-o ) k T [x(k)/k-lj)[VY(k) + Zk.t(t[X(k)/k-lj t (l(k)/k-lA})] (3.23)



V,,,(k-N/k) =V,,(k-N/k-l) - ~Ek~li(~)kl xT(k-N/k 1)1 (3.26)

x xT

V,~,(k-t k-mtA0 V,~(k-L, k-rn/k-1) -KE. {ih[x(k)/k-il] (k-talk-i)) (3.2 7)

IT T

V%,(k-i, k-rn/k-i) Zij. ki xk-40 i )k 1' (x(k-l-.-m-c)fk-lll+ xklZ,--1
xI

I T
M,U

Also we have L T
V,,(k-N, k+l/k) - E.{'(k-N/k) E ?' (x(k-a i)/k1) (3.28)
x J-0 j

adL L T

V,~(k+1Ik)'12 (xkct)k ? x(k-c11)/kfl+ x k], k)T k GT[x(k),k] (3.29)

3.5 TENONLINEM FIXED-POINTSMOHN

Setting i K - N4+1 where k+l > N, from Equatiot, (3.10) ,(3.ll) and (3.16)-(3.20) one would then
have the following recursive non-linear fixed-point smoothing algorithms:

;(/)+k-N+l Yk,
x(N/k+l) K(/)+~ ykl hlx(k+l), k+l/k]}

k-N~l k -
=-~ fk{x(N/k) h [x(k+l)/k]} [IF (k+l) + E.k{hjx(k+1)/k] h [,(k+l)/kl)]-

V,(Nk~l) V,(1k) -K;+, Ekjhlx(k+l)/k] x (N/k))
x X

L L T T
VN(N/k) - E E Ek{filx(N-1-u1 i)/k] ? [ x(N-l-aci kD Glx(N-1)N1Tw(-) 0 tx(N-1) ,N-l]

xi-o j-o

andL T
V ,(N, k+l/k) %; EkNkNk T xk- /

V,(k+l/k) and VI,(k-L, k-rn/k) are respectively, the esae to Equations (3.28) and (3.27) and
x x

also from Equation (3.20). it can be shown that

V.,(N, k-m/k) - VI,(N. k-rn/k-l) - K k- l Hxk)kN' (k-u/k-I))
x x

3.6 THE KONLINEAA rIXID-INTERVAI. SMOOTHING

Setting k+l-N, L-N4-k, whtere NAk, Equations (3.10),(3.11) and (3.10)-0.20) would yield the
following recursive nomlinser fixed-Interval smoothing algorithms:

x(kIN) - X(k/N1-) + Nk~ {y(N) - htx(N), NI/N-i])

ALA

x(k/N-l) - E f j t(k-l-aj), k-l-u1j/U-l]

N-ksk J .T-

'J(kN)* ,,(kN-) % %-1 ('htx(N)/11-11 x (kN-1)}
x x

L LLT T
and V O(k Z EI'*.I) %1 kxlkIj)l) n + W (kN-)0 1)/k-lI,

i i-

The noelivietr filtering algorithm can be easily obeained from Equations (3.10),(3.11) and
(3.16)-(3.20). by setting Wim.

z~~k~l -.'(!,*Il(4k) + 0 (1 y(k~i) -b~ix(k+l), k+l/kI)

ALA

ack+l/k) E f %tx(k-aj), k-aj/kI
Ji-c
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•T

and
V,(k+l/k+l) = V,(k+l/k)K l Ek{(i[x(k+l)/k] (k+l1k)}

k+(1lk)
x X

whereas
V, (k+l/k) is given by Equation (3.29)

x

3.8 ESTIMATION IN LINEAR DISCRETE SYSTEMS

I;• In order to provide an insight into the structure of the smoothed egtimate, consider the
particular case of linear systems and measurements with

L L
E f F (k) x(k-O1)
jo " J-o

h[x(k),k] H(k) x(k)

and
G[x(k),k] = (k)

Then the linear fixed-lag smoothing algorithm can be direct.xy obtained from Equations (3.23)
to (3.28), respectively as the following

x(k-N/k) - x(k-N/k-1) + Kl(y(k) - H(k) x(k/k-1)}
L L

-;•I. ;(k-N/k-l) - E F (k--Nl) x(k-N-1-a A-1)
F, JU0J

N~ K a = (k-N,k/k-1) H T(k) {H(k) V (k/k-l) H T(k)+ •!W~)}-i
N

V (k-N/k) V N,(k-N/k-l ) -H(k) V(,(kk-N/k-1)

.•.x x

Sand L L
V.. (k-t.,k-m/k-l) L E: Fi(k-J-i) A1moA1

":iWo .•=o x
• ,']'~F(k-m-1) + '(k-l-,.1 Tw,(k-l-L) GT(k-l.-).1k_i,.

•.L T
•.Also V (k-N~k+l/k) Z, V ̂1 (k-N,k-a.• /k) Fj(k)

• and finally,

V (k-N/k) jkNkl no J.0 F8) Vk-a (k- k-N/k -lj~) 'k wk k

•, It: can be easily identifie4 that the st.ructure of the shove linear fixed-lag smoother is

•. simply the stable fixed-lag snmoother introduced by Pro.aerv and Vacroux 123]. In the same owmner, one

::,,-can identify the linear fixed-point omoot' ,r f.or linear ayseas• vtthoAt. delays with that of Biswas and
•!;i Nahalanabis 147). Similarly, 'he results presented in $action 3.6 and 3.7 can be "oily applied to yieldtnhe linear fLxed-interval smonthin and thL f~ tertn8 i'gorthm, reectvely.

•= Thus, a unified itprfosch to obta1• the filtering sanl smoothing algorithms for linear as well
• unonliner. delayed as wIl, " nondelayed system hbu been presented.

"•- The results pr-'eat~ed in t~his section can be extended to continuous time problems througha
•.:-formal limiting procedur* 148). The presenrted approach can als be extended to noalinear distributive
-• sysem with or wit~hout t.alays.

V kikmkl 21(--).~kl--.,--- kl
im..,~x

""(--) (--i ..- lL ~~l~i,



SECTION 4

MINIMUM VARIANCE FILTERING AND SMOOTHING FOR NONLINEAR O

SYSTEMS WITH CORRELATED NOISES

4.1 INTRODUCTION

In Section 3 the noise processes considered are assumed to be Gaussian white and mutually indep-
endent, however, in practical situations such assumptions are often invalid, since in physical systems,
independent white noise processes simply do not exist. It is therefore natural to extend the estimation
technique developed in Section 3 to more realistic problems, where message noise processes are correlated
with measurement noise processes.

Recently, Raja Rao and Mahalanabis [49] derived estimation algorithms for linear systems with
delay imbedded in correlated noise processes, however, their results appear to have a fundamental mistake
in the procedure given, which leads to self-contradictory results; this is reported in [50].

In this section, estimation algorithms are derived for nonlinear discrete delayed systems with
measurements imbedded in correlated noise processes. The derivation assumes that the smoothing estimator
introduces new data in a linear additive fashion and makes use of the matrix minimum principle to minimize
the error-variance cost functional. The resulting estimation algorithms as reported in (28,51], can be
easily applied to yield the fixed-lag, fixed-point, fixed-interval smoothing and filtering algorithms,
by properly substituting the time indices.

4.2 THE PROBLEM STATEMENT

Consider a discrete nonlinear time-delayed system modeled by
L

x(k+l) =E f (x(k-n%) k-ua] + G[x(k), klw(k) (4.1)
J.o j

with measurement given by

y(k) - h[x(k), k] + v(k) (4.2)

where the state x is an n-vector; the measurement y an i-vector; the state noise sequence w an r-vector;
the measurement noise v an m-vector;G, a nonlinear state dependent nxr matrix. The nonlinear vector
valued functions f and h are, respectively, n and m dimensional. a represents a time delay sequence
ordered such that

a< a1 < a2 I ... < CL

The noise sequences w and v, are tero-mean white Gaussian with non-negative definite covariance
Iw and positive definite YV, respectively. Also

E(v(k) wT(j)) - Vw (k)'6 ,j

for all integers k and J, where Ivw is non-negative definite.

The initial states x(O) and x(-a ), for j - 1, ... , L are sero-mean Gaussian random vectors,
which are indepandent of v(k) and w(k), wdih a positive definite covariance matrix

E(x(.a) xrT (,.0)) - x(at)

for J, t - 0, 1, .. ,, L.

The smoothing problem is to obtain the unbiased smoothed estimate i(k-t+l/k+l) of the state
x(k-1+l), where 0 <. t k+l, conditioned on the set of umssurements

Y(k+l) - (y(O), y(0), ... , y(k+l))

such that the followin# error-variance coat functional is minimixedi

J(k+l) - Trace (li(k) V%(k-L+l/k+l) 1 (4.3)

where M(k) is a symetric positive definite weighting matrix, and V%(k-D.+l/k+l) is defined by
a

V,(k-Lt÷/k+l) - Zk+.I(a(k-L+1) - 9 (k-t+l/k+l)) (W(k-4•1) - 2(k-t+1/k+l) 1] (4.4)

4.3 THE DRIVATION Of TIHE S1V0TU
With reasoning similar to that of Section 3.2, the osothad estimate is ssumed to be constrain-

ed by the nonlinear dynamic equation

I~kt~~fr) b b~IMI-1-Y /k), k-t-vQ + IL'+ y(k4.l) (4.5)j

where b i t (k--Y n lk)k-&-Y] 1 aae yet to be determined.



Since it is required that the smoothed estimate be unbiased, it is necessary thatL L

t. b~l[(P (k-3-Y./k), k-i-y ] - = f (x(k-i-o0)5 k-1.-a /k] -Kj•÷ htx(k+1), k+1/k] (4.6)j.o

where f [x(k-t-ac), k-.•-oj/k] - Ek{fj [x(k-t-ai), k-i•-1 ]} (4.7)

and h[x(k+1), k+Ilk] - Ek{htx(k+1), k+l)}

With Equation (4.6) substituted into (4.5), the smoothed estimate becomes

i(k-t+l/k+l) - x(k-t+1/k) + K {1{y(k+l) -h[x(k+1), k+l/k]1 (4.8)

for k 0,1,2, ... , and 0 < <k+l.
L

where x(k-t+1/k) - . fE[x(k-L-acz), k-L-aj/k] (4.9)

The error state equation is simply

x(k-L+l/k+l) - X(k-L+l/k) - K {W[x(k+l)/k] + v(k+l)} (4.10)

where h[x(k+1)ik] - h[x(k+l), k+1] - h[x(k+l), k+i/k]

Then, the error-variance equation is given as ST .T

V,(k-jt+l/k+l) V, (k-t+1/k) - Ký.lEk{i(x(k+1)/k] (k-t+l/k)) Ek('(k-i+l/k) i (x(k+1)/kl}
x X

+ Y(11)kk+J)T + T~lk~~+)k )(T i r,)

The necessary condition for minimizing the trace of V,, (k-1+1/k+l), can now be obtained from
the condition x

Trace [V((k-0+I/k) ] (0]•I x

Hence, the gain algorithm Ký, is given by

+ R+ "k((k-t+1/k) WT x(k+1)/kl) E'fv(k+l) + Zk(W(x(k+l)/kl T[x(k+l)/kl)l- (4.12)

and Equation (4.11) becomes

V,,(k-L+I/k+l) - V,(k-L+l/k) - IX;lk(h[x(k+l)/tk) T(k-Z+I/k)) (4.13)
x x

T
and V,(k-,+1, k-m+llk+l) " V(k-L+l. k-0e4Ilk) ,-.ISkf(k[x(k+l)Ik]_ _ (k-a+l/k)} (4.14)

x x

for 0<L, m_< k+l.

Now, there remains the problem of evaluating V,,(k-t+l/k) in Equation (4.13). Even though sub-
stractinS Equation (4.9) from Equation (4.1) would x easily yield

L
(k-.+lIko) Wx(k-L-a)/k) + GOX(k--), k-o] w(k-1) (4.15)

where by definition

ftja(k-L- j)/kI - f ts(k-1-a1 ), k-&-a] -f I x(k-i-s*). k-&-oj/k]

it is e"n that the error-variance equation cannot be obtained by taking the expectation of Equation
(4.15) adtiplied by its own transpose, since the expectation

01 jtx('k-e.-ojv)/kl J(k-At))

can not be explicitly evaluated.

On the other hand, following the derivation presented above, the unbiased estimate of the state
z(k•+1) can be obtained as

""(k-L+Ik) 1.0 jfi(k-&-.), k-" A-/kl) + e1,(y(k) - ht((k), k/k-11) (4.16)

+• '. .



which in turn leads to

X(k-+l•k - f) k-Z-ak), /k-11 K ([()/k-l] + v(k)} + G[x(k-1) ,k-.]w(k-Z) (4.17)

The optimal value of the matrix Kk can be determined from the necessary condition that

I- trace [M(k) V,.(%-L+l/k)] - (0] (4.18)

Ilr

Since V (k-t +lk) is the expectation of Equation(4.17) multiplied by its own transpose, then
using Equation x (4.18), the result is

t L
K k -[Ek-l{ f t xk-.-a )/M-11 h lx(k)/k-l]} + G~x(k-t), k-Z] 1wv(k) k,k-t

vTl
S(TV(k) + Ek_ ph[x(k)/k-l] h [x(k)/k-l1] (4.19)

and V,(k-t+l/k) is simply

L

T
V•~(k-L+l/k) = ~-o Ek~iCfi~x(k-•-i)/I-l] f1 [x(k-t-c.i)/k-1I)

+ GCx(k-t) ,k-t'Y(k-1]C- [x(k-) ,k-Z]

K ktyv (kL)k,k-t

S+B.-l{htx(k)/k-l] • •[x(k-L-a M) ] (4.20)

L
also V,'(k-ibl, k-m+I/k) E 2: .Ek{f [x(k-t-a )/k-l]ft(x(k-m-aM-)/kl]1 + Gtx(k•L),k-Z]Yw(k-Z)

J- ijuo i i i

a •k-t,k-m' x(k-mn)'k- ('Wv(k-m)5kk.-.G x(k-m) ,k-nk-tk--n

+ gk l(h~x(k)/k-l] =o fj x(k-m- ii)/k-l1}] (4.21)

for 0 < ,m < k+l.

When the discrete time index k<0, there is no input to the smoother and therefore 9(•aO/-l)
is set to zero for j - 0, 1,..., L, which results in

sad

Sv..(•1 ,.¢,t-• .Vx(QJ ,%)i "
for J, I - 0, 1, ... , L.

On the other hand, since the asnoothing estimator is unbiased, the expectations that ate in
Equations (4.12) to (4.14), and (4.19) to (4.21) can be replaced by Equations (3.21) to (3,22) and also

tk..l(?itx(1.L~i)Ik~1i • 1tx(k-m-uj)/k-lI) - 5. 1 ((z~(k-ts,k.•-u1 I] f;(x(k-.m-.o), k-m-o 1J])

- fM1 x(k-t-o1 ), k-t-a /k-Ll f(3t(k-e-a ),k-m../k-li

(4.22)

It should be noted that in tohe oas of oolinsar systs the above expectations require infinite
dismelunonal. system to realize.

Therefore nasan approxisation, it it astumed that the conditioeal probability density functions
of the smoothin error I are Gausiaan. gain, it is isortatit to note that under such an astumption, the
algorithm presented in this section can be physically realited vithout any further approximation for
syetems vith polynomial, product- type or etate-dopondout sinuoidal wnolearities.

i .



Also notice that three different types of smoothing and the filtering algorithms all follow
immediately from Equations (4.8),(4.12)-(4.l4),(4.16) and (4.19)-(4.21) with the following substitutions:

The Replacement The Replacement
for k+l for t

The filtering estimation k+l 0

The fixed-lag smoothing k N

The fixed-point smoothing k+l k-N+l

The fixed-interval smoothing N N-k

4.4 THE NONLINEAR FILTERING

When I is set to zero, Equations (4.8),(4.12)-(4.13),(4.16) and (4.19) to (4.20) become the
filtering algorithms.

Namely:

i(k+l/k+l) - £(k+l/k) 4- 0L(y(k+l) - fi[x(k+l),k+l/k]}

x(k+lI/k) f [x(k'at )),k-ai/k-1] + ({y(k)-h[x(k),k/k-l]}

0 - T ~hxkl'& E~~)k%+1 " Ek{x(k+l/k) h Tx(k+l)/k.]} (. (k+') + YhtxUM/k lx(T.+l)/kl}]-

V,(k+l/k+l)- V_(k+l/k) - 0+l (h[x(kbl/k)]x (k+l))
x X

V (k+,/k) L ' 'T T
r Z K (f [x(k-)/k-l] f (x(k-M 1 1) + G[x(k),k] Tw(k) TG x(k),k]x i,j-ok- "• j w

-KO[T G(k) (T[x(k),kl + E.klh(x(k)/k-l1 E. f [x(k-a,)/k-1]1)

and finally
0 L

K k (E {kl('0 f.[Wk-a)/M-11 r[x(k)/k-1]) G[x(k),k)
-(t(k-)I+

• .v(k) (k) + Lk 1 (h[x(k)/k-l] hý'jx(k)/k-l))]"-

4.5 ESTIMATION IN LINEAR DISCETE SYSTEMS

In this section, general linear estimation algorithms are obtained for discrete delayed systems
corrupted by correlated noise processes. The algorithms can be easily converted to yield the fixed-lag,
fixed point, fixed-interval smoothing and the filtering estimators together with their reapective error-
variance equations. This is done by making the proper choice of discrete indices.

for linear discrete systems , we have

L" f J[x(k -oj) 6k"-% " F,' (j k) x (k -,-n

htx(k),k] - H(k) x(k)

and

G~x(k),k) - G(k)

Then the general linear estimation algorithm are fa followst

l(k-t+llk+l) l (k-L+lIk) + Ki+1 (y(k+l)

,- Uk+l) l(k+l)tk))

f.Mk-t+l/k) - I i (k-1) 2(k-&-La/k-l) tiky(k) -t(k)1(k/k-l))

V+ V(k-&+I,k~l/k) U (k+l) It(k+l) + 1tT(k+0 V (k~l/ik) IIT (k'e.1.)f

V%(k-t+l/k+l) * V,(k-t+l/k) - 81 U(k+l) %(k+l k-1+/k)

V,(k-*Ol/k) F (k-9)V%(k4-0Gk-0-4 /k.1) ICN-1) + O(k-L) Tw(k-A) OT (kL)
x i,J.O X



L Tr -Kk[T (k-)GT(k-1) +H(k) E V (k,k-t-a /k-1) FT(k-0

Jwo x

• [¥(k) + Ii~ •( /-)T k)-1

XL
and V F(k-t+l, k-.4/k) = ( j.-o k(k-1)VH (k-i-a1 1 k-m-a 1 /k-l) F1 (k-m) + d(k-i)Yw(k-i)5k_.,k.aG(k-m)

K x
Lrf~ GT +T

and V,(k-t~l, k-M+I/k) -0 F I (k-tiV,)kVt(kik-m-a 1 /k-1) Fj~-)+GkLkL6ktkmG(k-m)]
x i J° X

It can be easily shown that in the special case of discrete systems without delay, the results
obtained for the filtering algorithm agree well with those in the literature (361. The results presented
in this section can also be extended to continuous time smoothing problems and nonlinear distributed
parameter systems with or without delays [52]. The same basic approach can also be applied to derive
estimation algorithms for nonlinear systems corrupted by colored noise (51).

SECTION 5

CONCLUSIONS

A unified approach is presented to derive estimation algorithms for discrete and continuous
nonlinear systems with and without delays, eorrupted by white Gaussian noise, correlated noise, colored
noise as well as noise-free processes.

In Section 2, nonlinear filtering algorithms were derived for continuous nonlinear systems
without delays corrupted by white noise, correlated noise and noise-free processes. The main technique
involves the application of the matrix minimum principle together with the Kolmogorov and Kushner
equations to minimize the error-variance, taken to be the estimation criterion. The filtering equations
obtained for nonlinear systems with white noise processes are exact, but for non-white noise processes
the resitIts obtained are approximate.

For systems with polynomial, product-type or state-dependent sinusoidal nonlinearities, the
proposed algorithms can be evaluated without the need for approximation under the assumption that the
estimator errors are Gaussi.a. Such an assumption is significantly different from the moat commonly
used assumption that the state is Gaussian.

Nonlinear estimation algorithms for discrete nonlinear delayed systems with measurenents
corrupted by white noise and correlated noise processes are respectively. deri'fed in Sections 3 and 4.
The estimation algorithms directly yield the fixed-lag, fixed-poiut and fixed-interval smoothing and
filtering algorithms, with proper substitution of the discrete time indices. The proposed technique
makes use of the concept of the gradient matrix, the minimum principle to derive the optimal values of
the coefficients in the estimation algorithms under the requirements that the estimates be urbissed en!d
the error-variances minimized. The derivation is straight-fosvard and clearly Indicates the close link
between three different classifications of smoother* and the filtering estimator,

The results obtained are exact and optimal with respect to the Imposed constraints on the
dynamic equations of the estimators, minimixing the error-variances. The algorithms derived can be tully
inplemtnted in a digital computer under the assumption that the probability density functions of tbe
estimator errors are Gaussian. For systems with polynomial, product-types and state-dependent situsoidal
nonlinearities, no further approximation is needed to evaluate the expectations involved In the elor-
ithms. They are expected to be computationally efficien*, since no augmentation of state vrsiabir.. i4
involved.

The results can also b4 applied to various special cases of nonliner as well as lter '..li;-
.tion problems;for examplet The estivation problems for linear or nonlinear systems without dfoh ."Id
the linear estimation problem of tie-delayed syetm corrupted by Aite noise " well" as .- '-1-.•,i
nois processes, etc.

For linear estimation problems the results obtained are identified with published resulta in the
literature. 1* the particular case of linear tise-delayed systems corrupted by additive white nnise, the
results ase stable, but the stability behaviour of the nonlinear estimators is yet to be investigated.

The results obtained in Sections 3 and 4 can be further extended to continuous time systems "
nonlinear distributed parmeter systems.

Thip work wase earried out with the support of the Defence Research Reatblishment Ottana (DUO).
.CaadT. ao author wishes to thank Ir. C.R. Iverson, Chief, DUO and Mr. &.A. leable, lead,
Ileetcomapsntics Section. for their encouragement. Thanks are also due to Mr.. D.K. ftndlay and

Mrs. .,L. At s for their mating patience In typing the m. uscr.pt. I
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SUMMARY

The purpose of this chapter is multifold. One purpose is tr: provide an overview sur-
vey of the alternative decentralized filtering techniques that have evolved over the last
decade and to indicate the current status of each approach. This aspect is important as
a preliminary step in performing engineering by allowing the selection of the approach
that best fits the constraints imposed by the specific application. Several contribu-
tions that are provided herein advance the state-of-the-art for two decentralized filter-
ing approaches (viz., SLU and SPA) as formulated here ia discrete-time by specifying and
summarizing mechanization equations (with rationale), by analytically establishing sta-
bility of these estimation algorithms, and by providing tables that allow quantification
of the computer burden upon implementation in terms of required memory allotment and al-
gorithm cycle times. Thus a complete view of these two approaches to decentralized
filtering is provided here. Current applications and likely future application areas
for decentralized filtering are identified. A primary consideration was the proper peda-
gogical approach to simply explain somewhat obtuse prior material to make it easily
accessible to many levels of readers (with a variety of backgrounds and primary inter-
ests) to demonstrate that decentralized filtering do s in fact have a firm theoretical
foundation.

± PRELIMINARIES

1.1 Outline of the Chapter

The appropriate discrete-time models to be used for decentralized filtering are pre-
sented in Section 1.2 with certain drawbacks, that apparently were previously ignored,
being identified and resolved. A brief overview survey of alternative decentralized
filtering formulations, their current status, salient features and advantages/disadvan-
tages is provided in Section 1.3. A particular drawbacýk, encountered for several decen-
tralized filtering approaches, of requiring the objective application to be reexpressed
in an "output decentralized" form is discussed in Section 1.4. A recent approach for
rigorously handling several filters (with nested state-variable system models) operating
at differing measurement utilization rates for possible parallal processing implementa-
tion is described in Section 1.5.

Two particularly well-developed and appealing approaches to decentralized filtering
are the Surely Locally Unbiased (SLU) filter and the Sequentially Partitioned Algorithm
(SPA). The SLU approach is completely described in Section 2 and the SPA is described in
Section ?. An analytic proof of the stability of both of these filters is offered in
Section 4 as a significant technical contribution of this investigation. Present and
anticipated future applications of decort.ralized filters are indicated in Section 5.

1.2 Approp jate Discrete-Time Models for Decentralized Filtering

Consider he following collection (Si, i-1,2,...,N} of N interconnected dynamical
subsystems (as in Refs. 8-14):

(n Xl)
U i

having discrete measurements available to the i subsystem Si of the "orms

(qixl)

siH (r.)H lirtk) +vtk ÷ (tk (1. 2-2b)

1 (tk)(

"i(tk)x(tk+i (ki k k(.22)

•I(tk)xl (tk)÷+H (tk)Li t (Ik.Vitk {2-.2d)
i ~ ~ k, ~0ýt)v~
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where P xi is the projection operator from Rn

N
n E ni (1.2-3)

i61

to R iand where the vector-valued interaction input is represented (by using the histor-
ically standard notation of weighting matrices Lij popularized in Ref. 21 on p. 122) by

(ft~X) tPLXA) -(pxn,) (Plxn,) (P~xni)
U0 t)AM tJ L .~ L~ L.(t) 0 IL (t) j~s~ 1-4a)

t W (t) (1.2-4b)
JA1

Notice that Us(t) has no direct component of xi(t).

The process and measurement noises wi(t) and vi(t) are assumed (as in Refs. 8-14) to
be independent, zero mean, white Gaussian noises having associated covariance matrices
Q' i(t) and Ri(t), respectively, and uncorrelated with the Gaussian initial condition

MAlo w(t and v (t) are assumed to be uncorrelated with the noises and initial condi-ii~i tions of other subsystemm [viz., w,(t), v,(t), and x,(O) for 10i).

The behavior of an entire interconnected linear system is summarized at eavh time
instant t by the n-dimensional full state vector

of which each user subsystem Si has an n -vector valued subset x (t). The projection

operatoL introduced in Eq. 1.2-2b operatas on x(t) to produce

-- 9• x,, 1 (t.)) - xItl). (1.2-71

and so can be represented as a matrix premultiplyiny s(t) in Sq. 1.2-7 of the fol'Aicing
form

•,•.•'i• (n~xnl (ni"n1 (-Ixnl) Inx£11 nixn ~ l I lnixn,•)

P 0., 0 1 0 0

The differentisl equation that describes the time evolution of the aggregate state of
Eq. 1.2-6 in coantinuous-,time is

i(t _{. F(tt)•(s * w'(t) (1.2-9)

Where

!ffn W , T M W.(-doM1 2



0+

0 + Q .-0a

( L

NNPX Z xTI Fi(t) PXi + L PX i tL i(t) Li(t)(1.2-11b)

1. (.1 Px,1c)

The appropriate transition matrix for Eq. 1.2-9 in 0(t,;) which satisfies

At t,) -FI(t) PI ,• (1.2-12)

and

?kt,).l for all • (1.T-13)

The ex&jt solution of Eq. 1.2-9 is of the form

and the corresponding exact discrete-tine representation Is (p. 171 of Ref. 19)z

x(k~l) - 4(k+l,k)x(k) * v(k) (1.2-15)

where t m (kAl)h, T-k,' while the time step A has been suppressed and thte exact equiva-
lent to Continuous white noise vW (IN) is denoted by v(k) to be an n-vector-valued
(;auseian white discrete-time process having the following statistAco:

kAA
8 v~lklvf(j) -0 tar kol} (1.2-16)

the exact difference *qu~ti*( that de8oribes the time evolution of the it subsysteaa



is

xi(k+l) a Px,j x(k+l) (1.2-19)

hence by substituting Eq. 1.2-15 into Eq. 1.2-19 yields the following result:

xi(k+l)-P Xi ;(k+l,k)x(k) + Px, i w(k) (1.2-20a)

!,iij (k+l,k)x. (kW + wi(k) (1.2-20b)

N

"niii(k+lk) xi(k) + j E ij(k4l'k)xj (k) + wi(k) (1.2-20c)

J~i

Equivalent to Eq. 1.2-17 (p. 171 of Ref. 19), Q(k) evolves in time according to the fol-
lowing differential equation

a

( ) - F(t)Qlt't )+Q'lt tlT(t)+Q' (t} (1.2-21)

where

Q'(t) - dlag(Q 1 (t)MQ' 2 (t) ... ,Q'N(t)) (1.2-22)

Taking a different tack, the exact discrete-time representation of the ith local sub-
system's solution of Eq. 1.2-1 is

L(k+wU~k+IxW4 411Ck)JA* L u ()" kl& L (U A 6 a)1*()da (1.2-23)

Applying the usual simplifying assumption (as in Eq. 4-124 of Ref. 19), that the inputs
are constant over the interval of integration, yields the following subsystem evolution
equation

xi (k~l)edii(k~l,k)xi (k)L÷ ii (ký uilkW÷4i (k) (1.2-24)

where

.jL (k)k f(k1 Oii C (k÷ l)&,s)Li (s)da (1.2-25)

and

~ (k41 A 4.)swl)d (1.2-26)W f (ka6*,((k+llA~slwils) ds

with wi(k) having the followtng statiaticas

21,Wjj)Iafor #k(1.2-29)

Ntotice that, in general, thoe global solution of Rq. 1.2-15, as proje•t•d to the h
subsystem as in Eq. 1.2-20o (although siwilawr in form), cSa uLjts diffe'rent from the
L local subsystem's anlution of -'(4. 1.2-.21 un'jess both of the following conditions hold

# ii*k*,.k) -a Ij(k.1,k) (1.2-3

and

...................................................



(k+l)a N..f ((k+l)&,s)Lii(s)ds ui(k) W E *i (k+l,k)x1 (k) (1.2-32a)
SkA 

ii J 1i j

A condition equivalent to Eq. 1.2-32a (via Eq. 1.2-4b) is

k lk + l ),&l , s L i s d k k N
(-k l AB) , JZl Lie (, ( Z j (k+!,k),j (k) (1.2-32b)

SJoi j#i

A sufficient condition for Eq. 1.2-32b to be satisfied is for the following to hold:

4 ( (k+)A's)L Lie(s) dsI Li( •ii ( L( (k)1J (k+l,k) (1.2-33)

for J l ,2,...,N/{i}.

In general, even the milder condition of Eq. 1.2-32 is not satisfied since 0,,(k+l,k)
satisfies

7 jt¢•(t'T)-Fj(t) Ott(tT) (1.2-34)

• with boundary condition

•~~~ (L(,II 1.2-35)
_while _ i(k+lk) satisfies

T
SX(1. 2-36a)

. W •T(tT) P t (1.2-36b)

jaii

with boundary conditions

;t,(,c.T)-O for j)-l2../t (1.2-38)

(Notation for the index j in Eq. 1.2-39 indicates all values from 1 to N are taken on
except for the value currently held by 1.) Obviously, the solution of Eqs. 1.2-34 and
-35 coincides with the solution of Eqs. 1.2-36d, -37, and -30 (as required for the con-
dition of kq. 1.2-31 to be satisfied) for the special case when

tLi(t) - 0 for l,2,...,N1.2-39)

since then the aggregate ol the local state-variable solutions provided by each subsystem
th

is identical to what would be obtained by solving the aggregated n order system of
essentially decoupled subsystems with the only allowable coupling occurring in the meas-
urements. (In Refs. 15 and 35, it is demonstrated that for the application of decentral-
ized estimation to the interconnected structure of the JTIDS Pel~av net, the fairly
stringent structural constviM4of Eq. 1.2-39 is in fact satisfied.)

The issue of specifying conditions for exact correspondence for decentralised estima-
tion apparently has not been considered in Rets. b-14, 21, 26, 30, and 31, but were
raised within this investigation for completeness. However, Ref. 54 does address the
problem somewhat by advocating the use of lplitting methods to obtain a solution to
the problem of large-scale linear least squares estiaton (in a Hilbert space) of a non-
dynaaic system. The approah•7STRef. 54 utilizes two-level hierarchical coordination (by
comuiraicotion of a supremal coordinator' s decisions) in an iterative fashion to several
lover level decentralized local estimators. In this manner, the proper solution to the
aggregate stptic problem is to be converged upon asymptotically. Ref. 54 also provides



suggested extensions for the use of splitting methods and a coordinating supremal con-
troller in implementing the classical optimal regulation control of a time-varying linear
dynamic system with a standard quadratic cost function to be minimized. Perhaps duality
can be fruitfully exploited to obtain useful generalizations to optimal estimation of
these techniques for optimal decentralized regulation.

Tentatively, the discrete-time model for decentralized estimation to be used here can
be recapitulated from Eqs. 1.2-24 and 1.2-2d as

Si: xi(k+l)s4ii (k+l,k)xi(k)+Lii(k)ui(k)+wi(k) (1.2-40)

thwith local measurements available to the i subsystem Si of the form

z~tk) Iqi(tk)Px~i + "i(tk)Li(tk)Ix_ (tk)+v(tk)N i(tk)x(tk) i4(tk) (1.2-41)

where P and Li(tk) are defined in Eqs. 1.2-8 and 1.2-4, respectively, and the statis-
tics of the process noise wi(.) are provided in Eqs. 1.2-27 to 1.2-30.

1.3 Brief Survey and Status of Alternate Approaches to Decentralized Filtering

The implicit motivation underlying all hierarchical approaches in systems theory is
the pervading idea that it is generally easier to handle several lower order subsystems
than one aggregate system of high order (Ref. 22). The fundamental idea is to decompose
the large system into subsystems and then manipulate the smaller subsystems in such a way
that the objectives of the overall system are met.

In the case of decentralized large-scale system applications that deal exclusively
with the specification of adequate deterministic control inputs, the objective is to
cause the aggregate of local subsystem control solutions to also be the global solution.
This objective is frequently accomplished by coordination. That is, the globally optimum
rolution being homed-in upon asymptotically by the aggregate of locally optimum solutions
is frequently accomplished via a central controller (viz., supremal controller). This
general approach of utilizing a supremal coordinator involves "interconnection con-
straints4 being routinely imposed as a further requirement to be satisfied by the
assorted controls provided by the individual infimal subsystems.

For applications of decentralized control, a few of the more common approaches for
implementing coordination (Ref. 22) are:

The Prediction Principle (Ref. 23), where the supremal controller predicts a value
-or Mhe interco tion variables, provides it to each local subsystem, and allows

each local subsystem to proceed autonomously with its own local optimization calcu-
lations. Eventually, the predicted interconnection variable is checked, updated,
and reissued.

, The Balance Principle (Refs. 23 and 24), where each infimal controller treats itaEe•- e etlioVriable as one of the controls to be specified, then the aggregate
of calculated decentralized infimal controls is checked for conformity with the
original interconnection variable.

a Use of Penalty Functions (Ref. 25), where the interconnection constraint is
-ornie-E6-Mle standard cost function via a penalty function.

Remark 1.3-1: While conceptually useful, Ref. 22 indicates on p. 62 that the Balance
Principle practical limitations since it may give rise to singular control problems
"that cannot be solved by standard iterative techniques.

Remark 1.3-2t An unfortunate disadvantage of penalty functions is that they are somewhat
l-os ando not force exact adherence to interconnection constraints.

In stark contrast to the decentralized control problem, the decentralized estimation
problem has, in general, no mechanism for enforcing interconnection constraints, since no
control is involved. HaisIorically, the mathematical structure of both decentralized con-
trol and decentralized estimation was examined in exacting detail by Pearson in Ref. 21
where the following observations were mader

* Significant computational simplifications accrue in the control problem with
quadratic cost function when all the subsystems are linear (pp. 152-3 of Mtf. 21)1
.Techniques exist for analytically proving .proper coordination via iteration between

aggregates of linear subsystems via a contraction mapping argument (pp. 142-8 of
Wf. 21), but tfiM-approaoh is appropriate only over a very brief time interval



(toot.1 )

An approach to decentralized filtering simplifies the computational coordination
requirements when a suboptimal rule is used (p. 182 of Ref. 21).

During a critical examination on pp. 533-4 of Ref. 13 (as motivation for offering an
alternate decentralized filtering technique) it is noted that to solve an implementation
of Pearson's decentralized filter "in practice would require knowledge of the sequence of
observations over the entire time interval k=O to k=N 0 which is inconsistent with the
tenents of sequential estimation since these are unavailable a orior." While possibly
"useful for parameter estimation (i.e., identification), Pearson s-7-ecentralized estima-
tion approach is not of much significance for state estimation."

The approach pioneered by Sanders in Ref. 8-of restricting the local subsystem's
* filter to be of the so-called Surely Locally Unbiased (SLU) class-appears to follow

through on the predictions of Ref. 21- where a suboptimal rule was called for to simplify
the computational burden. Similarly, Shah's Sequential Partioned Algorithm (SPA)
approach to decentralized filtering reported In Refs. 13-and 14 also utilizes a simplify-
ing suboptimal rule. A return to examine these two decentralized filtering approaches in
more detail occurs in Sections 2 and 3. These two approaches along with the approach of
Spyer (Refs. 32 and 33), as discussed below, are emphasized herein as being perhaps po-
tentially more useful (from the viewpoint of offering sufficient supporting rigor and
ease of engineering implementation) than the other approaches encountered to date.

For completeness, it is noted that another relatively recent approach (Ref. 26)
exists for implementing decentralized estimation. However, this approach is only applic-
able to subsystems of the following restrictive form:

(nixl) N

Si: iii)-Fi xi(t)+wi(t)+ E Lii L i j(t) (1.3-1)

where the

Lii Lij are time-invariant for ij-l,2,...,N (1.3-2)

and with all local measurement structures having no interconnection effects as modeled by
2 i (tk% 9ixti (t•k)+vi (tk) (1. 3-3)

with contributions due to other subsystems x j () (J~i) absent in the above. Consequent-

ly, the associated augmented system has the following form:
(nxl)

())+c)x(tx)1 (t) (1.3-4)

Lii~i •and

( dig ( , '" v(1.3-5)

where
Ti T. T- )

T !k , t) , !t, ...,Tt 137

and, as defined in RoWe. 26 and 27 the composite interconnection matrix is:

C aIij Lij I for iolml,2,....,N(.-9

It is O in Theorem 4 of Raf. 26 that the composite interconnection matrix
being fctorzable as

COPS (1.3-9)

whtere

p h diag(P , pt.. 11.3-10)

and the P at* the positive definite solutions of the algebraic Riccati equation

and S = any arbitrary skev-sy tetric matrix in necessary and sufficient for the global



optimal estimate to consist of the aggregate of local optimal estimates of the following
form

SN P A (1.3-12)x i (tW (Pi-Ki Hi) xi Wt + Kzi (tj E K. . x i t) (I -
Jul

where

K A P _TR-1 (1.3-13)

An unfortunate oversight is that the "appropriate perturbation of Cij, is not ex-
plicitly defined in Ref. 26. A similar discussion in Ref. 27 for decentralized esti-
mators indicated that the matrices premultiplying xj under the summation sign in Eq.
1.3-12 are obtained by calculations of full dimension n (as in Eq. 1.2-3). This would
be an unacceptably large computer burden for many applications and could only be per-
formed at a central computing facility or central node.

A decentralized (possibly parallel-processing) algorithm for implementing the n-
dimensional global exact Kalman filter in a hierarchical manner has been studied in Ref.
28. However, the pr-ocessing hierarchy is dictated-by an internal system structure rather
than by any external imposed protocol hierarchy (e.g., as exists in the JTIDS RelNav
application) and it is assumed that every subsystem has access to all the measurement
data.

Other approaches to decentralized filtering (such as Refs. 29 and 30) have been sur-
veyed, but the common requirement of having to perform a transformation to achieve "out-
put decentralization" is incompatible with many applications (see Section 1.4 for details
and Ref. 30 for numerical examples). The approach of Ref. 31 requires a central process-
ing node (that could be vulnerable in a tactical environment as a single target whose
destruction would ruin all operations).

The apvi:oach of Ref. 32 strictly pertains to decentralized LQG estimation and control
of a K-node system (where the K-nodes refer to K subsystems) where local filters-shaa-re
their information with all the other nodes. [LQG refers to Linear Quadratic Gaussian
applications involving linear systems with Gaussian measurement and-process noises with
a single quadratic performance index (cost function) for control.] For many filtering
applications, there is

- no strong interest in the feedback control aspect,

* no constant number K of subsystems, and

* no sharing of information between all the subsystems.

However, just the filtering portion of Ref. 32 can be extricated as done in Ref. 33 with
some simplifications.

Given several redundant measurement sensors of the following form

zj(k) - H J Wx(k) + vi(k) for J=l,2,...,M (1.3-14)

it is reasonably well-known (Ref. 79) that the linear least-mean-square estimate of x(k)
as in Eq. 1.2-6 has the form

k(klk) -
~(kjk) 1-lrilk) * p (k k-l)&(k k-l)

P1 (klk-1) + R TW R 1() Itli (k)] ~ H(k( ) 1 si(k) P_-l k l~~ -

Ul.3-j15

with associated covariance of estimation error provided by

P (kl ) (+ IuH (k)R (H(k)] (1.3-16)
LPJul J J Jju

where P(kik-1) A covariance of error of estimating x at k as propalated from k-l for full
state aggregate. Speyer's filter (Refs. 32 and 33) is equivalent to the folloving forst

i(kjk) -(kkk-1) + K.j X K(k)s(s W - N (k)R(kIk-l)] (l.3-17a)

-(kik-l) ) PKkIk-l Tj-IIsj - Uji(kik-l1 ( 163-17b)

-kl

................................



MMk
x(klk-l) + P(klk-l) I HjTRIJ_ (Z" Hjx(kjk-l)] (1.3-17c)

but where instead several decentralized local estimators are used in the mechanization as

X(klk) - M {P(kjk-l)[P-l(kjk)xj(k~k)] + ha(k)} (1.3-18a)

M(k) 1M(k)
- P(klk-1) I P '(klk) i(klk) + I hc(k) (1.3-18b)

J=ljl

where

Pj(k~k)= E[x(k) - x^(k))(x(k) - xj(k))Tjzj(k) (1.3-19)

and hj (k) satisfies a recursive equation of the form

ha(k) = F(k)hj(k-l) + Gj(k)(zi(k) - Hj(k) xj(klk-l)) (1.3-20)

where F(k) and Gj (k) are precomputable matrices specified by

(k) - P(kjk-l)[6(k+l,k)P(k-ljk-2)$ T (k+l,k) + Q(k-l)]-l(k+lrk) (1.3-21)

Gj(k) - F(k)P(k-llk-2)P- 1 (k-l k-l) %-l (k+l,k) - P(klk-1) PP(k-llk-l) OT + Q(k-1l1

(1.3-22)

Several ways for ordering the computations of Eqs. 1.3-17a to 1.3-22 for greater effici-
ency become evident but all approaches represent a fairly large computational burden.
Ref. 33 only stresses the reduction in computational burden without tallying the burden
encountered for implementation. Useful interpretations of Eq$. 1.3-18 and 1.3-20 are
provided by Gobbini on p. 35 of Ref. 80. Generalizations of the Speyer filter are found
in Ref. 81 and discussed in Ref. 80.

An overview of the results of this section are si=4aarized in Table 1.3-1. Other
approaches to decentralized filtering publicized too late to be considered here are Refs.
44 and 45.

1.4 Salient Features of a Canonical Transformation to Achieve Output Decentralization

Several approaches to decentralized filtering, such as Refs., 26, 29, and 30, require
that the original system be of the "output decentralized" form as a condition for applic-
ability. An approach is available that can be applied to some large-scale systems having
a general measurement structure of the form:

A N
Z L ijx(k)+vi(k) (for i-l,.,.,N) (l.4-1)

joi

so that so-called "output decentralization" of the form

l j(k) a R ;j(k) + ;3 (k) (1.4-2)

(for -l,...,p) is achieved, where each subsystem has access to (and responsibility for)
measurements only for that subsystem. In output decentralization, the parameter p is not
constrained to be identical to N and the subsystem state end noise groupings are differ-
ant, in general, from those in Eq. 1.4-1 ai denoted, respectively, by Ij and "

"Output decentralization," if achievable, is attained via a single transformation
that must be applied to the entire system aggregate. Only after the output decoupling
transformation has been applied are distinct individual subsystems revealed. Conditions
for applicability of the output decentralization transformation, its mechanization, and
its general inconvenience to apply are only briefly touched upon here.

The requisite decentralizing transformation was originally presented in Ref. 42 and
discussed in more detail (as Chapter 7) in ef. 43 but only for the case of *control
input decoupling" or "control decentralization' without a consideration of neasrafme t
or pWooso noise. "Output decouplinq" results were left only ae an implici• atertJouht
(iA concet of duality between control and measurement structures). For ease in
accessibility and use of the same consistent notation throughout, the specific transfer-
"tat.ion for achieving "output measurement decoupling" is explicitly presented by Kerr in
Appendix 8 of Plf. 15 following the approach of Ref. 30 but going further to show the
effect of the transformtion on the neasureamt and process noises that are naturally



TABLE 1.3-1

SUMMARY STATUS OF ALTERNATIVE DECENTRALIZED FILTERING APPROACHES

Exhaustive Open
Primary Literature

Investigators Descriptionsi Overview Comments

J. U. Pearson Ref. 21 (1970) Historically significant treatment of gen-
eral structural framework and indication of
problem areas or barriers to be overcome in
the future.

M. Shah Ref. 142 (1971) • Accommodates time-varying models.
Ref. 13 (1978) • Allows analytic proof of stability (Section
Ref. 60 4) for the linear case.

Intuitive.
"• "Biased" (but indications are that this

aspect can be adequately handled).
• Anticipated computer burden quantified

(Section 3.2).
* Accommodates EKF approach to nonlinear

filtering (p. 245 of Ref. 9).

C. Sanders Ref. 83 (1973) • Accommodates time-varying models.
E. C. Tacker Ref. 9 (1973) • Allows analytical proof of stability (Sec-
T. D. Linton Ref. 10 (1976) tion 4) for the linear case.
R. Y.-S Ling Ref. 11 (1978) . Exploits measurement structure (when possi-

Ref. 12 (1979) ble) for computational savings.
- Unmodified SLU requires a special SVD

matrix factorization (discussed in Section
2.2).

- Unmodified SLU is "unbiased."
- Anticipated computer burden quantified

(Section 2.4).
s Somewhat intuitive.

4M. K. Sundareshan Ref. 26 (1977) * No subsystem interconnections § allowed in
E e measurement models.

* Crucial Cil not explicitly defined (see
Section 1.3).

M4. F. Hassan Ref. 29 (1976) . No subsystem interconnection. S Illowed in
G. Salut Ref. 28 (1978) t-1e measurement model.
4M. G. Singh Ref. 13 (1978) • All measurement data available to each sub-

A. Titli system.

D. D. Siljak Ref. 34 (1978) * No subsysetm interconnections S allowed in
14. B. Vukcevic We measurement models.

V. Verriest Ref. 31 (1979) Assume a central computing node that
B. Friedlander assembles local estimates into global
14. eore estimates.

J. L. Speyer Ref. 32 (1979) . Framework is originally for both estimation
T. S. Ching Ref. 33 (1980) and LQG feedback regulation control (where

control in 2 the 1G sense and not in the
sense of C ) but exclusive filter framework
can be extricated (Ref. 33).

'No0 known concrete applications or defense related prior considerations of these

recent theoretical development*.

2Designated as the Sequentially Partitioned Algorithm (SPA) in Ref. 13.

'Designated as the surely ocally Unbiased (SLU) filter (with 10 modified variations
of the original formulation) includingi

RON filter-Reduced Order Model
ISLU filter-Expanded Surely Locally Unbiased
tSLU filter-Same as above, but without explicit-

ly modeling coanunicationea nolse
(aseumed ncgligiblo).

A transformation (detailed in Appendix 3.2 of Ref. 15 and Appendix A of Ret. 35 and
sumnmarized in Section 1.4) exists for converting general output measurement coupled sub-
system into *output decoupled subsystems, but technique only applicable to time-invari-
ant structure and must be applied to aggregate system (with an associAted harsh Coqauter
burden)

--------------------------------------------------------



encountered in filtering applications. The essential observations of Kerr in xeru. •
and 35 are now summarized here. Note that while the output is now represented in a com-' pletely decentralized manner in Eq. 1.4-2, the p scalar measurement noises of the differ-
ent subsystems are correlated (a type of coupling), in general, unless the original
system of Eq. 1.4-1 as an aggregate also has uncorrelated measurement noise components,
as indicated by a block diagonal measurement noise covariance matrix of the following
form

IR

SR R 2 011.4-3)

(which is trivially achievable if the original systems aggregate block R is strictly di-
agonal, but not very likely otherwise). Restrictions relating to the presence of meas-
urement and process noise as encountered here while considering the salient features of
output decentralizing transformations were not considered in Refs. 30. 42, and 43.

Drawbacks Limiting Applicability of Output Decentralization

While "output decentralization" could be acceptable for many applications, its use-
fulness for many potential applications appears to be limited since requirements for its
use appear to exceed certain reasonable computational limits as now summarized. Apparent
restrictions to applying "output decentralization":

Decentralized transformation only strictly applicable to time-invariant linear sys-

tems (where the matrices F, and fiifiiLij of Eqs. 1.4-1 and 1.4-2, respectively,

are constant);

Original grouping of N subsystems must consist entirely of "observable pairs"
(HjFj) otherwise computational problems with corresponding transformation matrices

T, are encounteredi

Test of "observability" requirements being met as a requisite step is a difficult
computational burden for real-time verification (alternative tests are provided in
Section 5 of Ref. 46)

Formation of transformation Tj (Eq. A.2-10 of Ref. 35) appears to be a formidable

computational burden for each J-l,...,Ni

While transformations using T can be applied at the subsystem level in a decen-

tralized fashion, reshuffling of the aggregate of states using the permutation
matrix P (Eq. A.2-14 of Ref. 35) constitutes a computational burden that is appar-
ently only compatible with a central computing facility, a severe restriction for
some applications:

Reshuffled "output decentralized" representation of Eqs. A.2-18 and A.2-19 of Ref.
35 will not necessarily correspond to the state identities of the original sub-
systems (a consequence that can be inconvenient when a desirable physical associa-
tion frequently provides insight for error overrides).

The restriction of item I above in requiring a time-invariant system is a hardship
for nonlinear applications where repeated relineatizations are time-varying in general.
An application could still be accommodated, in principlL, by repeated application of the
,T and P transformations discussed in the above items 4 to 6 after every measurement up-
date anywhere within the total system. However, the drawback to doing this is that it
represents a multifold increase in a fairly substantial computational burden that may
already be impracticable in many applications to be required to perform these tedious
transformations even once.

1.5 Multirate/Multidimmnsional Two (2r Three) Piltse Coordination

In the rstrictive situation (prevalent in inertial navigation system applications)
that the observation matrix has the following special structure

"sn SIX *Xq X
Nk sk 1 0 1 (1.5-1)

where the dimensions are such that

a•q amd nby (n.oh o )
this featurip can be exploited to a computational savantage by making use of the following



matrix ancd vector partitioning:

IPPkk - I- --------l X kkk ..
k-I T qqp jXkk.l- qkkl (.-3

k1~ k-l kRk-i ~ ~ -
where leading superscripts denote the dimensions of the submatrices and vectors for clar-
ity. Partitioning, as done above, can be used to define the two separate but compatible
filters depicted in Figure 1.5-1 that can perform their processing at different rates in
order to:

1. make use of the measurements at a fast rate (as they become available) and sum-
marize the associated plethora of information (as a kind of rigorous data compression) in
a reduced-order single estimate s-k ,k and

2. hand-over the distilled summary data ; a j to be combined within a full-scale

filter that processes at a slow rate (as required for the higher dimensional filter), but
with consequently greater accuracy associated with a more detailed accounting of error
contributors to be found in this higher fidelity model.

Standard Kalman filtering theory prescribes use of only a single unified filter. The
remainder of this section describes the rationale that permits a theoretically rigorous
implementation. The ideal structural and cycle-rate compatibility/conformability (match
between what needs are a-Eicipa. d for fturel inegrated navigation system applications
and what is offered by the nultirate two filter configuration) follow as a consequence of
structural degeneracies of Eq. 1.5-3 (due to the beneficial sparseness of the observation
matrix in Eq. 1..5-1 as, respectively,

Pk* PItkik - Pir~k-1 R!lkkk1*)'t~~- (1.5-4a)

F k4,KkLT _CPl _,,Pl t -_I _Ikr _(T

---- - ----- --- ---- ---- --- (1.5-4b)
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tiqur. 1.5-2.. NULTIU~~~ATI W lTRAPOCsRdcdodr(ie rc.. ssrm
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and

"A Xk- Cktiki-|) (1. 5-5a)

From Eq. 1.5-5a above, the following two component equations are extracted:

_*-_l - TIk-I VI l- I (1 . 5 - 5 b )

*- qZkOlk0Mittli ia aIMY "i kitt (1.5--5C)

The common bracketed residual or "innovations" information provided by the measurements,
occurring in both Eqs. 1.5-5a and 1.5-5c, can be solved for from Eq. 1.5-5b as:

T T -l
k- .CPkkk-l I 5 Xk(k-Xkkk-l] (1.5-6)

The explicit occurrence of this measurement residual in Eq. 1.5-5c is then eliminated to
result in the following update form for the additional states of the full-state filter as

T (1.5-7qkk +qXklk-I PkIk-I 3PkIk-l [xkk-SXklk-u (1.5-7)

This equation is to be used as the basis of the update step of the full-state slow rate
filter as further elaborated upon below.

Remark 1.5-1: Please notice that this derivation of the multirate filter avoids the
severe (-ht unnecessary) restriction encountered in the original derivation offered in a
slide presentation prior to Refs. 61, 62 that Ck in Eq. 1.5-1 must be invertible (or the

* equivalent restriction in Ref. 61 that Ck be equivalent to an identity matrix). A re-
moval •,' the invertibility restriction was accomplished independently for the derivation
present,-:d here and by the later work of Ref. 61.

From Eq. 1.5-4b, the following three recursive relationships are obtained as sub-
matrices within the partitioning:

T T""5 Pkk , (t-.SPkik.ICk(Ck5SPklk.-Ck+Rk)-lCk) Pktk-l (1.5-8)

oq*Ik (Sa. as within above brackets I aqPkik-l

-1
.,'-klk ask-l 8Pklk-1(Z" as within above

brackete) "1.5-10)

Eq. 1.5-8 can then ba indirectly zolvO c•o•p•tationally for the cotw.n expression within
brackets (as r'ovuru thro".hiut Eqs. 1.5-3 to 1.5-10) by only a single low dimensional
(axe) matrix inomtion and matrix multiply as

+RI (1.5-11)I sP It.k-lCk(Ck.Pkl k.-CkRk)--CO! " Pklk %sPkikl.

Purther -omputational simplifications accruein evalu"ting Eq. 1.5-9 and Eq. 1.5-10
by utilitithg a fundAmntal assumption that the following inforeation is a g0od apMroxima-
tion at the instant of a fa-i-t7s-r-T.e.,, reduced-order filiter/full-itate filterfl-ansi
far-(evary 4,6ttnits of tine where 6i denotes the step-site of thm reduced-order filter,
while N-aT denotes the step-size of t-e associated full-state filter) as a consequence of
the r.oced-order filter*' timely ut:.lization of measurements a,

kk (1.5-1)

SePklk , sP~k (.5k•

(wheat a oueracript asterisk denotes calculations jrnot4 t-y tte rekiwr.;d-ord*r filter).
zxploitas'.on of this reasonable assumption yields a v-•uz ~a1 epproxi tion for the
btacketed t•erm of Eq. 1.5-11 as

sk Pk"Ikkfh k-,-(514

fros which a simplification of the uvpdate p-roc wus foa the tll-etate fl~ter ensues from
Eqs. 1.5-14, 1.5-8, 1.5-9. a&d 1.5-10 as;,
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55SSkl * ss*i (l.5-15)
Pk1 kIk

qPklk * Sk P .1  (1.5-16)

* qk qT -1(15-7
qqPklk kIk-l-SPkIk-l Pk-I (ISkSqPkk (1.5-17

Similarly utilizing the assumption of Eq. 1.5-12, the update procedure for the remainder
of the full-state filter provided by Eq. 1.5-7 simplifies to

q ~ T -1 (.-8
XkIk *qXkk-I + sqPkik-l PkIk-l (SXklk-Xkk-l] (1.5-18)

5 XkIlk * 
8Xkfk (1.5-19)

Observe that in both Eqs. 1.5-17 and 1.5-18, an additional computational. consideration is
the requirement for calculating the inverse of ss p This is easily accommodated

kik-1
since ss P is symmetric positive definite and of low dimension (sxs) and is to be

~kjk-l
calculated within the digital processor hosting the full state filter which, in turn,
is allotted more time (N*.T) to complete its requisite calculations (notice the bene-
ficial parallel processing associated with hosting the two filter algorithms on different
machines). For both estimator and covariance calculations performed in the full-state
filter, an exact implementation of the propagate step is recommenaed (and likewise easily
accommodated due to the longer time of N.VT allotted for computations associated with the
full-stata filter).

Coordination of the two reduced-order/full-state filtors is achieved by passing the
following covariance information back from the full-state to the reduced-state filter:

""kI - s ik.5-20)

at the NWAT instants of data transfer. In this manner, the covariances of the reduced-
order filter are not permitted to diverge away from the better overview assessments (duo
to a more detailed accounting of cross-correlations and considerations of additional sig-
nificant error contributors) of the full-state filter. Thus the salient features and
theoretical rationale underlying the operation of multirste reduced-order/full-itata
filters, as depicted in Figure 1.5-1, have been simply described.

A technique for performing a reduced-order suboptimal filter analysis for this multi-
rate filtering approach to aacertain its appropriateness for a particular applcation is
described in Roe. 61. Generalizations are impodiato for extending this approach to three
(or more) concatenated filters or one series/two parallel filters, if n"ed be, for tithehr
the previously mentioned multirates of feat/slow or for three processing rates-faut/
madium/slow. However, it is important to note tha ordering hierarchy where thu reduced-
order filter model is a proper subset (perhaps by a similarity transformation) of the
larger filter model.

2 TRE SUIMLY OCALLY Wi81ASED) (SLU) APPROACH FOR 09CEU1RMLZ D FILTZRItHO

2.1 Layout of Section 2

Justification for a detailed discrete-time treatuent of the SLU filtering foraulation
is provided in Section 2.2.1. The special structure thit must be exhibited by *yst*. ob-
strvation matrices to enable use of SLU filtering to a qoputatioaal advantage is de-
scribed in Section 2,2.2 and matrix transformations tt, nable varifieation of this desir-
able structure are provided. The mechanixation tquat.ions for implementing the SLU alqo-
rithm are provided in Section 2.3 and summarta"o nine (9) entries in Table 2.3-1. A
table of SLU operation counts to quantify the computer burden upon sechanivation is pro-
vided in Sectioi 2,4.

2.2 Derivation of the Discrete-Tioe SLU Piltqr

2.2.1 Motivation for Proceeding with a Discrqt--Time Derivation

"An application of the matrix Kinimum Principle (Raes 1 and 2), a well-known tcol for
the derivation of the continuous-time Kalmhn filter (RWt. 3), is presented here for an
exclusively discrete-time derivation of the discrete-time SLU decentralized filtering
equations. This demonstration is provided here for the following reasost

The SLtJ approach of Refs. 1-14 to decentralited filtering it via utilisatin, of the
continuous-tim version of the Matrix Minimm Principle, where the decentrali-ation
requirement is essentially included in the routine analysis as an additional struc-
tur4a •cotraint, and the tilter gains "e then optiaized to provide the minimum



variance solutions for the prescribed filter structures.

The SLU results of Refs. 8-14 for iecentralized filtering are stated and derived
only within a continuous-time framework (discrepancies that can arise between' dis-
cretization of continuous-time results and results derived exclusively via dis-
crete-time techniques are noted and explained on pp. 136-9 of Ref. 4, on p. 297
of Ref. 5, and other difficulties discussed in Ref. 6); however, practical applic&-
tions implemented with a digital computer appear to be better suited to the dis-
cxete-time formulation provided below. Indeed, realistic operations counts as Oro-
vided in Section 2.4 to analytically quantify the required computer burden can be
performed only for the discrete-time formulation (p. 93 of Ref. 12).

* The milestone application of the Matrix Minimum Principle to filtering problems
(Ref. 3) unfortunately provides no clarification for why the particlilar cost func-
tion of just a terminal accuracy constraint was chosen. Use of the same terminal
accuracy constraint persisted without clarification throughout Refs. 3, 8-12, and
7, but is questioned and appropriately modified both in similar circumstances in
Refs. 47, 48, 4Q, and here.

First the special structure required for SLU filtering is identified in Section 2.2.2
and the descriptive transformation is described. The SLU filter gains are specified in
Section 2.3 and the form of the local Riccati equation that must be recursively solved by
each subsystem is also specified.

2.2.2 Special Structure Required for SLU Filtering

The discrete-time subsystem model that appears to be most appropriate for Surely
Locally Unbiased (SLU) filtering is presented in Eqs. 1.2-40 and 1,2-41. The approach
of Refs. 8-12 is to assume that each local estimator is of the following form:

S(k+l I ri(k+l0k) x (k Ik-l ÷K i W4 i (k) (2.2-1)

and the corresponding error in subsystem estimation is

ei(k+lk ) xi(k~l)-i(k+l k) (2.2-2)

The subsystem error of estimation evolves in time according to;

a i (k+l ik)-0 ii (k+l,kx xi (k,+ +ii (k) ui (k) 4i (k)- ri (k+1, k) •i(k k- 1)

- - ri (k+l,k)x i Wk ÷ ri(%t+l,k)x, (k)

-91~ ~ v~() (2.2-3a)
-.ri (k+ I.k)* (•k I -1

4I1ii(k+ .k) W. L Wk)h)KL MIXtk)- r& (klll Isk)

The desirable property of the subsystem estimator providing conditionally unbiased esti-
mates as

pJ (ký-lik.± (k4 - ZSikjix±ý (2!±U.2-4)

imposes the following structural constraint (justified as on p. 291 of Ref. 7) on the
middle coefficient matrix of Eq. 2.2-3b as

0 2.a$(k~l,k)P, ~ 4 L L )i (k) -K i k)EI W (I+1 ) A4).) 1 (2.2-5)

By exploiting the structural decomposition of the observation matrix Hi(k) as provided in
Eq. 1.2-2d, the single condition of Eq. 2.2-5 (being satisfied for conditionally 'Inbiased
estimates) can be naturally decomposed for convenience into the following two con-itA.ons,

f-ii(k4l~k)-%i(k)Ri(k)-tiM+Ik) P

and

L XW ()Li (it) al (2.2-7)

Via the definition of Li(k) in Eq. 1.2-4, tho single condition of Eq. 2.2-7 can be furth-

er decomposed into an aggregate of several conditions as

4.



Sii (W -K i (k)*Hi W] Lij(k) - 0. for J - l,2,....N/(i} (2.2-8)

while the condition of Eq. 2.2-6 (as it applies to each of the comoonent subsystems
i-1,2,...,N) is equivalent to a familiar structural constraint of

ri(k4lk)" 4ii(k+l'k)-Ki(k)Hi(k) (2.2-9)

to yield decentralized estimators of the form

•i(k+lIk)[ 6 M(k*I,k)-r (k)i(k1 i (kIk-l)÷i (k) W z(k) (2.2-10)

Before looking deeper into what is structurally involved in satisfying the condition
o0 .-t. 2.2-8, observe that the weaker requirement to pruvide unconditionally unbiased
est: ires as explicitly represented by

relies -aly upon use of "the appropriate filter initial conditions:

j(@-1)uE xi i(@)] .0o (2.2-12)

as can be seen by taking total expectations throughout Eq. 2.2-3b and noting that only
the first term makes a nonzero contribution unless E[ei(0I-1)) - 0 (equivalent to Eq.
2.2-12).

Returning to parallel the continuous-time structural investigation of Ref. 8, the de-
centralized gain matrix Ki(k) (appearing in Eq. 2.2-10) is defined to be of the. Surely
Locally Unbiased Class denoted by

(SLUi (k)•A(Ki (ki such that Lii (kW -Xi (k)Oi (k)-O_) (2.2-13)

if and only if

it(k) is a member of (SLUI(k)) (2.2-14)

Notice that a ni x qi gain matrix being an element of (SLUi(k)} is a sufficient condition
for satisfying the remaining conditionally unbiased constraint of Eqe. 2.2-7 or 2.2-8.

It is cenoonient to consider two other subsets of matrices corresponding to the ith
subsystem;

n i*Pi) il2..I()

0 k) W 01k) such that OL (k)L ,k) - 0 for (2.2-15)

and

Snixqi)
51 W Ktk) such that there exists an elermnt 01 k) a member

of 0(kW such that Lii(k) - K (k)HiM(k) + 0 1 '(k) 0 1} (2.2-16)

Ma interesting observation (as in Ref. 8) is that the condition of Eq. 2.2-8 is a
subset of the class represented by i W(k) in Eq. 2.2-16. This can be desostrated by
first noting that for

lijk)s ta ambr of 91 (k) 42.2-17)

implios that there exists an O0(k) with

*'(k)L (k) - 0 for 1-1,2.....R/(I1 (2.2-19)L Ij

and

Lil (k) I Ri(k) t(k I W *(k) *0 (.-9

Now postaultiplying 9-. 2.2-19 by LiWk) yields

[ik%-R (0 (kfit L•.W44i(k) Li.,(k) *-oeo- (2.2-20)

which simplifies via Eq. 2.2-10 to condition Eq. 2.2-6. It is Lmediate that the null



(nlxP i)
matrix 0 is an element of 6(k) so

(nixq i)
{SLUi(k)} C 1(k) C (Ki(k) such thatEq. 2.2-8 is satisfied) (2.2-21)

A safe suboptimal decentralized estimation policy is to optimize the filter gains only
over the class (SLUi(k)W of SLU filters to guarantee subsystem filters that are condi-

tionally and unconditionally unbiased.

Remark 2.2.2-1: In Ref. 8, it is stated that the condition of Eq. 2.2-8 is equivalent to
the set ai(k) as defined in Eq. 2.2-16 (but a confirming proof eluded this author); how-
ever, the result of equivalence, while mere satisfactory, was not utilized as being
necessary here.

The only initial worry at the other extreme is that the SLU class may be empty; how-
ever, structural conditions that guarantee a realistic nonvacuous optimization will now
be elucidated.

A nonvacuous optimization over the SLU class is guaranteed if the following condition
holds.

Condition 2.2-1 (Ref. 8):

rank (Ai(k)) = pi < qi (2.2-22)

where q is the dimension of the ith local measurement, or, equivalently, satisfying a
canonical structural assumption of

Condition 2.2-1' (Ref. 8):

(k) a [ (2.2-23)0 ~qi-pj
Adherence to the canonical structural assumption of Condition 2.2-1' can be forced for
any arbitrary Wi(k) satisfying Condition 2.2-1 of Eq. 2.2-22 via the following result on
p. 47 of Ref. 50.

Theorem 2.2-1:

For H Wk), a (qi x pi)-matrix of rank P1. there exists a nonsingular (pi x pi)-matrix

l (k) &and nonsingular (q1 x qi)-matrix ZL2 (k) such that

S- { (k) filk) Z (k) 12.2-24a)

Proof that such a factorizatinn is possible is deferred in Ref. 9 to Ref. 50 where only a
standard existence proof is provided. A theoretical loose-end, previously unsolved, is
how to computationally execute the factoritation ealled for in Eq. 2.2-24a that is guar-
anteed to be tieoretically possible from Theorem 2.2-1, but not yet specified in the
literature on this subject. During the course of this investigation of Ref. IS, it wasrecognised that the so-called Sinqular Value Decg o grithm (ef, 38) viii
suffice to solve the factorilaonr_ 172,2-24 a txisti~ ng d , iaai- --"-UL--eiemnt se t (e.g., RISPACK (pp. 265-9
of Ref. 39)).

In order to demonstrate this pleasant resolution, first consider the following gener-
&I form of the answer that is returned from an SVD algorithmic operation as

fA



ýq~xpi) (qixql) s I (P:Lxpl)
qx q Ui 0 VTx (2.2-24b)

s2 "" i

for qi > pi, where additionally Vi and Ui are orthogonal:

Ui-i = UiT; Vi-1 = ViT

Further, notice that upon rearranging Eq. 2.2-24b the following results

Now Eq. 2.2-24c is recognized to be exactly of the form of Eq. 2.2-24a that is sought (by
making the following associations or assignments) with

Zil UiT

and

Caveat% In Ref. 9, a comment occurs prior to Eq. 7 that the rank condition (of Theorem
27 being satisfied mr o iy ea.ik4 means "that at least one element of the
state vector of each useFl measurdZuand that each of the interactions ti each user
has a direct effect on the local measurement obtained by the user." Similarly on p. 17
of Ret. 8, th, above loose interpretation is reinforced in stating that the rank condi-
tion "means intuitively that the user can observe all the interactions to his unit."
Both the above Ewo Intuitive structural requirements are adhered to in the JTIDS RelNav
application. While the equivalence of Condition I and V (of Ref. 8 that correspond
exactly to Condition 2.2-1 and Theorem 2.2-1 above) have been validated in Ref. 15, the
verification of the "loose interpretations" implying compliance with Conditions I and 1'
of Ref. 8 cannot be verified aad are not satisfied by all applications, as demonstrated
to be violated for ,TfDS RelNav as sho-n in sq. 4-13 of Ref. 35.

Earlier examples in Refs. 6-12 of how to apply the SLU filter to power system appli-
cations had degenerate *special* internal system structure that avoids the necessity of
performing the explicit factorisation that is usually required (pp. 23-4 of Ref. 8).

By the above defined transformation involving Zi (k) and ZL2(k), the following trans-
formation rule

(2.2-25)

L -42 W L Wki W(2.2-26)

S•l (k)--x ' kJ^i(k)Zl W - (2.2-29)

x "x (22"9



Ki (k---Ki (Zi (k) Ki' (k) (2.2-31)

alters the original subsystem model of Eqs. 1.2-40 and 1.2-41, respectively, to be

xi(k+l)ui(k~lk)x (k).(Lii(k)z(k))zi (k)L (k)x(k)+4 (k) (2.2-32)

and

051()I()xW4~ IW kxk*-I k (2.2-33)

In conformity with this canonical transformation, the filter of Eq. 2.2-10 is also trans-
formed into

Rj~j) kIX)K~)jk)9(kjk,1-)+K' ± )B(k) (2.2-34)

Upon partitioning the following matrices and vectors to conform to the transformation of
Eqs. 2.2-25 to 2.2-33, the result is

":1 [Ljk t° [ !L (2.2-35)

412(k)utI.
"K (k). -- ,---K W ---K--0 - -k-- (2.2-36)

V )i, (k) (k1

Substitutinj.: "he partitioned matrices into Eq. 2.2-34, yields the following s (mpl-fi3a-
tion

It is at this point that attention is restricted to filter structures corresponding only
to mewbers of the SLU class (a class having guaranteed conditional unbiasednoss by virtue
of satisfying Eq. 2.2-13 as a condition for membership). The defining condition for SLU
membership in also altered to reflect the transformations of E~q*. 2.2-33 and 2.2-34, ex-
bodied in the pertinent changes of lqs. 2.2-25. 2.2-29, and 2.2-31. to yield

II

Si,2(k) I' (k) HWO(k] (2.2-39b)

S1 2

for filters of the SLU class, when expressed in terms of the canonical transformtion of
,sI. 2.2-2• to 2.2-31. These filters, having the gain 1 1 2 (k) as yet unspecified, have
the following foram

II .



(k+1jk)-4~~~~~~~~~~ U -,k kkl)ý()aj~)j~k;~j-1+1(k)[%' 2 (k).li2ck)x1 (kjk-1) (2.2-41)

While it is not strictly necessary to transform th2 original system to the canonical
form of Eqs. 2.2-32 and 2.2-33 to utilize the optimal SLU decentralized filtering results,
it is necessary to find the appropriate Z i(k), Z (k), and calculate both Z (k) and
Z 1 (k) (since Z and Z are defined in terms of orthogonal and diagonal matrices fol-

lowing for Eq. 2.2-24c, no matrix inversion is needed here) for each measurement Zi(k).
The mechanization equations of SLU filterJ.ag are summarized in 9 simple steps in Table
2.3-1. The optimization to specify the remaining gains K* (i=1,2,...,N) is performed
next in Section 2.3 using the Matrix Minimum Principle. 12

2.3 Specification of Optimal Gain and Ricatti Equations for the Decentralized SLU Class

In preparation for specifying the equation for the global estimation error, notice
that Eq. 2.2-3b simplifies for the SLU class as

ei (k+llk ) - ri (k+l,k) ei (k Ik-l)) + [i (k)-Ki (k)vi (k)] (2.3-1)

which, when augmented for all N subsystems, yields

e(k~lIk)-r(k+l,k)e(kIk-l)+W(k) (2.3-2)

where
NT

e(k~ljk)AZ pT .e(k4llk) (2.3-3)Ja i- X ,

_r(k+l,k)wANE iPTx r. r(k~l'k)Px~ (2.3-4)

i-i ,Ji i.

From w i(k) and vi(k), the composite process w(k) inherits its properties of also being
zero mean, white, Gaussian, and independent of the initial condition.

St__ . Obtaining the difference equation for the time evolution of the covariance
of t He-Oeimation error in a manner analogous to what is done in Refs. 3 and 7 for the
"centralized* case, postmultiplying Eq. 2.3-2 by its own transpose and tAking expecta-

tions throughout yields

C *(.k)l1k).)4k) 1 7(lk-) l,k)I (2.3-6b)

A further association for the SLU case of unbiased filters being

Lklkg P x1i kl.)KiW i (k] Px,' (2.3,-7)

allows the observation of Ref. S that the solution to Eq. 2.3-fo can be shown by direct
substitution to be

T
Z(k*lik)-"it Px X# Pi(k'M1k) Px,i (2.3-8)

where each P (k~llk) evolves in time according to the local discrete-time Riccati equo-
tioas of the* form

.[aLnat~Lus~kI~)~~ ~.R~fk) )C~~ ~(2-3-9b)

with natural initial condit~ion



P (01-1) = P (2.3-10)

St . Specifying the appropriate scalar performance measure or cost function to be
the weighted-mean-squared error in estimation [to then be globally minimized in specify-
ing the optimal gains Ki2 * (i-i,... ,N) for the decentralized SLU filters] as

Er{ e T(k .k-l)R(k)eT(kk-l) }(2.3-11a)
k-0N. N

-E E E[eT klk-11 M(k)ei(klk-l)] (2. 3-11b)
k-O i-hi N

N N. No No
E J JUK12 W)kwo {M i(k)•.o (pi (k k-ll)}kino (2.3-11)

i,,

where

iR(k)-diag(K{(k).M 2 (k),...,IN(k)} (2.3-12)

the Mi(k) are positive definite, and

kiu.]=E tr (Pi (ki k-l1) 1 (k) 1 (2.3-13)•. k-0

A simplification now occurs in noting that minimizinq 2.3-i1a over the aggregate of
SLU classes is identical to minimizing every local non-negative cos-Tunc-tio-n oEq.
2.3-13 over its i SLU class, so that

J [(01,a(W (141k)JA ob J{'i W o (Mi ) (2.3-14)

While global optimality is sought, it has just been shown to degenerate into N local op-
timization problems, each of the same basic structure. Of course, the measurement data
base over which optimization is performed is more restricted as an approximation. The
lHamiltonian for the iVh local optimization is of the form

(e 2 k .HP(kIk-h) ]((k-l),ka

+ trtM(k)P(Itk-l) (

+ t(2.3-15b)

aAe(k+l) iids the n it n •tot matrix

selL ~ k-' We 4I(kIqiW2.16

o i *. 1,A4' WD' 1k) (2.3-17 )

-I* i2 It j

Unlike the case for derivinq the standard centralized Kalman filter using the Matrixkinlmum Principle# there to no analog to the last t~hree terms present in Eq. 2,$-I5bt
so final results vill diffar correspondingly due to the Wed complication.

Differentiatingl the Hamiltonian of 1X1. 2.1-I5b with respect to the appropri~at~e vari-
abUe yields the so-all*d "couplia •oqutia as

I -•2lr$1t(ki k-1). tlk+l) .k) • 12.3-16a)



-A (k4.2) [Lii~i 3-4i, l2•2" *''T •*T *(i2i2+2]
iA I -) ii,eq 1 12 i2 iR2I 1 2 idi

+A÷lkl) • -, .-.qp' i (i1 2 P i (2. 3-18b)

The question for the "backwards" or reverse time evolution of the costate (upon using
the simplification allowed by Ref. 2) is:

Ai (k) =+yp(Ki (k). Pi. Ai(k+l). k) I

[fi(kl) V Mk (2.3-19)ii l 121 2 1• 11J 1 2r2+RT

with transversality (i.e., boundary) condition

A(NO)J = tr [M (Nj) Pill. Mi (N0 ).M T (N0) >0 (2.3-20)

The following arguments proceed as in Refs. 3 and 12 (but with more justification as
will be indicated parenthetically now that the boxed terms are included in Eqs. 2.3-15
and 2.3-19 according to the convention first utilized in Refs. 47, 48, 49, 15, and 35,
and explained in more detail in Section 3 of Ref. 46). Note from the assumption of posi-
tive definiteness of Mi(k) and the form of Eqs. 2.5-19 and 2.5-20 that the AWk) that
evolves backward in time from k-N 0 to k-0 is symmetric and positive definite. Without
the boxed terms present in this analysis, it is more difficult (if not impossible) to
rigorously establish that A(k) is positive definite since it is not known for sure that
the matrix quantity in brackets that pre- and postmultiplies the first term on the right
side of Eq. 2.3-19 is guaranteed to be of full rank. Only because of the presence of the
boxed term in Eq. 2.3-19 can it be c3-c~ud~e--Th Ehe A(k) evolving from Eq. 2.3-19 is
indeed symmetric and positive definite (independent of the bracketed terms of Eq. 2.3-19
being of- full rTaing. -Thus

*A* J 1(k) exists for 0 1 k 4 N0 and is symmetric."

Thus Eq. 2.3-18b can be premultiplied throughout by Ai'(k) to result in

0-2 LiiR P2 iHePI~ ~R P'1~*I~ (2.3-21a)

Ott- £1 I (.at)I))4  (2.3-21b)

The above equation specifies the discrete-time optimum gain for minimum variance estima-
tion within the clase of SLU decentralized filters (having unbiased estimates). Despite
a few similarities to what was obtained for continuous-time in Ref. 8, the result re-
ported in Eq. 2.3-21b (as obtained Ln the original research of Refs. 15 and 35) is a new
contribution. (Consistent with standard practice, superscript asterisks vwill be sup-
pressed in what follows for notational convenience.)

stop 3. To obtain the approprLate Riccati equation to be solved in imploeenting the

loca&T *mator, differontiate the Hamiltonian of Eq. 2.3-15 with respect to A (k~l) to

return Eq. 2.3-9, the equation of evolution that P i(klk-i) oust satisfy as a dynamical

constraint. substituting the optimal qain of Eq. 2.3-21b back into 9q. 2.3-9 yields,

•: Ir"v. (2.3-22Ia)

*' -iL tr~ 3 ~g~ j1 "i ~ i~~ ~ *Ljit



[iiLiJi iil) ifi2 Libil3] (RTzPii 2 2 3]

(2.3-22b)

TABLE 2.3-1

SUMMARY OF DISCRETE-TIME MECHANIZATION EQUATIONS
OF SURELY LOCALLY UNBIASED (SLU) FILTERING

Order of ,
Calculations Mechanization Equations for the General Case

Step I SVD algorithm performs the r
following factorization: %

i 0 S2T

L oJ

Upon making the following &
assignments: 'U.'i [i .
Hence

Si(k)

for the condition Pi < qi (as confirmed/denied from the factorization).

Step 2 W A

Step 3 L 4 (k) L (k) W

ri
Not necees"r

~ tStep 4 f k-j (k o (k)-

hweltloninq and aasslging "t

stop + '1 "' {% "L'-,, ,1,. "lg,) " "

step 9 ,;;&4. . fth. bb4.-1-4,u stf.;* 1 ,,t-a,.i,.&&1 w,c~.;-:-, ,a"

*This discrete-tims foroulation (derived in Ret. IS and previously unavailable as ac-
ko-owledged on p. 92 of Ref. 12) was necessary before computational burden of Table 2.4-1
could be quantified. **This factorization was theoretically guaranteed to be possible in A
Refs. 8-12, but accomplishment of this task in the general case by SVD first identified
hexe and In 1ft. 1S. Validated SVD software is available for this task lRets. 38 and 39).



For insight, it is mentioned in passing that six distinct steps constituting re-
arrangements (available upon request and provided in Ref. 15) were required in going from
Eq. 2.3-22a to the concise expression of Eq. 2.3-22b. Bridging this gap was one of the
most gruelling mathematical challenges encountered in this investigation even if it con-
sisted of only algebraic manipulations of long unwieldy expressions. This may perhaps
explain why from 1973 (Ref. 8) to 1979 (Ref. 12), the discrete-time case-useful for
digital computer implementation-did not emerge even though the discrete-time case was
acknowledged (p. 93 of Ref. 12) as necessary before operation counts can be compiled (as
provided in Section 2.4). The 9 simple steps for mechanizing an SLLJ filter algorithm are
summarized in Table 2.3-1.

2.4 Considerations of Computational Burden of SLU Filtering

The SLU computer memory allotment required may be obtained in two steps. By first
reading from Table V, p. 750 of Ref. 36, the memory required for the standard Kalmsan

¶ filter is

Sn2 + 3n + 2n 2 + q + 1 (2.4-1)
i 1qi qi qi

Second, accounting for the additional occurrence of such characteristic SLU terms as L~ii
5i1 3i2 3 i and Z*l the corresponding appropriate dimensions are then added to

Eq. 2.4-1 to yield

n1+3n +2niqi+3q1 +q1+n~pi+3p1 +1 (2.4-2)

The number of adds, multiplies, and logic time requirements (as compiled in Ref. 15 using
the techniques of Ref s. 36 and 37) are summarized in Table 2.4-1 for an SLU filter. This
information can be used to establish the filter cycle time required for processing a
measurement once the add, multiply, and logic times are provided for the intended target
machine.

TABLE 2.4-1

SUMMARY OF DISCRETE-TIME MECHANIZATION EQUATIONS
OF SURELY LOCALLY UNBIASED (SWU) FILTERING

ordat of fttsf *W&*c ?tal V1h4,f of (Utimatad) L"Id Titol

It" ~ S. 1 309 in So MY in SoSWiPas 9nd4
Phts. 39 and 814 soft. 3) &and 84 ~sn~8f 9ad8

101 -0 -*1 00)It"41(P110RA

*t~C a1 ~q 1 j~Ib 1 * ~It4&t~q.paIaI~iIqafbI~~1 IaPa

I *ILI.11q 1 .p1 1 (4 -~t1.. 11),,)~q. 1

IN~aaq 14 -I 41 1 lo V
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As observea in mea o--p _
filter treats the interaction input to each local subsystem as ix xv w-. -. .
mean, Gaussian, white noise disturbance, but of the approriately tailored covariance
level. Therefore, the unmodified SLU filter treats all interactions, determinTseticor
olerwise, as a purely stochastic uncorrelated interference effect. This apparent de-
emphasis of the significant subsystem interactions may be initially unsettling for some
anticipated applications since all information transfer between subsystems can only be
via these interactions within the strict SLU filter structure. However, there are exist-

rin refinements of the SLU filtering formulation (Refs. 11 and 12) that appear to tae-
eter advantage of the correlated information intrinsically contained in the subsystem

interactions by

* exchange of inter-subsystem interactions via a communication channel,

- exchange of subsystem state estimates via a communication channel,

- modeling possible noise in the comnunication channel if necessary.

An overview of the variety of identified SLU variations already developed in Refs. 11
and 12 are sumnarized here in Tables 2.4-2 and 2.4-3. In particular, use of a form of

TABLE 2.4-4

ALTERNATIVE VARIATIONS IN SURELY LOCALLY UNBIASED (SLU) FILTER MECHANIZATIONS: REF. 12

Communicationsi Channel
Order Noise Decoreralized

SLU of Modeled or
Filter Information Local in Centralized

Variations Exchange Filter Design Design

None n -- Decentralized

Noe DecentralizedPSW

gNone n - Detuentralized

1 L00None n, - Decentralized

In Zteractions 0% (n1  yes Decentralized

to Interactions No Decentralized
CSLW

State Estimated ni Yes Centralized

IP08 State Estimate* Uj yet Centralized

.p,.. State RitiLstes a No Centralized

None +n +A Decentralized

Prime SLU candidates for the JTIDS Ralftv applicati•n in the investigation of af. 15.

approximate 4*99reqation" it filter desiqn it suggested in Chapter 5 of elf. 12 as a Cos-
promise to obtain a so-called Reduced-Order Model ("C#) filter that has better perform-
ance than the WLU while also oTfering iore realietically diauesioned cosputations than
commonly associated with a centralized Selman filter. Unlike what the specialized tech-
nical term aqggregation" may at first glance suggest, the method of sqgrwation* isa a
well developed technique (Refl. 55, 56, and 57) for realkatily representing the
effects of interactions awongst the constituents of io.ix9-scals system by using just
a reduced-order smallet scale system. A pedagogically lucid and eeIf-%oaslstent detiva-
tion and explanation of the SOS filter -t provided oa pp. 5-2 to 5-13 of Neo. 15 and its
potential for the JTb Relwav application is summarized in ftf. IS.

bedv3.1 t awtion of the Decentriilit*e SPA AWrftch toa Doemtraled Filteritg

An interesting approach to decentralited filtering first described in a 0191 British
Ph.D. thesis (Ref. 14) by It. Shah hee been relatively rfcently reexamined in set. 13 for



TABLE 2.4-3

TERMINOLOGY OF SLU ALTERNATIVE VARIATIONS

Symbolic Designation Filter Name Designations (from Ref. 12)

FCL Completely Localized Mechanization (of otherwise Centralized)

FSLU Surely Locally Unbiased

F Global Dynamics
GD

FLGD Localized Global Dynamics

FESLU Expanded Surely Locally Unbiased

F ESLU Same as above, without modelinq communications noise.

F FRGD Reduced-Order Global Dynamics

F•PDSLU Partially Decentralized Surely Locally Unbiased

F 0PsLU Same as above, without modeling communications noise.

F ROM Reduced Order Model

4 Treats local Model as if it were Global Model.

the discrete-time case of only two subsystems.

Remark 3.1-lI A few typos occur in the derivation of the SPA filter appearing in Ref. 13
(pp. 51 Notably, the measurement equation appearing in Eq. 11.3.1 involving yi(k+l)
should have a time index of k+l rather than k for xi. Similarly, the time index of the
measurement noise v1 appearing in Eq. 11.3.7 should be k+l instead of k.

The mechanization equations for this decentralized filtering approach are now derived
for an arbitrary number N of decentralized subsystems as expected to be encountered in
the mest general application. Returning to Eq. 1.ý-20c

xiL(+0-~ ( k+)4*. k) xikj 1(kI.1.klx (k)] +vi (k) 03.1-1)

and Eq. 1.2-2, aupenatd by Eq. 1.2-4, as

(k)fii (k) x i (k.i W (k)jk4i1 (31-4

N
L xiW Hi()t L ij Ws j (k)+v1(k) (,-b

j-t

(for i-l,,..N*)Osistint with the definition of e1 (k411k) in 94. 2.2-2# the estima-
tion error is

.~~ ~ elkik) x tkll-; lklk) .- 1

wieta

• L (klk) - R(xi(k)It(k)) (3.1-4)

While informtion patterns can be related to the astociatied underlying expanding sub-
sigma algebras (of a probability space or triple) vith respect to uhich tonAitional ex-
pectationi are taken (as Radon-Nikodys derivatives), these concepts do not appear to be
necessary here and so are avoided to expedite the presentation. fy adding and subtract-
"lag the *am teras simltaneously, Eq. 3.1-1 for the I t subsestee my be rewritteA as



Xi(k+)1)-P(k+l,k)xi(k)i Z i (k+lk)xj(k +wE(k) (3.1-5)*i

while the measurement equation for the ith s-.;bsystem is represented aa
^ N

•si(k)fhi(k)(k)kW÷W (.f v) ijj (k)Xj (klk-l)+v*(k) (3.1-6)

where in the above

N
j-(k)Vw (k)+E *4(k+l,k)e (kjký (3.1-7)"i J=l iJ

joi

Nv*(k) ilk)+X Li Wk e (klk-1) (3.1-8)

ji

Under the following aus.mptions at time--step k.

Assumption 3.1-1:

-1) is known (deterministically) for jAi, j-2, (3.1-9

Assumption 3.1-2:

e (ktk), e (kjk-l) are Gaussian and white for j~i, jl,2.....,N (3.1-10)

(just as residuals should ideally be white when filter models and truth modes are appro-

priately matched), therefore (as a coinsequence of Assumption 3.1-2)Z

Assumption 3.1-3%

wi*(k) and vi*(k) can be treated as me,.,sl,,.tn white process and
n~aur,~m o~s ( 3.1-11)

n.d the atan4drd Xalman filter agorithm "a be eppliod to "aeh Au4y•ytam (p. 536. Ref.
13) with the following approp riatly modified c-variantos:

~Ii

RIOW481 viak~l~• ( j,(, k(' t-, (11.)v (kik-OlLr Wk) (k) (3.1-13)

The result of applying the standard ltering f*raulation to each subays~te and utiliza-
tion of the abov,, assumtions is

"- N
X M-llk)4 !kel.A)X (kk 4 +~) (kil, (3.1-140~

f*l) x(klk)U r ij i

"M filtfair 9iAn matrix appearing in Eq. 3.1-15 can be obtained trom the following

R tk.1)IP (k~lIk)8i(k)•)[ tk+I)$ (k,, k) (k) (3.1-16)

wbaze the extrapolate stop c~wisIts of

~~~~~~P tii ~ # t ~ ~ ) ) # ( ~ ~ 1 Q ' j 1( .



and ttie update step corisu,- jA. 4 . -

?+ i (k+l) Ri (k+l) (3. 1-18 )

It is noted that this filter is suboptimal as porceived from a centralized point-of-view
since it does not account for possible off diagonal terms in the covariance matrix. How-
ever, the above so-called. SPA filter is computational].v ~ v"k attractive to implement,
since it requires a substantially smaller number of elementary multiplication and addi-
tion operations and less computer storage than a globally optimum Kalman filter.

Further simplifications of the SPA filter were possible for the JTIDS RelNav applica-
tion considered in Refs. 15 and 35 since there is no cross-coupling in the linearized
system error models as represented by

* 11(k+ltk) - 0 for 1 # (3.1-19)

Hence, Eqs. 3.1-5, 3.1-7, 3.1-12, 3.1-14a, and 3.1-15, respectively, degenerate to

xi (k+l)-4ii (k+l,k)x i (k)+wi*(k) (3.1-20)

wt(kl(k)4wW (.'.1-21)

X• xI(k*1jk)-4,,,k+1.,k)xi(kjk) C1.1-23)

tkkkj1mi) (3.1-24)

As aeen from Eqg. 3.1-12 and 3.1-13, rQspectivley, the SPA filter accounts for intorcon-
nection effects by ot£1iinqg fictiti us eomponents of procap* and meesurement noises with
appropriately onlarg-ad eovariances (not ulike aa1•cto of the SLU apptoaeh already noted).
Thus the entire discrtee-tiwte SPA implementation for the condition of &q. 3.1-19 is do-
scribod by Rqs. 3.1-13, 3.. ., 3.1-23. 3.1-24, 3.1-17, and 3.1-I1, ad summaritd
in Table 3.1-1. Machanizit-4t a that* aix equ"tionv constitutes the entire computation-
al burden of SPA and, unlike 5;'0.- int~olvos no SVD factorization or additional transorma-
tiont. the computational bui~ae --• SPA filtering is quantified in Section 3.ý.

TABLEi 3.1-1

SUM4I0Y OF DISC 1E9-TIMEWCH~OA)NZAION tQUA??O4NS
OF sMgUwTxIAv PARTITIONED) XLGORXTttK (311A)

WUW" M 04 U*"&# Woo* sjit4W

t-_..

01* ,LM t*. ff k U104M Il VitM i.,tZ 1A *e#. ti. Atte W,•#I Wkt, U 1$, Vfto" &A" Od 1s We. 4



In general, for the SPA filtering approach

so that taking total expectations throughout Eq. 3.1-25 yields:

SE~xi(k+llk)}=E[E xi(k+I) IZi(k)] 1#E{E xi(k~l)JZ(k) }=E{x,(k~l)} (3.1-26)

The above indicates that the SPA decentralized filter, along with most other practical
filters, is a biased estimator (Ref. 34) (e.g., even in linear Gaussian applications, the
optimum centrai.Ize--Kalman filter has pricticality constraints that frequently limit the
order of the filter implementation that .an be computationally accommodated to be much
lower than the "truth" model, thus yielding a biased filter when implemented). As long
as the bias is either eval.uated, compensated, or shown to be tolerably small, its ?res-
ence should not interfere with the intended purpose of any filter. Indeed, it is the SPA
filter that appears to be most useful for the JTIDS RelNav application as discussed in
Refs. 15 and 35. Results of subsequent simulations are reported in Ref. 60.

3.2 Computational Burden of SPA Filte:ng

The SPA computer memory allotment required may also be obtained by the same two step
procedure discussed in Section 2.4. The SPA filter uses additional intermediate scratch
calculations of dimension (ni x ni) (qi x qi), and (qi x ni) beyond those encountered in

a conventional Kalman filter so the total memory requirement is

2 26n2 + 3ni + 3nq 1 4- 2qi + + 1 (3.2-1)

The number of adds, multiplies, and logic time requirements are summarized in Table 3.2-1
for an SPA filter. These results for SPA filtering were obtained by applying the stand-
ard methodology for operations counts from Refs. 36 and 37 to the algorithms summarized
in Table 3.1-1 in a manner analogous to what was done in Section 2.4. Both the SPA (with
the special structure of Eq. 3.1-19) and the general SLU filter implementations are anal-
ytically demonstrated to be stable in Section 4.

4. STABILITY OF DISCRETE-TIME DECENTRALIZED FILTERS OF THE SLU AND SPA CLASSES

4.1 StaLility Overview

The proof of stability for the discrete-time formulations of SLU and SPA proceeds in
a manner analogous to the continuous-time proof provided in Ref. 10 by also utilizing the
stability framework of lef. 16. The crux of the proof involves demonstrating that

V~x(klk-l),k] a xT (kjk-l) P 1 (klk)x(klk-l) (4.1-1)

is a valid Lyapunov function by demonstrating that it is positive definite and that the
* first variation along the trajectory of

x(k+lll) a EO(k+l,k)- t(k+1,k)K(k)U(k)1x(klk-l) (4.1-2)

is negative definite. The inner product matrix in Eq. 4.1-1 being the inverse of the
matrix that evolves from the matrix Riccati equations (encountered in both SPA and SLU
filtering) which can be demonstrated to be uniformly bounded above and below under the
condition of uniform complete observability of the subsystem (without also requiring
uniform complete cont-ollability or even controllability due to weakened hypothesis
provided by Ref. 16).

However, recent sesults (Ref. 17, Appendix C of Ref. 18, and p. 244 of Ref. 19) indi-
cated a minor error in the upper and lower bounds appearing in Refs. 40 and 41 (as util-
ized in Refs. 16 and 10). This error is corrected in Appendix A and shown to not adverse-
ly affect the stability conclusions for SPA and SLU 3s lon• as all observatioEimatrices

Hi(ki) are of full rank (a new restriction) as well as Ri (k) being bounded and Pi(0) >0.

By this approach, only asymptotic stability is established for SLU and SPA in contradis-
tinction to exponential asymptotic stability.

4.2 Precedent of an Analytic Framework Enabling a Demonstration of

Stability for Several Decentralized Filtering Nechanz7ations

A discrete-time filter of the following foria

x(k+llk)-#(k~l,k)x(kik)9#(k+l,k)g(klk-l)*'k~l,k)K(k)l t(k)-H(k);(klk-I (4.2-1a)



TABLE 3.2-1

SUMMARY OF MECHANIZATION EQUATIONS AND QUANTIFICATION OF COMPUTATIONAL BURDEN
OF SEQUENTIALLY PARTITIONED ALGORITHM (SPA) FILTERING

Required Total
Order of SPA Equation Total Number Number of

Calculations Being Implemented of Adds Multiplies Logic Time (Estimated)

Step 1 Eq. 3.1-23 (same
as standard ,i2 - n i n2 10*6ni"+37ni
Kalman filter)

Step 2 Eq. 3.1-12 (2n 3-ni2). (2ni 3)w (20+12%1 3+42n, 2416n1 )N

427+i .M+4UL

Eq. 2.1-22 (sane
as standard KF
for JTIDS RelNav
Application) none none Wone

Step 3 Eq. 3.1-17 (same 4Ai 3-ni 2 4%3 24n 341% 2+44ni267+L
as standard KF)

Step 4 Eq. 3.1-13 q1 *3(nt q1+n-t q2 • q1+n£ (20+6n 2 "i qn 221niq1 +21qi2
.2 3in i 3 q

qi -niqi-qi 2
)N q 2 )N *4Inin46q ) N 376qi 321q1 +221qj

+KUL

Step 5 Eq. 3.1-16 (same a_22naq 2
-2a, na 2 qI2niqi2 *7+4n 

2q 42n q +32nA+12n.q 1
2 +

as standard KF) 4qq13 7.•5 7i +41q3 41Sn1 2*O0q,*(qi+
2q% ))XV4O*40.3 42. 5q1 *1)tUL

Step 6 Eq. 3.1-24 (for "144%q240422 q%*2njq 1 4tn,
2 0442%2q1

2.2niqi*42nj*144q 1 +
JTIDS RelNav, q,-1jq-1 11 ni-Ii).n + Q ) 2 2t, +(3lO4fkn2qj*6ni.*2n/qi+,Srki)V

N = 1, Refs, 35 p
and 15)

Step 7 Eq. 3.1-18 (sawe 2 2% 3 2
as standard KF) 3ft' -nt 41. •I *44 1 432n14I.UL

Compiled based on precedent, convention, and guidelines set forth in Refs. 36, 37, and
15 for such calculations, where in the above SPA specialization:

ni dimension of the subsystem's local SPA filter (defined in Eq. 1.2-1)

qi dimenzion of subsystem's local measurements (defined in Eq. 1.2-2a)

KUL unit logic time required for a multiply by an element retrieved from core memory
(by indirect addressing) rather than by an element from the Arithmetic Logic Unit
(ALD)

DIV unit logic time required for a division by an element retrieved from core memory
(by indirect addressing) rather than by an element from the ALU.

NA number of individual subsystems contributing covariance information.

with

KM K(k) Plkk-l)-lTlk) l8lk)P(k I -1)lHT(k)+R(k) (4.2-2)

P(klk-l) , *(k,k-l)P(k-ljk-i)* T (kk-l)+Q(k) (4.2-3)

j P(kIk) a (I-K(k)H(k)]P(ktk-l) (4.2-4a)

a (I-K(k)M(k)1P(klk-) (1-K(k)(k)f T +K(k)R(k)KT (k) (4.2-4b)

i p(ko) a 110 (4.2-5)



(for convenience, Eqs. 4.2-2, 4.2-3, and 4.2-4b may be rewritten as:

P(k+lIk)u-$P(klk ),T-4P(kIk-l)HTI [P(kJk-l) HT+R] lHP (k I k-l) OT+Q (4.2-6a)

W41HR ÷lH ilkIk-l)] '-OT÷Q (4.2-b

as will later be utilized) is demonstrated to be eponentially asymptotically stable (p.
222 and pp. 228-9 of Ref. 58) if the following three conditions are each satisfied:

1. O(k+l,k), H(k), Q(k), R(k), and R'(k) are bounded; (4.2-7)

2. [t(k+l,k),H(k)] is uniformal completely observable (pp. 313-4 of Ref. 18), that
is, there exist two positive Scalars a1 and a2 such that

T1 < r t(j,k)HT(J)R'I(J)H()(J,k)< l21 (4.2-8)

for some

2 a 0 (4.2-9)

n~ 1 - 1 (4.2-10)

f 3. [-(k+l,k),D(k)] is uniformly completely controllable for any D(k) such that

D(k)DT(k) 0(k) (4.2-li)

that is, there exist two positive scalars a 3 and a4 such that

Z-1 T-I < E *(k, J+l) Q (j) T (k,j+l)<a4 1 (4.2-12)

for some Z and n as in Eqs. 4.2-8 and 4.2-9, respectively.

As mentioned on p. 222 of Ref. 58, sufficient conditions for asymptotic stability, but
not necessarily exponential stability are known to be 1. and 2. above, and 3. relaxed to
Eq. A.l-1 of Appendix A.

For a discrete-time system of the form

y(k+l) = f(y(k),k) (4.2-13)

where y(k) is the state at time-step k, if there exists a so-called scalar Lyapunov func-
tion V(y(k),k) such that

a. V(0,k) 0 for all k (4.2-14)

b. n y(y 2 (Iy(k) ) or all k>_k (4.2-15)

and

01 (0) Y Y2 (0) - 0 (4.2-16)

with
w Ityh as lIIyl -:" (4.2-17)

c. V(y,k] is continuous in y (4.2-18)

d. Vty,k])m as y. (4.2-19)

e. AVyk) t rate of increase of V[... I along the motion of a trajectory or path of
Eq. .. 2-13, starting from y at time-step k A

A(Vry(k+l) k+- VrWk]k~11 <0 (4.2-20)

or, equivalently,

V[y(k+l),k+l)-V(y(k),k] < - Y (Ily(k)II) (0 (4.2-21)

then the system described by the time evolution Eq. 4.2-13 is asymptotically stable (in
the large) (p. 396, Corolary 1.2* of Ref. 59, p. 240 of Ref. 51). The proof of--amp-
totic stability (Appendix C of Ref. 18) (pp. 240-3 of Ref. 51) for the filter of Eq.
4.2-1 consists of utilizing a discrete-time Lyapunov function of the form of Eq. 4.1-1



(Eq. 32 of Ref. 16) as a standard way to demonstrate stability of the autonomous time-
varying system of the form of Eq. 4.1-2 (Eq. 31 of Ref. 16) (where Eq. 4.1-2 is observed
to be the homogeneous "undriven" portion of the filter of Eq. 4.2-1. While adherence of
Eq. 4.1-1 to conditions a., c., and d. is immediate, it requires moft work to establish
that conditions b. and e. are satisfied as a consequence of satisfying the conditions 1,
2, and 3' of the hypotheses as Eqs. 4.2-7, 4.2-8, and A.1-1. The following bounds (ob-
tained by an extremely tedious and careful analysis of McGarty as EqsJ C.88 and C.56 of
Ref. 18) are correctly validated

0 < A < P(klk) < B (4.2-22)

where

k-l k

A [LJ_ E (k,j+l)Q(J) k,J+l) 2 T(Jk)HT(J)R (J)H(j)O(jk) (4.2-23)
Jk- 1 Jk-n

k T 1i 2. 4 k-1.3 A r ,kH )R ) - ((k, iQ(j)
T (kJ ) (4.2-24)

"1%] J-k-n

and oi' a2, a3, C49 and n are defined in Eqs. 4.2-8, 4.2-9, and 4.2-12. From Eq.

4.2-22, inverses can be taken throughout to yield

0 < B < P1 (klk) I A1  (4.2-25)

ATand finally pre- and postmultiplying the abcve by x (klk-l) and k(klk-l), respectively,
yields

0 < ;T (klk-1)8_~'ý(klk-1) < ;T(klk-l)P-l(klk-1)ý(klk-1)

< x(klk-l)A-1;(klk-l) (4.2-26)

Thus by definition of the appropriate Lyapunov function to be used in this situation as
Eq. 4.1-1, Eq. 4.2-26 can be alternatively recognized as

Ui<1x(kik-l)11 2 1 < V[ (klk-1),k]< li•(klIk-l) A( (4.2-27)

which certifies all three of Eqs. 4.2-15, 4.2-16, and 4.2-17 comprising condition b.
above.

By a procedure related to a dual optimal control problem (where the cost function is
reminiscent of the exponent in an associated probability density function, the following
condition holds (Eq. C.136 of Ref. 18):

-4_ 12 .2-28)

where 03' 05' and 86 are positive constants defined on pp. 374-7 of Ref. 18.

Now n - 1 in Eq. 4.2-28 demonstrates that the condition e. (Eq. 4.2-21) is satisfied
for the Lyapunov function postulated in Eq. 4.1-1. All five conditions (a.-e.) being
satisfied by the Lyapunov function of Eq. 4.1-1 therefore suffices to demonstrate asymp-
totic stability-in-the-large for the autonomous unforced system of Eq. 4.1-2 or, corres-
pondingly, asymptotic stability for the randomly forced system of Eq. 4.2-lb that is the
end objective.

4.3 Analytic Stability of the SLU Filters

In analogy to what is done on p. 200 of Ref. 10 for continuous-time, an existing sta-
bility theorem that serves as the basis of what is done in Sections 4.3 and 4.4 is as
follows (same statement as Theorem 4.1 of Ref. 16, but proof is augmented and corrected
as indicated in Appendix A):

"Theorem 4.3-1 (Anderson):

If O(k,k-l), &'1 (k,k-l), H(k), 0(k), and R'1(k) are bounded, H(k) is of full rank,

..[,HR-1/2] is uniformly completely observable, and condition 31 (as Eq. A.1-l) is satis-
fied, then a filter of the form of Eq*. 4.2-lb to 4.2-5 is asymptotically stable (in the
large).

For the local SLU filters, as long as the pair Hi(k)Ri" (k) (of Eq. 1.2-2a) and

¢i(k+lk) (of Eq. 1.2-40) are uniformly completely observable, Hi(k) is bounded and of
full rank, and condition 3' is satisfied via an appropriate choice of.I-



then each local SLU filter is stable. This conclusion is reached by making the following
associations in Eq. 2.2-41 and Eq. 2.3-22b

4 4- -- - (#ii-f:'iH il (4 .3-2)

K----- 2 (4.3-3)

------ TQi+iR 1 (4.3-4)

( -- Hi2 (4.3-5)

R (------Ri 2 (4.3-6)

PO -- Poi (4.3-7)

to obtain equations corresponding to Eqs. 4.2-lb and 4.2-6a, respectively. The SPA
filter has a structure that also allows stability to be demonstrated by invoking Theorem
4.3-1.

4.4 Analytic Stability of the SPA Filter

For the condition of Eq. 3.1-19 (as encountered for JTIDS RelNav in Refs. 15 and 35),
the mechanization equations for the SPA filter are Eqs. 3.1-23,Eq. 3.1-12 (degenerating
to 3.1-22), Eq. 3.1-17, Eq. 3.1-16, Eq. 3.1-24 (degenerating to Eq. 4.1-2 for condition
of Eq. 3.1-19), and Eq. 3.1-18. Then by an association similar to that used in Section
4.3 and Ref. 10 with notable equivalences such as

R - (4.4-1)

it H 4- (4.4-2)

K <- K1  (4.4-3)

and the other associations being even more obvious, Theorem 4.3-1 can be invoked to con-
elude asymptotic stability of the SPA filter as specialized for the condition of Eq.
3.1-19 since it has the requisite structure [utilized in Ref. 10 as enunciated in Ref.
16 (with proof corrected herein in Appendix A)].

5 APPLICATIONS OF DECENTRALIZED FILTERING

Throughout Refs. 8-12, potential applications of decentralized filtering are indi-
cated by examples in interconnected power systems for frequency monitoring (as a prelude
to stabilized maintenance) and power load estimation. Refa. 15 and 35 investigate appli-
cation of decentralized filtering to the Joint Tactical Information Distribution System
(JTIDS) Relative Navigation (RelNav) feature currently being developed by the U.S. Joint
Services and eventually intended for NATO. The SPA decentralized filtering formulation
is recommended in Refs. 15 and 35, since it possesses a reasonably mild computational
burden and an analytic guarantee of "filter stability" (viz., an ability to at least
track the true state adequately whether or not the true states are stable) as a prerequi-
site for answering any other more probing questions concerning the stability of the JTIDS
net or of the common grid defined by the "controllir" for relative navigation/targeting.
Further discussion and simulation studies of the SPA and other approaches to RelNav are
provided in Ref. 60.

Sensor fusion is a concept that pervades several fields as addressed for Identifica-
tion, Friend, Foe, or Neutral (IFFN) in Refs. 63, 64, and 65 and for Communication,
Command, and Control (C3 ) on p. 204 of Ref. 67. Ref. 63 indicates the breadth of
approaches that are being pursued for the next generation of IFF beyond just the intere-
gator/transponder beacon of the current L-band Mark 12. While Hughes/Fullerton has pur-
sued IFFN using information theoretic techniques (i.e., Shannon theory, entropy argu-
ments, and minimization of well-posed cost functions for achieving objectives) for air-
craft identification, Hughes/Culver city has used the Bayesian approach to examine criti-
cal issues of intersensor correlation, and Ref. 63 consa.aers teoretical and practical
aspects of implementing Bayesian-based maximum likelihood decisions and majority rule :g
decisions in this applicaEion. Indeed, Dynamics Research Corporation (DRC) has reported-
ly investigated use of "fuzzy set" techniques for reducing the indicated computational *.
burden for this challenging problemwhere even engine harmonics are being exploited for
aircraft identification (Ref. 68) by fighter aircraft in the same vein as the aircraft
identification from radar signatures performed by the E-3A AWACS, but with greater com-
putational capacity than a fighter is availed with. A recently developed methodology for
potentially reducing the computational burden in providing adequate data base handling
for these life-or-death (friend or foe) classifications (by a novel conversion of the



problem of queries on an imprecise data base into a problem of statistical inference) is
described by E. Wong in Ref. 73. Essential aspects of a Bayesian filtering approach and
consideration of alternative (but necessary) approximations are-treated in Ref. 66. ThisIFFN area, where several possibly correlated measurement sensors are utilized in making
identification decisions under dynamic conditions, appears likely for fruitful utiliza-
tion of decentralized filtering techniques such as Speyer's (Refs. 32 and 33) or the
multirate multiple filtering approach of Section 1.5.

A fairly bleak picture of the U.S. and Allied C3 , as of 1980, as made evident from
the unpleasant experiences of the "Nifty Nugetu war gaming exercise simulating an all-out
conventional war against the attacking forces of the Warsaw Pact in Europe, is portrayed
in Ref. 74 as a variety of solutions are sought for aspects of the total C3 problem. An
analytic framework for C3 considerations in a form compatible with modern state-variable
estimation techniques is laid out by the Technical Director of the Naval Electronic
Systems Command in Ref. 70, with further vital descriptive elaborations in Refs. 75 and
76. Another perspective on current research issues persisting as problems in C3 are
examined in Ref. 67 and the analytical nature of compatible hierarchical decentralized
structures for C3 are considered in Refs. 67, 69, 70, and 71. On the other hand, it is
important to-Eak-a into account the moderating remarks of Ho (Ref. 77) to the effect that
a pat solution to the C3 problem is not readily at hand from estimation and control
system theorist, but must be carefully tailored and developed in order to successfully
resolve the C3 problems. Leads toward this end are offered by Ref. 78.

Current specifications for the Phase 1 integration of the JTIDS RelNav and Global
Positioning System (GPS) on the F-16A call for utilization of three separate filters,
one for GPS, one for RelNav, and one dedicated to aided inertial navigation. This type
of situation appears a likely candidate for the multirate filtering approach of Section
1.5 (as already applied to a navigation example in Ref. 61). The GPS filter could be
used to incorporate position and velocity information at a fast rate in an unjammed
environment, then feed it to a slower-rate higher fidelity navigation filter used for
aiding the inertial navigation system in an integrated manner.

For two separate GPS and JTIDS filters of dimension 12 and 15, respectively, as con-
sidered in Ref. 82 (which, unfortunately, ignored filter throughput considerations) the
advantage of two over one larger 19 state unified filter is obtained from the ratio of
the total number of required operations (Ref. 36) as

2)- 5103l 0.7

(19)

or a 26% reduction in the total number of operations to be performed during each filter
cycle even though the INS gyro drift-rate states are modeled twice. Unfortunately, a
slight 2% increase in required computer memory allotment is indicated by

~Ž~Ll.L~. 69 *1.021

(19i

however, the large benefit appears to be well worth the slight penalty.

The case favoring two separate filters is even more pronounced when considering an
alternate state selection (Ref. 83) corresponding to two filters of state size 12 and 18
versus a single 22 state filter since calculations of the above form indicate savings to
be achieved in both the number of operations (equivalent to algorithm cycle time of
processing a filter measurement) and computer memory required as, respectively, 30%
and 3%.

If two separate digital processors are used, parallel processing of each of the two
filters on different machines provides the advantage that the system is only limited by
the slower speed of the single larger filter (of a 15 or 18 states). In comparison, the
smaller filter of 12 states can proceed through six (6) Kalman filter measurement proc-
essing cycles in the same time that a larger unified 22 state filter could complete only
one cycle, as indicated by the following ratiost

(22Y~ 10648 m6.16

The conclusioai is that a unified single filter will limit processing throughput and
hinder full utilization of the GPS measurements available in an unjaumed environment.

Another likely navigation application for use of decentralized filtering is in the
navigation room of strategic submarines (as discussed in detail on p. 326 of Ref. 35) to
avoid unnecessarily redundant state modeling in the three filters currently used for
SINS/ESGN navigation in Trident SSBNU. An important SSBN application of another varia-
tion of standard Kalman filtering with optimized scheduling of alternative sensor meas-
urements is reported in Ref. 49. The above enumerated list of candidate application
areas for decentralized filtering is representative and nonexhaustive.



APPENDIX A: CORRECTING PAST STABILITY METHODS PRIOR TO GENERALIZATION

FOR ESTABLISHING STABILITY OF DECENTRALIZED FILTERS

A.1 Status Review and a Counterexample

An interesting aspect of Kalman filtering is the so-called "robustness" or eventual
correct time evolution of the solution of the Riccati equation despite an incorrectly
specified initial value P0 (as long as it is positive definite). This aspect is partic-
ularly useful in applications where the situation of ignorance of initial uncertainty in
the states of the filter model can (and does) occur, but without deleterious consequences
as a result of precisely this robustness property. Kalman (Ref. 53) gave the first proof
of this robustness result under the strong hypotheses of uniform complete observability
and uniform complete controllability to provide the strong conclusion that the correct
estimates are homed in upon at an exponential rate. B. D. 0. Anderson (Ref. 16) provided
a weaker conclusion of only asymptotic stability (rather than stability at an exponential
rate) due to weaker but more frequently meet hypotheses that remove the explicit require-
ment of uniform complete controllability by requiring only that condition 3' (cf. Eqs.
4.2-11, -12):

PO + T ¢(kotk+l) Q(k+lT(ko0 kl) is nonsingula for some k.>k 0 (A.l-I)
kakO

where Po0 is the covariance of the Gaussian initial condition x0 , Q is the process noise
covariance, and s is the discrete-time transition matrix of the linear system model. It
is emphasized on p. 223 of Ref. 58 that the condition of Eq. A.1-1 is satisfied if Po is
nonsingular (as can be selected) "irrespective of t(k+l,k),Q(k)," or even explicit con-
trollability being achievable (an example being provided on pp. 137-8 of Ref. 16 of an
estimator that is asymptotically stable despite the absence of process noise). Ander-
son's stability proofs for both continuous-time and discrete-time utilize slightly modi-
fied forms of standard arguments for Lyapunov functions V(x,t). In the case of contin-
uous time, Anderson utilizes the following inequality (unnumbered equation following Eq.23 of Ref. 16)

• T -1
V(x,t)<-JH TR IHx (A.1-2a)

< 0 (A.l-2b)
where R is the measurement noise covariance, H is the observation matrix, and x is the

state. Jazwinuki's result (p. 241, unnumbered equations following Eq. 7.198 of Ref. 51)
(as credited to Deyst and Price as Ref. 40, but now known to be in error as discussed in
the preceding paragraph) of

V(x(k) ,k-V(x(k-1) ,k-l)<<. Tk)H T (k)RC'l(k) H(k)x(k)-_UT W)Pl•kik-1UMk) (A.1-3)

with

is also utilized in Ref. 16 for the discrete-time case, but Anderson goes further since

xT W HT (k) R7' 00 H (kIx (k)_UT (k) p-(k k)U(k) (-xT N-) H T (k)IH(k)x(k) (A.1-5)
to use only

V (x(k),k-V (x(k-1) ,k-l) <-x T () HT Wk)C l•k) H Wk x Wk (A.1I-6)

<0 (A. 1.7)

under the conditions that

R(k) and R' (k) are bounded for all k (A.1-8)

[where the boun4edness condition on H(k) is stated on p. 141 of Ref. 16 to be a new re-
quirementi. Unfortunately, while the inequality of Eq. A.1-6 is true, the inequalities
of both Eqs. A.1-2b and A.1-7 are questionable since for

RA O 11 HAL [ J 01 f X9[01 (A.1-9)

it happens that

xTHTR 1 HX - O.0 (A.1-10)

thus contradicting both Eqs. A.l-2b and A.l-7 that are utilized in Ref. 16. While an
. .. -Ad•t2A" g~i ion of-Mr uirin, that H,(k also be of full rank will circumvent these



difficulties, the discrete-time vao• • •.L 4v-.
40. Anderson's invalid stability proof has also been utilized by Sanders et al. (Refs.
10 and 11) in demonstrating asymptotic stability of decentralized filters of the Surely
Locally Unbiased (SLU) class so Refs. 10 and 11 unknowingly inherited a flaw. However,
the results can be patched up as done in Section A.2 by using the correction supplied by
McGarty (Ref. 18) and Deyst (Ref. 41). Aasnaes and Kailath (Ref. 52) weakened the re-
quired assumptions to establish stability of the centralized filter even further and

proved convergence at a t-k rate (for some k > 1).

A.2 A Minor Correction to update Anderson's Generalization

Following McGarty's rigorous derivation of Eq. C.127 of Ref. 18 (analogous to Eq. 57
in Ref. 17 and the unnumbered equation prior to Eq. 7.199 in Ref. 52), the following is
obtained

V(x(klk-l),k] < iT(k-ljk-2)P'l(k-ljk-1);(k-ljk-2)

.- T (kk.-l)HT (k)Rl (k)H(k)x(kjk-l)

" uT(k)t[(k,k-l)P(k-l1k-l),T(k,k-l)+Q(k)V]lu(k) (A.2-1)

where u(k) is appropriately defined in Eq. C.118 of Ref. 18 (analogous to Eq. 7.197 of
Ref. 51 and Eq. 56 of Ref. 17)

u(k) A tP(klk)P' 1 (klk-l) - I]9(k,k-l)x(k-llk-2) (A.2-2)

k• Since the right-hand side of Eq. A.2-1 is upper bounded all the more if fewer nonnegative
quantities are subtracted from it, Eq. A.2-1 is altered (as outlined for discrete-time on
p. 143 of Ref. 16) to yield

" ~ Vtx(klk-l) ,kl < T(k-1lk-2)•"1 (k-lIk-1)j(k-j Ik-2)

- T(kI k-l)T(k) R (k) H (k) x(kI k-1 ) (A.2-3)

or, equivalently,

;TVtx(klk-l)*kl - (k -11k-2) P-(k- I k- 1) (k- I k-2)

Vt[(kjk-l),k) - V(x(k-llk-2),k-1j (A.2-4a)

< -;T(k[ k-I )HT (k) R'l(k) H(k) •(klk-1) (A. 2-4b)

< g (A. 2-4o)

where as offered as one correction following Eqs. A.1-9 and A.1-10

11(k) must be of full rank (A.2-5)

to guarantee the requisite strict inequality needed in Eq. A.2-4c as a verification of
condition (o) as Eq. 4.2-11 (without utilizing the strong condition of Eq. 4.2-11 but
letting only the weaker more generally met condition 3' of Eq. A.1-1 suffice).

Throughout Eqs. A.2-1 to A.2-4 a tacit assumption is made that P" (kik-l) exists
[i.e., P(kjk-l) is nonsingular) otherwise it could not be routinely utilized in the
above. The pertinence of Anderson's weaker condition 3' (Eq. A.2-1) first proposed
in Ref. 16 now becomes evident since a discrete-time version (i.e., paralleling) his
continuous-time proof of Lemma 3.1, p. 139 of Ref. 16 reveals that P(kjk-l) that evolves
in time from Eqs. 4.2-3, 4.2-4, and 4.2-5 and the matrix of Eq. A.1-1 have an identical
nullspace. This means that if sinjulerity-occurs, it is simultaneous. Hence gy a proper
eeieiTBhn of P0 to be nonsingular, both Eq. A.1-1 and P(kik-1) are guaranteed to be non-
singular, and therefore invertible as needed to demonstrate asymptotic stability.
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ADVANCES IN COMPUTATIONAL EFFICIENCIES OF LINEAR FILTERING

Leonard Chin
Naval Air Development Center

Warminster, Pennsylvania 18974
U.S.A.

A broad overview of various discrete-time linear filtering techniques including the Square-Root and
variations of Square-Root, Factorized. Chandrasekhar, Partitioning and Decentralized algorithms as well as
the basic Covariance and Information filters are presented. The purpose of this chapter is to exaisne and
compare computer burdens of these well-known filtering algorithms from practical operation point of view.

1.0 INTRODUCTION

The entreating problem of estimation (prediction, filtering, smoothing) has attracted many mothemati-
clans, scientists and engineers throughout history - beginning with the Babylonians who had applied a form
of mathematics that vas similar to the Fourier series to interpret obAervations and make decisions. Rerent
history has shown that Euler, Lagrange. Laplace. Bernoulli and others had contributed to the advancement of
estimation theories in many ways. However, the solution to a class of estimation problems in finding the
beat value of an unknown parameter corrupted by noise (additive) was given by 0auss and Legendre. who had
separately but concurrently formulated the method of Least-Squares, in which the fundamental concepts of
redundant measurertnt data. observability, dynamic m~delling. etc. were introducod. These concepts have
provided foundations for many new developments in estimation theories known today. Readers who are inter-
ested in antiquity should consult Neugebauer (1) and Sorenson (2).

Nodern history has recorded that Fisher (3) was one of the original investigators in the formulation
of statistical estimation *ethods. However, the development of the linear, in mum, m-3V2re-errorX
estimator. which ts most familiar to engineers today, had not been completed until the 14O F .tin the
Wiener-Hopi equation was first established by Wiener (4] end Kolmogorov (5]. Unfortunately the filter
design using the Viener-Hopf equation was proved to be impractical due to difficulties in obtalning ex-
plicit solutions. Sverling (6) as well as Carlton and Follin (7) circumvented these difficulties by
obtaining the Leest-Squore estimatos In a recursive manner. T'his new development it bolieved to he the
starting point of the so-called E"Almn Filterint". Thi main contribution of Kalman and Rucy (8,91 was
the transformation of the lliener-Hopf integral equation into an equivalent nonlinear diffvrential vquatton.
the solution of which yieldo the covarinco matrix. which contains all necessary informsatlo for the design
of the optimal filter. Honce, by detanding a numerical rather than an analytical solution of the Viepor-
Kopf equation. they have successfully developed a recursive filter that can be convtenently realised in
rteal-time by a digital computer. In practial. applications. the on-line comter used to implemet the
filter equations to usually limited in speed and mwe•ry. Frequently, it is not possible Lo proglam the
ideal (theoretical filter) cqustions, since the truly optimal filter must model Wj error urces of the
system. The sol4tion to this proble (excessively large dimension) t. usually to design suboptimal filters.
In which certain states In the systm have to be Ignored or simplified. Another imple-mntattoo problem
associated with all digital cmpu•ers is the numericsi accuracy, which is seriously ffteeted Ny the inhcrent
finite nature of the computer. for eoxsple. In the case of the Ealasn-lucy algorithm, the ctVartaece
at rit contains all inform•tion neede for the filter synthesis (hence, It Is called the Covertanee Vllter).

For this reaaon, it io critical that the corrtetnees of this uatrix mast bo prieserved at elI timts. hov-
ever, because of matrix subtracti,ns involved in each computing cfcle, noo-poestive olesnts in the cover-
late* eatrix could result free truncation and rmmd-off orrorg. Chin (10) has reported that this cmputs-
tiousl ascability eould lead to filter divergence.

In order to preserve the correctness of the covtsience matrix (hence preventing filter divergentce). a
number of methods called "Square Root Coverienct Algorithms" have bet" Introduced (11- 20 to a parallel
efWort to preserve the correct#**# of the Information astris (Inverse of eoveriance matrix) in the "Infor-
motion Filter", the Sqoaro-Root Iftormatlon Filter have also been develtped (21-23). hille these algorithms
.Senerally yield improved nuwericol stability, the number of compustatlonal steps i* usually greator than that
or the standard Welman filter. For this reason. entineers do have a certain degree of reluctance to employ
the Susrte-Root algorithms. An attempt to improve this situation woe made by lihersn (2k) "ho has employed
factoriaatiou techniques (2$526), whith do #at Involve square root computations.

In the early 1970's. a different approath was explored for the design of recursive filters that avoids
the utiliastion of the matrix liccati equation. a•ilath (27) has shown that for a certain class of special
applications, the so-called X-f function of Czi-ndrseokher could be used to gain to magnitudes of compts.-
tinai improvement over the usual litcatt-typ• algorirthm. Independently. Linquist (2.291 sa•d Lltalotia
(10) have derived Chaodrasekhat slgorithas for discrete-time-tivarlie t sa•d cootinuous-tis-vtrying systems,
respectively. However. there is no guarantee that these algorithas will provide copuqtationtl stability.
Other intrinsic aspects of Ohandrasaehor filters were diecussed by trainer (31.,

Recent advancement in the design of practical filter and smoother was to sese entirele • algorithms
that not only provide computational stability but also ministie compuser burdens. This n0i approach has
been taken by Luiniotis (32-38) who introduced partitioning estimation concepts which are radically different
from those of the talumn footing. The pertitioning approach constitutes esstntially an adaptive, framew•rk,
whith yields fundamentally now estimation algorithms in naturally decoupled, parallel-procetsoig rtolisetion,
and moat important of all. computationally attractive.

Another new attempt to economie computational steps as well as to ensure filter stability is the
Surely Locally Unbiased (SLU) decentralized approach. The basic concept is to deoompose a large system
into small subsystems in such a manner that the filter for the overall system shall be optimized. This



efficient than the computation of one aggregated high order system. Also the decentralized filter rss a
special property that provides asymptotic stability.

The purpose of this paper is to examine, from computational aspects, advantages and disadvantages of
various discrete-time linear filtering algorithms mentioned above. In order to facilitate the discussion,
a linear system model as well as notations and conventions are defined in Section 2. Prior to the inves-
tigation of computer burdens, an overview of filtering algorithms selected for this study is presented in
Section 3. The main cotribution of this paper - a survey of filtering computational efficiencies -
is given in Section 4, in which computer time and memory requirements for the Kalman (covariance and tnfuo-
mation filters), Square-Root, Factorized, Chandrasekhar, Partitioning and Decentralized algorithmv •re
summarized. Finally, conclusions as well as recommendation are given in Section 5.

2.0 SYST04 H)tL, NOTATIONS AND CONVEMONS

The linear filtoring problem treated in this paper is being stated uxing the following discrete-time
model:

x(k+l) - # (k+l,k) x(k) + u(k) (1)

z(k) - 1(k) x(k) + v(k) (2)

For a given set of measurements- ý - Z(•) D (. ) ..... (ZM

it is desired to find the optimal (in the sense of mean-square-error) filtered estimate *(k/k.L) of x(k).
It is assumed that u(k) and v(k) are uncorrelatod tero-mean Gaussian wise with covariances Q(k) and R(k).
respectively. Other notations and conv*ntioas ore given as follmos:

x(k) system state vector at discrece time trdex k

a(: 4initial system stata vector (Gauianaa distributed)

*•(A) the mean value of x(1)
Jt (P X initial ystiem stats vector

*• (• retma4ide initial systom state vector

R(k/k.• 4 optimal filtered estimats of x(k)

9n (k/k. 4 g optimal filtered estimate of x(k)

ir(k/k.Q 4 optimal filtered etimate of x(k)

l(k) JOh sUbsyVtem stats v4Mtor

1 (k+llk) optimal state estmtCe of th* ith subsystem

x(t) system stae vector (Cvocttosft -ttmW)

1(t) optimal flttered estimate of x(t)

v(k) ieiwvatiolt .eqUmaC

(k4i,k) eystm state tre"ttioo matrix

t(k) maeure#eet voctor at discrete t1 lodees k

M 1)th subsyrtte aseurvow vfetor

a8(k) MeasurecMt vectots of the "date equatioh"

a(k) Mmesurawat v•ectors of the -data equattoae
S(tt1 M4.0f ith sybsyltam #tat* transition matrix

h T (k) MIteaitsd mossurvent operator (vector)

U~k) mesurvemeec matrix
Hi(k) i• subsystem ewa*UrsMant matrix

"(.ik) coupvli s•asuromwat matrix bit. i th a"d otber subsystems

%(k) liewsised seasuretset matris
F(t) fuM&sameUtai matrix

Pf :1: •(t) ,t) Linasrised flaun tal tutris

uMk) system "oias Vector

" i •ilk) ith subsystam moles Vector

q(k) system poise coveriamee matrix

ftu(h) square root of Q(k)
Qt(k) tt6 subsystem noise coverieace matrtx

ViMk m•urmemt tiss vector

V(k) ith sibsytem seasur"Wast motse vector

i!e(k) -- Wf--t 0ois. comertmnes matrix



Updatinit

9(k41/k+l,13 - 2(k-+I/k,A) + K(k+l,.4 (z(k+l)-H(k41)2(kt.I/k.X)] (5)

K(k+l,A) a k4l/k,i) H (c+I) [ll(k+1)P(k-+l/k.,O U'T(k+I) + R(k+l)) (6)

P(k.4l/k+1,4) - (I-K(k1.I) IH(k4l)] P(k41I/k,l) (7)

Note that Eq. (7) is correct only if the gain K(Ic+lL) is op--ima~.

2. Stabilixed Koltan filter

The stabilized filter (sometimes called ti*c Joseph algorithm (52]) is less sensitive to C0om-
puter round-off errors. Another benefit is that it yields correct P(Ik4l/k+IA,% evvn if K(k+l,Z) is non-
optimum. The updating covariance matrix is given by

P(k~l/kl.+lO - (!-lz(k.144. ti(k4l)) P(k4L/k~k [fJ{ki!,I j1 (k-41)] T 4 K(kal £b R(k41) KT(k.41.4 (8)

Other updair., a'kpnýo equations are the same as Eq*. (3) - 6.Initial conditions
for the stondall as ivell as tktv 4t~ldized filters are defined as follows:

J)xA)- kL (9)

~ f(~-X(Lf)) (tA j- (#Z)] T 1- (t4 (10)

Xxtjai~nd gKduan Filter

The "extended" Kalman filtering is a popular technique for treating nonlineLrittes in the
dooilkn Of al-- MWs stimators. Other methods of the same footing (Taylor series expansion) are
Zterata4 Exxended KtLasi filtering, cauasian Seco*d-Otdier fltetring. end Linearized Kalman filtering (1.6).

Since most ph~raicsi aonlinwa systems can be represented by differenttal equ~ations and measure-
aents art usually available at dtscrvte time. therefore, it to proper *a well as coavenient (for oortso
expainc to deseribe system and easourement models as folLovse.

*()- f(aa(t) ,t) 4 U(t) (1

s(li) - hfx(tQ)) 4 VMl (12)

in which u(t) and v~k) ore uncorrelatod savo-mean Causatoo cote# vith

SIUM U) J(0) a QMc (13)

SIVOa) vT Mi) - IN) lh

at#* 'the tvnitial vector xi&O is Gaucalta viii. "ean ad coveriaoee gitv" by t4~. (9) and Eq. (10).

8 () (t) k* t

a h~t It (t

Utrapolatloa eqUntious Ste #twoe byt.

* (fi(t).t) P~t) 4 P(t) 1t(M~t).tJ 4Qt

'Updatf *qUatiosa are, given br.

4(k4 l~kcl,,4 * it(114 I/k, 4 K(&-4.l.* (t j 1) bi 9(k4~I/k. 0))()

P~klfkl, 1-%(W.~,) UtL(k~t)) P(bIMI/k.O (20)

fr(W414 * (k4t/k.AD VL0he) (Nt(ka1) Moll1k.* 1ý(Iii1) itEk.1)) (21)

Other tamu af Vertttioo (Camosima Steand-Or~t.ati tc.) are gt,#*d Lu raferenc t6)

0. Snoare I=o Covelene filters

Ibe first equare root allgoritla was introduced by Potter (It) for a restricted applicantion of
set* system *asol and feasuroemnts aS lrgatL



SMOL DEFINITION

R (k) ith subsystea measurement noise covariance matrix

r(k) scaler measurement noise variance

P(,A) a priori state error covariance matrix
Px(n) a priori state error covariance matrix
pn(A) nonal a priori state error covariance matrix

Pr(l) neoainder a priori state error covariance matrix

P(k/k, ) state error covarianse matrix

P(k/k, 11012t,1 sate error covariance matrix

Fr(k/k,I remainder state error covariance matrix

P P(k/k) ith subsystem state error covariance matrix

"P_ (klk,A) information matrix!-.
S i(k/k,C) square root of information matrix
SfR(k/k,f) square root of information matrix
x

S(k/k) square root of covariance matrix

fR (k+l) square root of cross-covyriance between variables of "data equations"
SAnA s
v(k) lower-triangular square root of messurement noise covariance matrix

S0(k) loier-triangular square root of systems noise coy~rianc~e matrix

TZ SH

.L(k/k) anti-asymetric matrix chosen to maintain S(k,k) in lwei' triongu~ar iorm

""T,(k) & transfoA atloo m-t•ix whose colums a&t couposed of eigenvect'vr4

T(k+l) of thi covvsiance matrix P

D(k). D(k) diagonal matvix whose diagonal elements are eigenvalues of the
state errcr covariance matrix

1U(k), U(k) unit u~plr triangular matrix

d(k/k) transformad state vector, d(kik) - W(kk,. x(kik)

Z(k) olsen filter lain matrix

•(k ngttA Kalman filter gain ratrix

•i(L) ith subsystem fitter gain matrix

L. c€upiitg matrix betwetr t th and I th subsystems

0 (kI) observation coarix

b(klk) transform.wd optime state vector

e(k) residual error of least-squares fit

35. 0u dizevions of x-dat* aqustitA so d it-dsat equattiu

Ceeveat lops?_• ..

a. Suptrecript t Is ueed to de.not transpose of vetors snd matrices; [,]1 it ItLd to denote the
traenpoe. of the inverse- of a matrix.

b. Watries ore denoted by upper case letters. Vectors fiv da.cte4 by lover case Letters eXCept

iir k. A, a asd n vheh ore intiger. and t dvnate% time.

t. Vectors are assmed to be coltmn utaless othervise denoted by auperacript T.

d. Ulesas otbetvia* spectifed. the diamesion of the state iveror is a and the dimension of the

maesutement vector is a. a a a.

3.0 ALM MUU A6SLMIPflWS

The "standard" IOM, of the KaIAaM fIOter refers to tha esatlmator first given by Kalman B8,
tram which the dteretv optiasl filter vee derived sAd subsequeatly documented in many books Pa5-511.ft* filtov slgoritbe to usually givo Lu two sets of equationa - one for extrepolatton, the othet oue

j~b+Xtk.A, - (k•t.k) *(k/k.4 (3)

P00s1064~ 0k.0 p(/f.4 4(khk) + Q(k) (,



Updatina

i(k(l/k+l,A/ - R(k~t/k,• + K(k+l,4) [z(k+l)-H(k4l)*(k+l/k,X)] (5)
T-lK(k+l,.) = P(k4l/k,t) H T(k+l) [H(k+l)P(k+l/k,1) HT(k+l) + R(k+l)] (6)

P(k+l/k+l,t) - [I-K(k+l,/) H(k41)] P(k+l/k,.C) (7)

Note that Eq. (7) is correct only if the gain K(k+l,4k is optimum.

2. Stabilized Kalman Filter

The stabilized filter (sometimes called the Joseph algorithm (52]) is less sensitive to com-
puter round-off errors. Another benefit is that it yields correct P(k+l/k+l,t) even if K(k+l,C) is non-
optimum. The updating covariance matrix is given by
P(k4l/k4l,l) - [I-K(k4l,J) H(k4l)] P(k4l/kO (I-K(k41,4) H(k-1)IT 4 K(k41,4) R(k~l) KT(k4l,A) (8)

Other updating and extrapolation equations are the same as Eqs. (3) - (6). Initial conditions
for the standard as well as the stabilized filters are defined as follows:

R fx()) 2 (U41) (9)

E {[(M) - x(MI)] (( - 9(T1)1 P(LA) (10)

3. Extended Kalman Filter

T'he "oxtended" Kalman filtering ie a popular technique for treating roilineorities in the
design of _.uintg variance eatisatore. Other methods of the same ooting (T#'lor seri,.s expansion) are
Iterated Extended Kalman filtering, Gausai-, Second-Order filtering. and. Linearised \Ulman filtering (46].

Since most physical aion'near systems can be represented by differtgS•oj cqu~tions and memsure-
meants are usually available at discrete time, therefore, it is proper as well as conventent (for series
expansion) to describe eystem. Pid saouremeat models 6s follows:

i(t) - [x(t),t] 4 u(t) Mt)

x(k) , h(x(tk)] 4 v(k) (12)

in which u(t) end v(kM are unorrelasted :ero-owan Gusepien oolst vith

NSu(t) u (t)) - Q(t) 
(13)

E(v(k) vT (k)l - IR(k) ; (1k)

also the initfsl vector x(k to Gausaian vith man and covariAnce stvozk hy 8q. (9) and Eq. (10).

teftnei

Sx(t)
""(t) (t)

Ut(k) a -t- (16)IX(t k (t
fttra~p'lstioe% #qttoa% 4rt etvtn by:

dt

* 1*(),JP(t) sP(t) F Tt(M).ti, 4 Q(t.) (a

Update equations ora givoq by:

*(k1IhIWt M4k14.1) 4 K(k41.4Q fs(k4i) bh~t~kdlk.A01) (19)

IP(ktL/h1*.1 f -k(k+l) 1iLL(*l)] P(k+t/k..J (20)

*(k+L.4 P(kLlk,.4 UL(k÷l) (UL(k+t) P(k+t/k.4 MI(k1) T + t(kct)]

Otbes forms of variation (04aussian Socae-on4-Ord& *go.) are 11.%M In referaewe (46J.m ! I'

The first square root algorithm we intoduced by fttter (111 for a restricted application oftaro system noise galt Mae ftiftts are sclar quantities, i.e., Eqo. (1) dad (2) become



x(k+l) - f(k+l,k) x(k) (22)

z(k) - hT(k) x(k) + v(k) (23)

where h(k) is a vector and the variance of the measurement noise r(k) is a scalar value. This method, as
well as other methods discussed in the sequel, consists of defining a square root matrix S such that

P(k/kk 0 S(kik,it) sT(k/k,L). (24)

The factorization of covariance square roots is generally not unique. However, this lack of uniqueness
is not serious because a unique square root factorization can always be obtained by using the Cholesky de-
composition technique [53] (sometimes referred to as the Banachiewicz and Dwyer algorithm) which factors
any positive semi-definite symmetric matrix into the product of a lower triangular matrix and its transpose.
Description of this algorithm can be found in reference (60) as well as in many other sources.

Define:

y(k+l,! A S (i+il/k,) h(k+l). (25)

Consider the case .t whien Q(k) - 0, then the extrapolation equation for S(k+l/k,l) is given by

S(k• l/kl) = +k l,k) S(klk, 1) (26)

,he exý:.rpolction as well As 1pdating of the state vector is the same as Eq. (3) and Eq. (5), respec-
tive'.y. Otl.er update ecutat'ons are given below:

Sfk.4lI/k+l,f - S(k41'k,1) [I + a (k+l,t) y(k+l,.)y (k+l,.)] (27)

V~~k~~lS I~ - s 1/k.Q (ksT +llk. A) h(k+l) (8
h (k+l) S(k6l/k,) ST(k+l/k,1) h(k+l) + r(k+l)

*in vWtdc u.(k+l.,C is given by

1/2
V T Y l•

T v (29)
y y

In Eq. (29), time index for 0 , y and r is the same, hence it is being suppressed for clarity. When
t -shere is w Ambiguity, simlified notations such as Zq. (29) will be used in subsequent discussions.

2. Be.atr1j a d Dodge

This square root filter is an extension of the Potter algorithm by considering vector measure-
seats (si.ulte.ows) with correlated component errors. This method requires disgonalization of an n x n
matril, i.e.,

T (TS IItRKW)T (30)

aW- he" a1, s2, .. so are uilgenvtues of the covoriance mattix and T is the transformation matrix consisting

of eigenvectors in its columns. The extrapolation equations sre the saMe as the Potter filter; the update
equatioas were derived in roferoct [1121 3

iiS(hl+1.i%,O -(k*lt ktJ (I + TI(I * )/2 - TT (31)

S.(k+.O - S(hl/k.I B(I + a S) (12 (32)

w I a ST IlIk MT (kL) (ift1/ 2) (33)

The *ittopoiation and updating of the system state vector are always the ame as Eq. (3) and Eq. (5).
As awA, oubailusoit dliscusions viii l beconcentrated on the coveritnee and the plin maltricos

3. Andrfts* Djlet iW_ h~i Moil. hLevyan Ki l etlh WConttnuo"-*Tt"l Coss) ,

(NOTE, Although thia paper is mainly •ooeernd with the discreto-tim case, it is feil.
bomvet that * b)t discusion of t) clti -. im a su ld b giv boe fot com)leteness.)

Coile the syte odli venitt by

' sit) a 7r(t) lilt) + 0it) ult) (34l)



IV 4-0

z(t) = H(t) x(t) + v(t) (35)

where u(t) and v(t) are zero mean non-correlated white Gaussian noise with unity covariances. Let P(t) be
the covariance of the error of the state estimate, P(t) obeys the following Riccati equations:

p(t) - F(t) P(t) + P(t) FT(t) + G(t) GT(t) - P(t) HT(t) P(t) P(t) (36)

with initial condition:

P(o) = P (37)0

The Andrews algorithm (13) was the first Square Root filter that considers the existence of system
noise. Similar to the Bellantoni and Dodge algorithm, it also processes vector measurements. However, it
does not require any matrix diagonalization. The extrapolation of the square root covariance is given as:

S(t) - F(k) S(t) + [W(t) + 1/2 G(t) Z(t) G (t)] S-Ct) , (38)

in which Q(t) is the covariance of the system noise and W(t) is a skew symmetric matrix that maintains
S(t) in the lower triangular form.

It should be pointed out that solution of Eq. (38) requires that the inverse of S T(t) be computed at
,each integration step which requires a large number of multiplications. This is undesirable. Therefore,
Tapley and Choe [71] restructured the problem and let the skew symmetric matrix, W(t), be chosen in such a
way that inversion of ST(t) is not needed.

(S(t) - F(t) S(t)] ST(t) - 1/2 Q(t) + W(t) (39)

Furthermore, in order to maintain S(t) in a lower triangular form, the following definitions

E(t) = F(t) S(t) (40)

Z(t) nS(t) - E(t) (41)

i(t) w(t) + 1/2 Q(t) (42)

will be used to rewrite Eq. (39) as

-(t) ST W i(t) (43)

which is the desired result.

However, since the skew symmetric matrix, W(t), can be chosen arbitrarily, Morf, et al. [72] provided
another method for computing the lover-triangular S(t) matrix that is simpler than the method just described
above. Let S(t) be nonsingular and define

P(t) 0 S(t) S(t) T (44)

Equation (36) can be written as:

P(t) _ '(t) ST(t) + S(t) ST(t)
S S (t)(45)

(t) - 1-I/2 SST HT) SST + 1/2 GGTs'TST + SST(FT - 1/2 HT HSS T) + 1/2 SS"B GGT  (46)

Multiplying Eq. (45) on the left by S-1 and on the right by S"T yields
-. 1 T -T L (47)

where L V +G (48)

S,1FS (49)S- -"l s(9

-S 0 (50)

H H S (51)

Since S is lower triangular, 8 S is the lower-triangular part of L, hence

S - S L (52)

where 1 is the "lower-traingular part" operator,

Since Eq. (52) does not involve explicit skew syuuetric matrix, it seems to be simpler to compute
than the other two square root methods discussed above.

4. SchMidt

Instead of using Eq. (34) to extrapolate the square root covariance matrix, Schmidt [l4] in-
troduced a method which facilitates digital computations. This algorithm requires finding an orthogonal
transformation matrix T, dimension (n4m) x (nia), such that TTT = I. (n is the dimension of the state
vector and m is the dimension of the measurement vector.)

Consider the expression



•, f(k+l,k) S(k/k,A). [Q(k)] 1/ ]TTT . .. Q k+ .. (51)

which can be written as

l(k+l,k) S(k/k,l) ST(k/k,A) JT(k+lk) + Q(k). (52)

Expression (52) is the right side of Eq. (4). Hence, expression (51) must be the left side of Eq. (4).
Therefore, the following relationship is established for the extrapolation of S(k/k,l).

n [T 1 T~kktj~~~~1
nf =T n 53

01 N 172(k+l) )T 3m

n n

T T 1/
In order to uniquely express S (k+l/k,.l) in terms of S (k/k,A), 1(k+l,k) and Q / 2 (k+l), matrix T must

be constructed such that Eq. (53) will be in triangular form. This can be done by using the Gram-Schmidt
process or the Householder transformation.

Reference [16] provides descriptions of the Gram-Schmidt and Householder transformations. A more

extensive treatment of this subject is found in chapter 5 of reference (60].

5. Carlson

The essence of Carlson's technique is to preserve the square root ccvariance matrix in tri-
angular form during the extrapolation interval as well as the update time. In addition, Carlson recognized
that the transition matrix is often block-triangular, the fact which can be exploited to further reduce
computation steps. To preserve S(k+l/k,l) in triangular form during extrapolation, two methods are sug-
gested. One is basically the same as Eq. (53), the other is called the Root Sun Square (RSS), which
computes the covariance matrix using Eq. (4), then P(k+l/k,A) is factored (Cholesky decomposition) into
triangular square root matrices S(k+l/k,L) ST(k+l/k,A). In order to make certain that S(k+l/k+l.O is in
triangular form during update, the Potter algorithm is modified by demanding that

Y•i T yy + r

be upper triangular, i.e., for scalar easurements

P(k+l/k+l,A) - P(k+l/kt) - K(k+l) hT(k+l) P(k+l/k, g) (55)

which can be written as

P(k+l/k+l,t) - s(k+l/k,l) ST(k+l/k,l) - Y (56)
y y+r

and factored into

P(k+l/k+l,) S I ST (57)
y y + r

Hence,

s(k+l/k+lA) - S(k+l/k,l) A(k+l) , (56)

in which A(k+l) must be chosen such that S(k+l/k+lA) in aLso upper triangular. A method that can be used
to select and compute the A(k+l) matrix is given in reference (20).

C. laformotion Filters

The Covariance Filter discussed in Sect~ion 3A is this Kalman-Buoy filter in its original form (the

filter equations are derived from th coyaiance matrix). The Informstion Filter discussed In this section
in basically of the same tooting. However. the filter equations &o derived from the Invrse of the cvtor-
iance matrix which is closely related to the information mat~rix (reference (47). p. 241). The motivtiton

for taking this approach is to avoid computation difficulties in the case bhere tre initial state error
covariance P(1,A) is unknown and assemd to be infinity.

The development of information filter equations is straightforward. This is dohe by applying the
Matixn inversion leemma)

(r+ l t) r-- +E (59)

to th covariance ustrix

by identifying
T

r P ?4 QadE 1(1



4-8

The propagation of the information matrix was shown (54] to be:

P1 (k+i/k,z) - F(k) - F(k)(F(k) + q 1(k)] -1 F(k) (62)

where

F(k) 4• J(k+l,k)]"t P'l(k/k,C) *" (k+l,k). (63)

The update of the inverse covariance matrix from P-1(klk-l,L) to P_ (k/k,!) is given by

P 1(k/k.) - P 1(k/k-i,!) + HT(k) R- (k) li(k). (64)

By defining the state of the information filter as

d(k/k) 0 P_ (k/k,!) i(k/k) (65)
<d(k+llk) •= Pl(k+l/k,f) l(k+l/k). (66)

It can be easily shown that the propagation of d(k+l/k) is

d(k+l/k) - (I - P l(k+/kk+l/) d(k/k) (67)

and the update of d(k/k) is
A T1 -1

d(k/k) - d(k/k-l) + H (k) R'(k) z(k) (68)

It will be shown in the next section that the information filter is more efficient than the covariance
filter as far as update is concerned. However, in propagation, the covariance filter requires fever
computations.

-I Dlue to computational error, the vse of Eq&. (62) and (64) may lead to nonnegative definiteness of
P (k+l/k.A). Once again, this difficulty can be avoided by applying the square root cotcept. which will
be discussed next,

D. SouareA9RootInfoxrmation Filtersa

1. Dyer and McRe.nolds

An efficient square root solution to the lesat tquare problem using the Householder algorithm
wee demonstrated by Golub (55], businger and Golub (56), and Jordan (57), Hanson and Lawaon (581 extended
the theory to include rank deficient tystmto, and adapted the Householder algorithm to solve sequential
least squares probl-ms, Dyer 4nd Mceeynolds developed the square root tnformation filter based on House-
holder'& matrix trtangulari atton ptocedtre and Cox's (59) sequential estiuttion algorithm (dynamic
programing formlation).

Recall ti the Square Root Covsriance filter. it was deftned (Eq. (24) )t

P(kjk. ) 0 S(bk/k!) S T (k/k.

for the drvelopweat of the Square Root Information Filter (StR) . it ts cofsistoot to defitew

P .1 (tk, 4 0. S'r (k/k. 4 S'1(1k. 4 (69)

b(k) 0 S t(k/k.i 4 (k/k) (70)

The gpdate of the inverse Cowariatce square root is ivea by

._._o (k) A (k)]

where I is the orthogonal trossformtion amtna deftoad previously. The update of b(k/k) It given by

* 1 f (72)
a t k LeV ()s"(k)J

-.Asre e(k) to the residual error atear prmostaclg the maasureawt. fte promogtion of the inverse covert-
am*eis avs by i

'til"t" " jk+ /k 0
-1 --- ~ 4---t-:- -------- 73

0 S'k,/k. 4 W bk.~ 4 (k): S fbk! * kk)

C(k+1/k) •e t(Ikt) + It(k+ /1) z(hi/k)J1 1 2  (74)

bs propag•etloa of b(k4llk) to given by

L ! -- * (75)
a (b(k~ifk) b(klh)



where

a (k) - cT(kj C(k) + Q l(k) (76)

C(k) - 8 (k/k,Z) 471(k/k) (77)

A different form of propagating S' (k+l/k,A) and b(k+l/k) is also available:

S 1 (k+I/k,A) - (I- (1 + [a(k) Q_1 (k)8 2 ] C(k)-a(k) cT(k) ) S_ (k/k,A) *'(k/k) (78)

b(k+l/k) - (I-a(k) (1 + (a(k) Q (I(k)l ]1 C(k) C(k) ) b(k/k) (79)
7 2. Bierman (Q.J.)

It should be apparent from the previous section that while the Dyer-McReynolds SRIF is attrac-
tive, it relies heavily upon the Householder transformation as well as relying on the concept of dynamic
programing, which seems to be a little too abstract and difficult to understand. For this reason, Bierman
(22] introduced the recursive least-square approach intended to simplify the basic structure of SRIF. In
essence, Bierman's square root data processing method utilized the so-called "data equation" and the sum-of-
squares performance functional to develop equations that propagate the state estimate and its error covar-
lance. Eqs. (1) and (2) are considered as "measurement equations" and Eqs. (80) and (81) below are
considered to be a priori "data equations" associated with Eqs. (1) and (2), respectively:

Z " (k) - ,u (k) u(k) + wu (k) (80)

S(x(k) - Rx(k) X(k) + v x(k) (81)

where w and w are assumed to be zero mean, independent random processes with unity covariances.

Define:

Q(k) R•. (k) an(k)

K -T -1
p X() X(o) R. (o)

By selecting the performance functional to be

2 k
J(k+l) *j R (0) x(o) - Z (o) 11 + E ( U(i) X(i). z(i) If + R W) u(i) - z,(i)I• )

xi- (82)

the problem is to minimise J(k+l) with respect to x(i) and u(i) for i - 0. 1, 2, ... , k , such that the
solution yields the optimal estimate of x(k),

Bierman (60) has shown that the following "Information Arrays" contain all necessary information needed
for state and covarience update as wall as propagation. The actual date processing requires a transforms-
tiot and update (mapping) given by Eq. (83) and Eq. (84), respectively:

R( t ( k) ', a ( k) %. ( k ) : i,,( k ) N u
K --..... -- .... I------ (83)

N(k) ' s(k) 0 : e(k) Nx

N u

N
• Hu u

a(k) 0 ,(k) N N(k+l) RPx(k+l) a (k'l)V (k ) .u u R ) . . . . . . .T(..l) I ...... ... --------- -------- ( --%(k) *• (k+l) %(k) q (k+l) 12 (k) INK 0 a (k+l) ' a (k+l)

in which Nx and Hu are dimaesion• of the %(k) *ad u(k). respectively; e(k) is the error in the least squatre

4fit, aSd T(k) and T(k+l) are products of N eleseatery Householder transforuations. Definitions of other
usymbol* are given in Section 2.

he update estimate and eovariance are

S(k+i) a 1(k+ 1) aRl(k+l) (86)

The propagation of state vector requires solution of d(k) and i(k+l) (i.e.. U(k) and x(k~l) form an eug-

u(k)eated date equatioa (k) )

t(k+l) u(k) + ltua(k14) (5+1) au(k+i) - v(k) (87)

%(k+t) X(141) - ,W(14) - v(k) (S)
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which can be solved using the Gaussian elimination method.

E. Factorized Filters

During the past decade, a number of authors (25, 26, 60-66] have contributed to improving the Kalman
filtering computation efficiency by suggesting square-root-free triangular factorizations. Essentially,
this approach is based on the rank one modification of the Cholesky method. For example, Agee and Turner
(61] have proved that for a positive definite covariance matrix P such that P - UDUT, in which U is a unit
upper triangular matrix and D is a diagonal matrix with elements dI ... , dA. Where n is the dimension
of P, there exists an update P(k) matrix such that

P(k) - U(k) D(k) U-"T(k) -. U(k) D(k) UT(k) + cv(k) vT(k) , (89)

vnere c is a scalar. v(k) is a vector of n-dimension. If P(k) is positive definite, then U(k) and D(k)
can be computed as follows:

For j - n, n-1, ... , 2, recursively compute de(k) and uia(k), which are elements of D(k) and J(k):

d (k+l) - da(k) + Ce v2(k) (90)

vi(k) *-vi(k) - v3 (k) uij(k) i - 1, ---- 1-1 (91)

uij(k.l) = uij(k) + c3 vj(k) vi(k)/d 3 (k+l) i - 1. --- J-1 (92)

c a1 " cj d3 (k) / dj(k+l) (93)

Tho notation .- is used for "replacement" in the FORTMAN impleMentation. Detailed proof is given in
reference (60] (p. 4i5). This method of calculating D(k) and U(k) is generally valid for both covariance
filter3 as well as information filter updates. To illustrate the usefulness of this factorized approach,
consider the covariance update (Kal-tan filter):

P(k+l/k+l,) - P(k~ l Ik,l) - P(kl/k,1) HT(k) H(k) P(k+llk,•) H T(k) 11(k) P(k+1/k.,). (94)

By assuming scalar measurement, (94) can be factored into:

U(k+l/k+l) D(k+l/k+l) uT(kc+l/k+l) - U(kdl/k)(D(k+l/k) - k ( ) V(Iel/k) VT(k+4lk)] UT(kIl/k) (95)

where V(k4 /k) - D(k+l/k) UT(k+l/k) JT(Wl) , 
(96)

and the scalar "a" iL given by:

a - lH(k4l) P(k~l/k) UT(k+l) + R(k4l) (97)

Using Zq. (89). let

U(k+l/k) i(k~l/h) iT(k64/k) * (D(k.l/k) - V(k.L/k) VT(k+l/k). (98M

Then '7'. ý0'5) -- o be "ritttn as

U(kWlAk40) 0(k4 •!ki) t.T (k+l/k~l) - (U(k+l/k) U(k+k/k)] O(k4t/k)(U(k+t4k) U(k.1/k)JT (99)

Sine* U(kri/k) and U(k~l/k) are unit upper triangular. Eq. (99) yields:

U(k~l/k+l) - U(k4l/k) U(kh4tk) (100)

0(k. il/k+) - D(k+h/k) , (101)

The above results show that the problem of foettring the filter update covarinc, hoe been reduced to

the task *9 factoring a symmetric steix (b(kl(k) V(k÷k/k) V (k9lk)1) ito U(k~lfk) and k(k•l~k).

Sow, consider the toverOsnm propagatiom

P(latlk) * bkil.k) P(kM •(k+.,k) + Q(k). (102)

It is required to find tU(l+l/k) 0(k+l/k) V O+V/• such that It to equal to Ch rijh-ha€4 aide os 1q.
(10). ithout loee of 8amareiity, let Q(k) be a 4iao"l mtrtr and let

,p(khl/k) [e(kihk) U(klk)" t 1 (103)

6F(kl/k) ~ ~a 4  I 4(104)S0 :Q() J
Than It can be sohm that

G(h+.lk) ftk+Ln/k) C(k+k) -(bIk) J(k/h) !(k) O i(h/h) JTbhlk) # 9Nh1 , (105)

hich is the desired result. 9q. (10)) cab be efficiently eaetd %at% the • iodifted CrGt-Ithidt lthod.
the No baaebd~r ttsesforestiao, or the Givens traeefora"tlcs.
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F. Chendresekhar Filters

An approach to minimize the computer burden was introduced by Kailath (27] who considered a special
case of continuous-time stationary process and showed that differential equations of the Chandrasekhar type
instead of the matrix Riccati differential equation can be used to compute the filter gain.- This develop-
ment was imediately followed by Linquist (281 who treated the same prnblem by means of the backward
innovation process. Morf et al. (67, 69] and L~inquiat (29] have solved the discrete-time stationary process
problem; Friedlander et al. [68] have treated the discrete-time nonstationary process problem by introducing
a way of classifying stochastic processes in terms of an "index of nonstationaric)". lt was shown that
Chandrasekhor equations can be derived from the extended Lev~nsom-Whittle-Wiggins-Robinson algorithms
for stationary time-series; Lainiotis (30] has provided generalized algorithms for the continuous-time
nonstationary as wall as stationary processes.

Approaching from the square-root algorithm viewpoint (i.e., propagation of the square root of d tP(t)
instead of the square root of P(t)), Morf et al. (70] derived the continuous-time Chandraaekhar dt
filter equations which are identical to results given in reference (30]. in which the "Partitioning Fo~mulas"
of Lainiotis were used.

for the purpose of compating digital computational efficiency, only the discrete-time Chandrasekhar
algorithm is described in the paper, since it was pointed out in reference (70] that the number of computing
operations is upproximately equal for various versions of Chandrasekhar filters.

By considering constant matrices 4, H, P ,Qand R associated with a system model given In (1) and (2).
reference [29] presented the following results, from which the optimal filter gain matrix K(k) can be
detetui*ed in the following manner.

KMk A(kIQH(kl() + I)_ (106)

where

A~)-Afk-1) - A '(k-1) C 1 (k- 1) ' 1 (k-1) It T (107)

A'(k) - * A'(k-l) 4 A(k-1)tIIAk-1) it .1 HtA*(k- 1) (108)

CMk C(k-1) - A'T (kl) ~4T (lA(k-1) + 9) UA'(k-1) ,(109)

with initial considerettoeas

ANo toH (110)

A(0) 0 Po H TI

11ote that AMk) avA A1(k) are it it a atrices, aond C(k) it a tyesetrit a it a vatrtA. Thua. In otdor to got"e
for A(kY only 2 na # 1001l)112 aqiotioos art needed. 00 t1% contrast to the conventional Rlelaf dltorithm
I, which *2 4qustloas are required to ctooput. the filter &*in. it 0 < -. a. which ta true in% *coy Prrtitasl
altuattiooa the oumber of equattoi4a to be *0lved in each step to of order a verousu 0. 31*c# Goly the
iovtree of C(k) toIs*needeo in4. (10Y),q. (109) imay be roplaced by

C4 (i) -C 1 (-1) * C(k-1) &' 0ht WT I(k) * 1)~ Abl 1 l.l 1)

*which too he oheattad by applytog the aattisc laverstoo 1~ to E4. (109).

The thovo result* veto at" # atoandd to the cootitwnuou*tioe case by Utaqulio (201 iand tbey Veto tho~
to he exactly carrespording to the equatioms deirivd by Ulalath (W?).

C. Murtioain taxjtets

to a radically 4ifferent ap-;woack to ftitarina end o~tiwtIo4 Ii% Igaostal, 1.41441941 132.3M, 7248)
bas "e"tope" the Prtsitiouaga Algotithel. which art. tuAdameetoliy too todimiqites ft#"r #Vldtbre before,
I"e Pesetitlotas a emoec) yields 0a" reacits for litter *I Vail aso nolinear estleation 1% nlaturally
decoupled, competesttifalip attrsetlv And toot psallpo~sm reliesetcas. The Partitioned filter
cofttain the Ketma filter as a special coasensd it constitetes the VAtural fts-"eork for tffiielot choose
of ititial oeadittcea without tecoorst ;o resrocessins OR doat. Mei special property Vill teai to sf11-
41es4 aftatatioea. Several porti~tiaDiag alaorithms for digectst-tiase linear systge ar* 61ive beolow.

In the filterinS Oroblem stilted to Seiction 2. solvation provid*d by the Paftitionins 40peoach
coelloite of dec~ompias the initial stats vector K(l) iate the con of two OAu d oisaiet vectors:

a( * or lb)
M1a uLas Nod coveriaese of %, respectively (the choice of 6 and IP 4is orbitretp). timce No told %Vh

oft 6ea0ed to be idendeuetiet, the faulowing toitial ioA, itifta rcitstiosaip hold-
* * +* l~



4-12

Ff("4 - F (4 4 pr(" (116)

The optimal filtered estimate ani the corresponding error-covariance matrix F~c.4o are given by

i(k/k,4A - f (k/k,!f) + t r(k/k.J (117)

-~k %(k.t 4 + P r(k*OA for k aZ£ (118)

where Lriklkf) and F (k<4) are computed using the standard Kalman filter equations with initial condition,
g((ltt - and P(1,)1) - P(4f). The remainder estimate £r(k/k, L) and the corresponding error covariance

matrix are given by

* (k/k.4) a QIC.)) 'r(A1 t' (119)

P (k/A) -%,(k.i) Ff1/k) %QC.A> (120)

whre*~'kf and PFr((/k) are the smoothed estimate of the partial initial state xr,(A) and its covarianceV matrix respectively. They are given by

xr(1/kO - r(V/k)t a(k*4 + Pl (121)A)

P r(A/k) (P ( (0 0 a(k. 1) + I P r(4

where

-k o H (k-IL) 4 Jý(k- 1, J T(hklk) liT(k) -_l/k1S (123)

fa(k.d) O(k. j-O nk1 A) %( k-l4 ýkkl R* k Pj(~ . 11(k) *(k.k-l) tfk . 1, (0P4)
it

n~~-)- I-K(hA) li~k)) #(k.k-1) (125)

I (k,1) - e(k) - 11(k) *{k,k-l) 9 kIl-d (126)

P%(it/It.. - 1. H(k) P ah/k-l. 1 iHJ(k) * 1(k) (127)

%0(k.i F a (kjk-lt) Hi~kl 1_(/klJ (128)

The MA given tbovc (qs. (1l-If)) onfiges a tn&,.iy of realigetitms cof the opflast linear filter.
aone for each pats-tsrco rtitionintg. for example. the Eslea ftilter is a wvsktr of fthis family
fur VNtmina initial cjndlflone VqMal to actual initia~l 4Conftlona,0 "amely A, ý 0 end F (4) * j0). Vtilko
the Esieen filter. GrA Is applicsble to all iniatial con-ditions 14iScludi PVAU a)-. &ith the freedom of
choosing nominal Initial cond~icee, CPA ts closely rqlstted to the Ousndresefkh*r realiastlian of att Kalman
fitur sigoriths. Specifically, the ttimptatlitial adveetagles of (tbo Cbndrseochbr elgorithm depends on the
low-rank property of (ha actual initial codiutions.

The basic approach of GigA is to decompose the initial state vector into the sue of tw, st~tisticsllyF
,44flarggflf taUssian randomt vectcrS (Itq. (l1b) ). The nnurel cate-lot .s of this concept I# to consider the
dfeccPosittoo of the0 IsIiol faste Inco the sW of an arbitrary "umber of jointly csoe*si" rendoft vectors
which may be sttsialvdpndn.Ideed this concept has bseta devtloped by lainilotis and Andrissnit tI
(NJ into the so-called 'rntlaltipntloning" algorifla. iwhirl coa be iteed for. seoong other applications,
efficient parsimeter ideatificstions eni filtered state estimate of Off-diqomal toats tn the Initlsl-state

cvt*e astrix.

2. LtIs AAtcignim

"Th Lambda el6irttA boas a decoupled4 strucure which results from partitioning Of the total
"ata isorerlIn intoaOnrlsppiutg *ubintcrvels. tt~eskea filtering solutions art first ccmpaed4 In each
aubinterwal with arbitrarily cheesen nminai initial vonditioss. Then the overall solutttitoni obtained by
connectinge the elemmtal piecewlse s4lutions via CPA, Thue, the desired aestimation reauhes oveir the entire
Meret~s has beem dectemposi~d Into a set of comploteip decoupled elnastal .eoiutioas which can be cftotad
in either a serial or pr llpoesn oe

inr the date intervai consist of snaeuriwenots - (a (o).' S(i) . ~) where as(k) § a "10 sMd
to ct. tk to GiOven date interval (t. t) to be divided inot Domosorlsppi~sg subiseorvals (ti. It) the

Lflda aigoriths ite givee by

rujmo eP(t t 0) (132)



are the optimal estima~te and its covariance matrix at t with initial conditions x(t /t )and P(t ,t) at
t0 The nominal quantitiesi000

are the nominal estimate of the corresponding nominal covariance at t , obtained using the standard K~alman
filtering equations with initial conditions at ti given by

The remainder initial conditions are given by

*(~o *~(JP)*(1.9) P 1riO ijI)*o)1.) (139)

the ~ ~ reane smotedesimte .i) an its ccyt~mo) marx rJ-)ar ivnbyE (19-12)

isbToe0,~i sht th reuriv and )tti ) of the (t e dt algrithm,.tid fquations (129-30) l25th presn tversvion of

n n

ty .Tho rocursive operationa. *eo rvpe~ted for taeb subintervol until t, ~

The Dolte aliorttha to del~opt besm4 on *14oublin$" the lragth of the pasrtlttontin interVal
of the 14"-4e algorithm, Tfhis devvlopmetit V#40 Ootivottd by Oppicettlona of the ?artittioned filter to time'-
invoriant m~oel#. tn %*Ich the number of tterstions aecded to reach oteady *tot* depends Conto time
voosatants of the mad*%.

The *doubli"S" elgorith%, kWAMo to he faster then the Ohandveaev*iar alne'ttb to iiive (TV~ by the
110i4reetkrsi%* eqUalio~5

I . 1 Q To

A)- POWA) - (2eO)Ip(2 fl) 000104)) P"i'(2 ') %Qi 6 Wk 1)

where P a) a ft.en 0 a(-) arm *IV" by Pr4

%(1* . A %"(2?)jPt2 " ) 0,(A~) *1) % (A) 0"2~)(h)

for a *0. t. 2, .

It teaf be, sees that. "atria itVerotlas whibch art required to "tairt the ftI-ccat'l Solution at the ftd of
a t-if isterwa wI bch to twice to too& a.' tte isterest 13 the Previous iteratica. i.e.. * Oubting.

The Pot-Samole partirt~oeta It g"othor eatae)tom of the baste Lamb" olgoritb. In Which psw-
tiih a to dab* a.,1. hst 3 m~at: wtithree to o f theata I itterva to atioo ewerj m4 Wia. *sadt ?yiWldcfor

tiioie is. V.s at tr Itr.ivale atwith acre ofminae idot*a oadtio ms. iaet a tV (h t ad h ) "Y64 0 f
Pletely datomplelo 110*ot Ottimatioafte tcmSample to tample. thus resatti" in e simple recureive $lgortita.
"which was e (3a 5. V?,7) t oi1owia 1s10A e utt~ueIe O~gtiobs

4,0lO *A(b~.lj) 4 ahl*Pk 0) (k+I.1q 1I(- h0 N(1ik tro 2h.0)1 (145)

IP(k4,1.O) * W,(h.i) * %Clrel.h)(?(l.O) 0m(k+.k)b * t)1 ?(h0 %(k~t.k) (t&6ý

(b~lh) **t~~lk)U
T~~l) (i~i a~el) Ibk
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and the Per-Sample nominal filter equations are as follows:

R (k+l.k) -k (k+i~k) s(h+l) (149)

P a(k~i,k) a1 - k n(kel~k) li(k+l)] Q(k) (150)

k n(ksl~k) -Q(k) HJ(ki~l) *(kOl (151)

whers

A(ktl) a (H(kel) Q(k) HT(ktl) 4R(ktl)] l (15i2)

The Per-Sample partLcioning filter is memorylesa as it car be seen from Eqs. (147-152). sinlce all
rro~ry Ms been trasnferrrsd to the basic partition filter equation (145). It is observnd that computation

N-, ~ of then nominal filter gain k n(kel~k) is accomplished using Eq, (151) end Eq. (152). without repeated use
of the liccati equation as is required in the Kalman filter computation.

It is also observed that ill other quantities, X , 0 , x , Feand 4.are completely determined non-
zLsauiaizl by Eqs. (147-152), using only the model Quanbcigns tAd the tlata at the current time (tk+l),

The remitable nature of the Per-Sample partitioned filter and its computational advantages can be seen
further by considering the case of time-invariant models. For time-invariant models, the Levturslve algo-
rich. is exactly *a given in Eq#. (145-152), except chat now all relevant quantities are tiae-invaiioanc.
Specifically. the Per-Sample partitioned (liter is now given (35, 37. 75] aso follows:

fer-Sample Partitioned Filter

t(k.AJ.O) -*(IceI.k) +t %[P(k.0) o * (?(kO) N (k~l.k) 4 i(k.0)j (15))

Wborn

k MY.1 (5)

and

Pul s .(ei-vho tNVToQ U th(157)otf f h nit~- tr o tq~ttV"#

1Wrato fu dlly appracl hompletnelytitq th"eriu s *we veruon of-' the 'ariciotr' Itrtiter is iht mott'-t'
real baisal fite-vryingore til-ohac last 4:tim h.-yn evtifor tls-ttart soctets.At #aly bothv~ t he-,%*1f~ Ksto

seWt mhaterdabarte thell.atos Vare wofvryp t~aI the trmatvrat- fall ct ito"Oew 4uariit clo-sivlaniv
* *~~46iasew nthtta s na y tha the ab*v Per-Samplet" pmnttoit stealltati "bqat" th0p"" l itr o t

invIrVa models aas copltelyor.08" tlaslv rtaa on. M eve *ta the Vottn tot lteeii.ThIStrenllfnt'nst o*
a*, haecltatlyelm'nryi Aitsra etvut AVOt at thecotrsltelsta4e tint-o aow *lwmivl tt*-inrien 1 fetc Is

A"dueto arcilsa the surers imitalistit a:t a to salpliag instsx weilhleaod1 tchtsltl dos viadon
at* fOry**coleds suretly Loal tters.AW ouotolyFtitot 4trt M

fIt is.W tote('rucher thee iswin af thee olia.rm taartac ofi aobllityhe ttevt uo~tatisi. m(Ce~aly.

'm 1Mwslfl4 o the latofew years. a mourit *4 tipw ac ued tor state " ttnctAoo Ware-ai to syt o hstmba

I.a d ]mtrla&ee S A ss resullt. aos ftime atv dcsrl~a itr a eudvlpd oo th
sdtaseug he ataet thrabolta" (stiernactioa qie isal e VAytna as nil, asL h esu rm.strt

are ~ ~ ~ ~ ~ ~ 01k~lh th ocle uay oal aisd (S) (3944] stu Sevhiat (M tle~ 4ioil (7Afltn Te3teclebton .tteestrt r Itrsaiiysdtsata fste
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With measurement at S,• - • N

"zi(k) H1(k) x (k) + Hi(k) =E Lx(k) + vi(k) (161)I i J.
i~j

H 1i(k) is a matrix of rank p, < qi and has the physical interpretation that the local decision maker

at Si can observe all sybsystem interactions. H (k) is the local state observation matrix. The problem is
to find N decentralized filter gains of the specific SLU class to minimize a global cost function. The
approach is, first, to decouple into N local minimization of the constituent cost functions for the N local
subsystems, then apply the discrete-time Matrix Minim- Principle to solve for the gain of each local sub-
system. This procedure yields recursive computations.

The optimal state estimate is given by

9i(k+l/k) = Ii(k+l,k) :R(k/k-l) + L'i(zi1 - Hir i) + Ki 2 (zi 2 - Hi i) (162)

where

- -2 (163)

-Pi < q,

Pi x qi is the dimension of the ith local measurement

u2 I ] (164)U2  Hi Ul =[O0" ) q

Lq U 1  Li (165)

u 1 Li • Li (16)

-l il
u1 vi vi [... (167)

u2 I [-1 (168)

Rt 1 R3-i T " Q i • [ -, -? -• z
u2  Ri 2  V (

1. '2  - r 2 '41 (170)

- 1(k). [i t -lýk) Pi(k/k-1) ip (k) - jit(k) (u,1 (k) Pi(k/k-1) i12 (k) + 1i3 (k)] ]

• :-- • :" -IT I

-( P (k/k-1) H li(k) + R (k)] (171)

T
P (16+/k) v ([ .(k+l,k) - Li(k) itc) P,(il/kl)([i9(k+l,k) - Li (k) ]
i i0 i. _0ii it

{#- [ i(k+l,k) - Lii(k) itii(k) ) ?i(ck/k-1) H 12 (k) o Lii(k) R 03 (k)]

H ((k) P (k) H (k) + RI'(M (

-IT

-- •i " '• {i/(ilblk) - Lit(k) W,.(k", IPL(k/k-].) "12e(k) - Lti(k) Rtt3(k)]

I #
_+ [Q(k) + Lii(k) R l(k) T () (172)

-- •:,:0t~) •Qi(k) - Lti(k) Rlt(k) Lii(k) (173)
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Equation (172) describes how the variance in eatuation error evolves i; discrete-ti'in. T' a SLU filter
treats the interaction input to each local subsystem as if it were just a z-.o-mear-, Gat-ssian white noise,
but of the appropriately adjusted covariance.

Although it is necessary to find u1 (k) and u (k) at each measurement, calculdtion of theit inverses ic
not needed because they are imbedded in the deceRtralized filtering algorithm.

2. 'The Seguentially Partitioned Algorithm

Another formulation of the decentralized filter is given by Shah (90]. The so-calhed SPA filter
can be summrized below. Consider the following subsystem and measurement equations:

N
xi(k+l) # iii(k+l,k) xi(k) + E 01 (k~l,k) xj(k) + vi(k) (174)

J.1
jfoi

zi(k) = Hi(k) xi(k) + Hi(k) Li(k) _(k) + vi(k) (175)

- Hi(k) xi(k) + Hi(k) E -tj(k) x3 (k) + vi(k) (176)
j-I
oif

for I - 1, 2 .... N.

The estimation error is defined in the usual manner:

ei (k/k) • xi(k) - 9i(k/k) (177)

where
it(k/k) E E[x 1(k)/ Z(k)1 (178)

in which Z(k) is the measurement set. By combinitng qs. (174) and (177). the ith subsystem may be written as:

Nxikl -fik~~)xj*- -1 ti(k-+I'k) 9 1(kI, - (k) (1li9)

jf'i
and the measurement equation for the i h subsystem is represented by

N
"a"(k) H k x (k) + H (k) E Li3 (k) *3 (k/k-0) + v (k) (180)

where

v (k) w v(k) + •(k~l~k) e(•k/I) (181)

J-.
jot
N

vi(k) • v1 (k) + r Lij(k) ea(k/k-1) (182)
j01
j-i

Assume t w * &and w can be treated as Gauvelan white noise, then the standard Kalman filter algorithm can

be applied to each subsystem with the folloing appropriately modified cowartiafces

Q kuEv*(e k) * (k) (183)

QIi(k)- 4,(k) + 'E *lj(k+l.k) Pj(k/k) #ij(k+l.k) (181')

*T
E k v*,( 1't (k)) (185)

The result of applying the al~asa filtering technique yields the fcllmltn subaya1' scate propagation sad

state upd.et:-
t1 (k4.k) I t M(k,.lk) •(k/k) + P 4 3(k/- k) L (k/k) , 1

it i- LII8
Jul "
jlot



or

I (k4l/k) §e,,(k~l~k) 2 (k/k) + kN1k (188)
J.1i
joi

f (k+lIk+l) - 9 (k+l/k) + K (k41)(: 11(k+l) U t1(k4.l) 2 (k+l/k) H H(k+',) E L s(k4l) f (kl/k)

jiI

in which the filter gain K (k+l) is computed in the usual (Kalman filtering) manner:

K (kil) P P1 (k-+l/k) HT (k-.-1)EH (k~l) P (k.+l/x) H T(k+l) + R (k+l)l (190)

4and the covariance propagation and update are gitven by

T*
P it(k+l/k) it N41i( /k) P it(k/k) #i 'k i/k) + Q11 (k) (191)

Pii(k4 1/k+l) -(I K K(k+l) H (k.+1)1 Pii(k+l/k)(I K i(k+l) Hii(k4.l)V + K (k+l) Ri (k+l) K (k+l).

(192)

4. 0 ommPTP a, R~

Discussions of computer burden* of various algorithms described in the previous section can be found
in open literature (e.g., filt-24]) in which considerable data were provided pertaining to the computation
efficiency of Covoriance and Information fitters, and their Square-Root variations, as vell as the Chandra-
seichar and Facotrized filters. However, computer burdens of the recently developed Partitioning and
Decentraii~ed filters have been documented only in closed literature (e.g., (92,931). The purpose of chis
section is to provide an assrssmtnt of computer time and memory requirements of these relatively new
approaches as well es other convetational allhorithms.

It is well kneown that a precise quantitative stitewent of comnputer central, process unit (cpu) time and
memory storage requirements are difficult to obtain, since the exact ntraber of counts dapends upon the
manner in whiich the filter equations arc prograrmed and the particular computer used to process the data.
for these reasons, only an approximate assessment is given here. For example, the logic time 1151 has been
excludo4. Also, the transition matrix and the measurement matrix are assumed to be given, since the number
of operationst required to compute these matrices is heavily dependent on the nature of the problem. Further-
more, in the process of assessing operation counts, no distinction is made, between multiplication and
division. Althougta the cpu Liedi required to perform a division is longer than multipitcation, thicnoanump-
tion impacts the results in a minimal manner boosaus the nuisber of divisions In a filtering cycle io very
small compared to the number of multiplications. Since multiplication requires much more cpu time than
addition and subtraction, hence, for firat order-magnitude approximation, it is reasonable to regard computer
time as directly proportional to the number of multiplications (including divisions %nd extracting square
roots) notded to complete the filtering cycle. In general, computer time and memory requiremen a are given
to termi of n end s. where nt is the dimeusinn of the state vector and mn is the dimension of the measuremtent
vector. In the case of decentralited filtering. nend q1 or* used to represent dimensions of the state
vector and minoauregent vector, respectively. In ti to came of sequentiol processing of vector measurements
or #color meassurements, other cyabals will be used. rot example, Bisrmatt's equations for SQUr and the
fiactorlited filters belong to this category. Naturally, cautions mest be taken when comparison in made
beatween sequential- or acalar-proconsaitg technique and vector-pro-cessing technique.

All matrix inversions are assumed to be performed via the Cholealcy factorlisetion routine, which requires

only n1 3 + n2 * it q! operations (q is the number of multiplications required to extract the square, root

of a ecalar) and ( 'n~ n) mewry locations. The number of operations required for the calculation of2 2
tigenvakues end eigenvectors are difficult to assess because of the iterative process involved. Thus a "r-
ietiocal parameter is allowed in the operation tounts.

FollowIng t9e simplifed approach together with the above assumptions, the number of predomisnant
oparutions (meultiplication) and memories required for various algorithiss art $ssessed, and results are
presented In Tables I - 12. In addition. Table 13 is provided to' i.hme reent tr')nds in computer operation
speeds, so that cpu time for different **chine* can be derived for each algorithm.

A oe"a-ate table for the Eateindod KalwAn filter to not being mad-a because the standard Kalmmn filter
Includes the Extende-d Katmen filter, in which a set of nontlinear differential equations must be intogrited
tn order to prupeate stetet eterween eascurtssntr. ?or this ~esr.up ta 9O¶ oýC cpu time rtvqultedpe
filter cycle * 4apent in integratitig differential equations. The remaining 10% of cpu time would be spent
oni perforulng eli. computation sequencv of the standard Valman filter. The square root covarionca filter of
Andrawa, Tapley and Chve, Harf, Levy and Kallath are close onatih (am far as co"pu*r operations *te conk-
canted) to be considered as otie class; therefore, only one table is provided under the heading of "AndrOVa1
Square Root Filter".

Ccxapittsion detaili of the trhee derivatives of the Gent-rol Partitioned .llcoriths - Lambda. Delta and
2vr-Sampie Partitioninig - or well at tlitlr square root formulittion, &a,* documented in (921. In genea~rl,
Computer burdens of these derivatives are cocisiderablv less then that. rejuired 1ýy 'he general formkulation,
1'mrtoitilarly attractive is the Pewr-Sampleý arititioaing atgi-rithm. %%Leh~ is asmorykess aud without repeated
age of the Riczati equation.
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The entire class of zero-order systems with scalar sequential measurements has been treated in great
detail by Bierman (60], which includes tables summarizing operation counts of SRIF and factorized filtero
as well as counts of the Householder transformation. Hence, these tables are not duplicated here.

Computational Requirements of the Standard Kalman Filter

Step C4;mputation Sequence Operations Storage

SIt Fkk,2• n

2 P(k/k, A n2

3 #(k+l,k) n

4 (k+l,k) P(k/k,1) n3 store in 2

5 f.IA T 35 #(!t+l,k , P(k/k, # (k+lk) n store in 4

6 Q(k) n2

7 P(kl/k,t) - (k4.l.k) P(k/k,) 4 T(k+lk) + Q(k) store in 5

8 9(k+l/k,J) - *(k+l,k) 2(k/k,4 n2 store in I

9 h(k+l) m n

10 P(k+l/k, 9) HT(k+l) m n2 store in 7

11 R(k+l)

12 H(k+l) P(k+l/k, 1) HTkl + fl(kL)2

13 [(,U(+) P(k+lI/k, H (k+l) + R(k+l)]" 3•2+ .

14 (k+1,) - P(k+l/k,) ,T(k+l)IN+".I) P(k+l/k.1) H (kl) + R(k+l)] W • - n

15 s(k+l)

16 9(k+l/--&l.9 - *(WIk,i) + r(k+l,.)[z(k4l) H(k+l) 4(k+l/k,]) a n store in 8

17 P(k+//k+l.jo - P(k+l/kf) - K( 1,t(F(k,'k, tl T . 2 store in 10

2u4,2+2=2 3n'+*+2=

Total + Wn+an +2 +a

+ L3

Computational Requiremeute of thi $tatllized &ILsn Filter

Step Computation Sequenne Operatloon Storeae

I R(k/+, /o

2 #(lk+l) U2

32

j (k+l,k) P(Vk. A) In store to 2

TS 4(k+/.k) P(k/ko I *(k4Lk) a store .m

6tQ(k) al

I Pj *lk I4el~k k) F(1tAkC *TJýW1  + Q(k) store to 5

0 0.(k,+L/k.4 i (k+l.k) 9(k/k. ) store inl

9 1l(k+l) so

10 P(k+l/k.,o K(k~l) 02 sami

(Conatinued)



TABLE 2 (Continued)

Step Computation Sequence Operations Storage

11 R(Ie~1)M2

12 U(k+l) P(IrA.1/k,O) RTkl + R(k+l) m 2 n 2

HT~k~1 31 1 2
13 EH(k+l) P(k+l/k,l)H~kl + R(k+l)],] ý(m +3ui )+mq store in 12

15 z(k+i) M

16 i(k4-1/k4l.C) - 2(k+l/k,.9) + K(k+1,1O[z(k+l) - lI(k+l) 2(ki-1/k,k] m n store in 8

2
17 I - K(k4.1,f) H(k+l) n m store in 10

18 (1 K(k4-1,13 H(k+1)l P(k4-1/kbjO n 3  store in 3

19 (1 K~k+1.4D H(k+1)1 P(k+1/k,.A)[I - K(k+1,1) I(k+l)]T n3  store in 17

20 K(khl-1)4 R(kil) i2 n store in 18

21 P(k4-1/k+l,.O *(I - K(k+l,A) R(k+l)) P(k+l/k,l)[I - K(k+l, I)H(k+1)]T

+ K(k4-1,A) R(k~1) KT(k+1,A4 n 2 m store in 19

4n 3+2 +3mn 2 3n2+n4.2=n

Total 32n 2 n +

+3nm +jn 4 -in4

CompuLtational Requirements of the Potter Square Root Filter

Step Computation Sequence Operations Storage

I f~k/kL) n

2
3 f(1k+l,k)

4 *(k+l/k.A) - t(k+Ihk) Jt~k/lk, ne store in I.
5 S(k+l/kA) - *(k+1~k) S(k/k,O) a3  store in 2

6 h(k41> n

7 YW( A - S(k~l/k,A) h(kt41) ft

8 8(k+I/k. A) y(k41, n- n2

9 r(k+l)

10 YT (k44, 4 y~k+IAt)I
T11 K(k41,A) S(k+1/k.,) y(k.,.1.)I ty (kIA y(khl.$.) + r(k4.1)] a store in a

12 a(hi'1) I

13 hT(k+I) 9(k+lIk.O aD I

14 t(k+l/ke.-,A) - t(k+l/kAL. +K(k+1l1(&(k44) - h T(41) ft(k+I/k.A~] n store in I4
15 1 -y T (k+1,A) y(1t4l,4 I / yT(k4I.I,, y(k+1.,* + r(k+1)l I store in 12

1/2f 16 -~~~~1 1. - yT (kh4.L)t y(ksl,Qo I ( T(k+1,4 y(kl.1,C + r(k+l)1 tr n1

17 am(stop 161 / (step 101 1 store In 13

18 y(k41.,* yT (kh41.4 a store in 6

19 ey(k+1..4 yT(hfr1,o n store in Is

20 ~h1/~lO S~~lk,(I- y(ht'1,, yTk 2,4 store in5

a3 +ho2  W + hu + 4
Total +6 +q+2
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TABLE 4
Computational Requirement of the Bellantoni and Dodge Square Root Filter

Step Computation Sequence Operations Storage

1 9(k/k,l) n

2 S(k/k, ) n2

3 §(k+lk) n2

4 9(k+l/k,,) - f(k+l,k) R(k/k,L) .2  store in 1

5 S(k+1/k,Z) - t(k+lk) S(k/k,I) n3  n2

6 R'h(k+l)

7 H(k+1) m n

8 R'k(k+1) H(k+l) .2 n m n

9 z(kil) M

10 z(k+l) - H(k+l) R(k/k, jo m n store iUs 9

11 BT(k+l) - R4 (k+l) H(k+l) S(k+i/k,Z) n2 m store in 7

12 I + BT(k+1) B(k+l) m2 n store in 3
13 (1 + BT(k+l) 1(3,-)]" i(n3 store in2

14 R'(k+l)[atep 10] m2  store in 4

15 [step 131 [step 14] 2 store in 10

16 [B(k+l)] (step 151 m n store in 8

17 f(k+l/k+l,A) - 2(k+l/k,A) + S(k+l/k,l)(step 16] n2  store in 4

18 B(k+1) BT(k+1) m n2  store in 12

19 D, diagonal matrix consisting eigenvaluea store In 15
20 T, transformation matrix consisting eigenvectors store in 16

21 (1 + D)"- I m q store in 20

22 [(1 + D)- I] TT m n store in 11

23 T(step 22] + I m n2 store in 18

24 S(k+l/k+l,t) - S(k+l/k,t)[step 23] n3  store in 2

variable number of operations depending Total 2n3 + 2n2 + 3n2m + mea 3n2 + n + 2 a m
on computer being used as well as method + 32 + 1 m3 + 2
being used to compute eigenvalues and 2 2
eigenvectors. + 2m q +

Computational Requirements of the Andrews Square Root Filter

Step Computation Sequence Operation Storage

1 2(k/k,j a

2 S(k/k, Io
3 #(k+l,k) n2

4 i(k+tlkk -= k+lk) f(k/k,A) U2  store in I
325 S(k+l/k, 4 - #(k+l,k) S(k/k, 4 n 49

6 i(k+l) n
7 "(k+4) +

a 8 k(k+l) _ +
2 2

U9 (k+l) - )(k+) S(k+':/k,k n2 2 str* in2

to UU. T + is store in 3
2• 2

13 a(k+l) - H(+) t(kItk, + mm store in 12

" U (ste 1ste •lk 13
(Continued) 2 2



TABLE 5 (Continued)

Step Computation Sequence Operation Storage
2

15 store in 6

•" ,3 2 ,
16 store in 7

17 S(k+l/k,J [step 153 m store 2l

18 [step 16] V 2 2 store in 15

k19 f(k+l/k+l, ) = R(k-+1/k,A) + [step 17] [step 14 ] n mstore in4

20 S(k+l/k+I,A) = S(k+l/k,A)[l - (step 15)(step 16) -I n m

n3 + 2  33 m1.2 2 a m

Total + m+ -? + ~2 + m+ 2m

I

TajX 6

Computational Requirements of the Schmidt Square Root Filter

Step Computation Sequence Operation Storage

1 R(k/k, 
n

2 S(k/k,) n2

4 
3 l(k+l,k)

4 t(I*1/I, A) (k+lk) *(k/k,. 02 store in I
V! ~ •/, (lk (kk/k, 

02

6 A - ([(L~lk) S(k/k.4 Q•(k+1)] n

7 AT e (a is an arbitrary n-column vector) 2n

8 AA e

9 AAT a*T 
store in 3

10 T a I - A AT e *T / [first element of A AT • vector] store in 9

11 AaTA 
store in 6

T
12 [first element of A A a vector] I

13 First column of S(k+l/4-1A - A AT a / [step 124 store in 8

14 To complete the S(k+1/kJ matrix, ste•i 7-13 viii be

iterated (n-1) times. Since the dimension of A and T

are effectively reduced by oa. at each iteration. the

number of operations for:
7 & , (n4,) (a+lI

Lai
n

126 13 r WO-i

t -i n

"15 b(k+I) 
n

"16 y(k+L.A ) ST(k 4 l/k, A) b(kl+) store io 13

17 S(kh+l/tt T y(keL* 
n2

19 y (k+4lso y(he 
17

20 K(k+l, 4 - 8(k+L/k, 4y(k41, Q/yT (k+1.,4y(k.1, Ot(k+,) astore t 17

21 s(k+t) 
I

22 bT(k~l) t(k~l/k,4 
I

23 i(k+tlk+l. I"t(41k, 4

+ . a[t(fr41)bt(k+1)t(h~l/k. a store in 4

i••.•ii(C,•t•nud)
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TA3LE 6 (Cant inued)

Stop Computation Sequence Operation Storage

24 I- T (k *Ay~k~,I) / Cy(7Tk~4 l,,y(k4.l, + r(k+l)] 1 store in 21

25 -1 + (1y~-llyk14[Tk~.Iyklt+~41 q store in 2~4

26 a -(step 25]/Cstep 19]1 store in 22

27 y(k-+1,.4 yT(k+1,1) a store in 15

28 ory(k41,O JD T(kI.jfI n store in 27

29 S~t+1/k4Ic+,A S(k+1/k,l)[1-ey(k1lg yT(kIc+,P)J n 2  store in 2

Total n 3 + 3n2 + 6 n+ q +2 5n2 +6.n+5
n n n2

+ 2 Z (n- I) + E (n-uz) (n-1 -I) + E (n~m) (n -i)2
i-i i-I i-I

TABEL 7
Computational Requirements of the Cartoson Squats Root Filter

Stop Cosputation Sequence Operation Storage

I R(Ik/,. n

2 S(k/k.t)a
3 j(k+I,k) 1

g (k+lIk.JO * (k4l~k) 2(kIkt) n2 store in I

5 Q(k+I) I

6 (k4Ilk) S(klk, 1 n 3  store In 2

7 #(k+l.k) S(k/k1.O STQk/kjj 4(k+l~k) n3 store to 6

n-2 n-I

8 5+1/. 1 r -1 0 +1r01

t,(k+I,k)S(k/k.J)5T(k/.4l(k4~l~k)4Qt'k4.1)I + (N-2) + (n-U~q

9 h(k41)n

10 y(k.1,k - ST(k+I/k,J) h(k~l>

It SW4I/k, 4 y(k+I, A 62

12 r(k~1)

13 yT (hkI,,1 y(k+i1 .4a

14 l(k~l.~ 4-(k5I/k. D(01.4 I/I ty(k4I.~(khI 4+t(h4I)) n stw# t Ia I

15 20+0I 1

16 h T(k+I) MO+14.4,I

*17 t(k.lkl 4a9kI/k.I. 44 s~+)-h kI44k/k, 9~)) star* in 4

16 y(k4L, 4 t (k+ilO 4 storp to 9

19 1 7k1 T k~,Jt T kI~(~.~~4) store to 3

20 [t - y(4ksO.*y(kL.O)/(y?(k1,Ly(k+.I.r(k4+L)1)4 o sas se top a store Ln 1t

*21 S(keI/k.l4 f) s(k4Ifkk,*(stop -201 : 00a-0i-0) stor* its 7

+ 2 E (tI-i-i) + 2(u-2)

+ 2Cu-k)q + (4

+ T.1
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TABE
Computational Requirements of the Information Filter

Stop Comnput:ation sequence Operations Storage

1 Qd(k) (kl),n

2 P- (k/k, 4U

F -(k) a

6 -1(k)(Fk) + (klk)1 s3tore in 8
1-3

10 P- (ek1I/k~l) - F(k)-F(k)(F(k)4Q- (k)] 'F(k) U3store in 9

d3

13 d(k41/k,f) -(I - 7-(k+llk,4DQ(k)] 7Tk.k;/kiU2strin1

14 (k+l)

16 a(k+l) U

-1 2
17~l R~k+1) n a store in 104

Total 11 4 2 4 2 + a ++ o,

2 2

Comuttetioaa 1 qt4rement* of the Chsaftesokhor Filter

Step Computation 6eqtw-"C* Optroitios Stores*

1~I tk) P

2 #(kl.1k) n2

3 f(*eIk) 2(k/Ii) a 2 starto.

i5 A'(k-2) 0 0

46 C' (k-2) 62

I0 24- 10 240 Iw stor. to

12 04- 107 21 , owe *tor to

*Cktidk41t) A (k*I11b) * (ktI)l(skft) N i (k1/k)) a tr to 3
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TABLE 10

Computational Requirements of the General Partitioning Filter

(in addition to the "nvoinal" Kul•an filter computation)

Step Computation Sequence Operations Storage

1 1n(k-1/k-1,AO n

2 #(kk-l) .2

3 11(k) m a

14 Eq-16
22S%~(k/k-1, A) n2

6 1(1) 2

7 Eq.127 M n n

a P - (k/k-1,I)
a

2
9 Eq. 128  U am am

10 Eq. 1 n2m a2
2

11 On(k-1. jO e

12 Eq. L 23 2+ 3,% + 2=2 a2

13 Pr()C a2
3 .2

114 Pr(-' 0n(k~l) U a

15 (Pr(O 0(k.1)+) 1)" -(d 3 + 3e) + q store in 14

16 Eq. 122 a3  store in 15

17 HI(k-l,2) U.

is Eq. 123 a+ %  + u 62  store in 17

19 P; (4A n

- Eq. L21 426 + A3 store in 20

22 Eq. 119 02 store in I

23 Eq. 120 2a3 n2

Total ft 3 + As"+ 1) + zn 02 .a

+ j(o 3n2)+04 4 M 0

4Ompotationa1 11aquircmaore of the SIX3 Filter

Step 0CoUtatio• • equ-a4,. C.eretiont stor.8.

1 ft (klk-1) ni

2 r hk1)2

3 * 1 Qtl~k) a

14 Mi1(k) qt P

U '(k) to(k) Ulm eet ,SMO II *tot* in h

6 L t(k)A

!V~k i ak)q •7 ; ui(k) U1,(k) 2• s tor,. to6
*; Lt L(k) qt

.1 2etain
U L I, L(k) pi asoet

2 1
1i . q(t e etIi 100

12 at (k) 'I
-1 2

I~l ~ 2(b's1 ls e to' 12I (Coetlatwd)
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T-AI&I1A (Continued)

Step Computation Sequence. Operations Storage

2
14 Ri(k) q

15 1fj'(k) Ri(k) 2T k) store in 1.4

- 16 Eq. 172 2n3  216 E. 7 2nt + a i(3qt-pi) + nt(q,-pt)(2qi-pi)
2 3 store in 2

+ n Pt + (qj " Pt)

17 1q. 171 2n2(q 1-pi) + 2ni(qi-pi)+qi+(q-pi) 3  Di x (q1 " pi)

18 Eq. 162 U2 + 2n store in 1

Total 23+ q3 + 2(q1 - p,) 3 + n2[t + 5q -3p] + p2 On 2n2+ + 41P
22

+ q411i + 3h) + qi - 3ni Pi qi + 2ni( 2qi -Ppi) + Pi + 2% i

a asllreStte systim di~menion P, i nteractive measuremnt dimension

ni • local system diemension qi local measurement dimension

stop 5; Of the SIJJ Filter Computation Sequence (Itef. (91])

Mecht"n fxtcution Trms (sec.)

M3. 370/195 (&rgoanw Itatl Laboratory) 1.0

IM 360/75 (University of Illinois) 9.7

IMK 360/f* (AMS Laboratory) 17.0

IS4 370/165 (University of Tworoto) 2.6

UM 370/168 o• 3 (Stanenrd Uvtersity) 2.3

tsrrwahe 6700 (U•ni•raity of Clitformis. Sao Diego) 82.0

CDC 660 (irtlmtd Airfoft. Us*) b

CDC Cybor 175 (NASA Lagley tesasrth CAfter) 1.2

CDC 7600 (t•tuifal Center toa Atomophrt lAsserth) 0.7

CDC 7600 (Lawrtwo Ltve r. Labo•atory) 1.2

COD C 00 (Worthaasto.r Ualverslty) 15.0

CDC •0/00400 (1%r. Ueivteitny) 17.0

CDC am0/100 (Vaveretty oW Toam) 5.2

Honeywell 6070 (111 Laboratories) 9.6
Uaiva+ 111 (latvtraiot of VNiscouai) 7.7

M PW - 0 OVate Vot*retty) 79.0

A MA 4M/Vf6 (Usivoretty of Nicbigan) 2.1

Si.

i " eautatitlse 3alrslfamataofe tb. S8. Piltet•

S"Step C~autmatioS Saqmuae Operation. Stores.

3 flO/k) at

. str ik) 2
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ZAAI" (Continued)

Step C�utation Sequence Operations Storege

�+ (n� q1 + a 2 2
7 Rq. 186 q1  q1)N

2 2 2
8 Eq. 190 n1 q�+2n 1 q1 +q1  n� �
9 Eq. 189

q1 +2n 1 q1 +(a�+n 1 q1 )N store

310 Eq. 192 2n� store in 2

3 2Total 2u1(N+3) e 04(1 + 2q1 + N + q N) 3n2 + a
I I

2 2 3 2 2+n1 (q 1 N+2q1 +2q 1 )+q 1 +q 1 +q1

N winber of subsyAtma q1 � local measurmut diuenaioiL

* local syati. dtue�:Ionii
XM�JI

?reada i� Spead of Computer Operation.

Oper.�tiun 1980� ago)

Load 2 1 0.66
Multiply 10 6 2.86I Divide l� 7 5.61
Add 3 P 1.5hr
Store 2 2 0J�h
Increment
Index
Register 2 1

The question @1 how to attain computation efficiency ha. p�as1.d many eaglnssrr de.plt. the fact that.
many a:t�ee have been mmd, to present guidelines ab to which algorithm Ia the best (moet effIcient). The
enever Is atill i�secIse. sac, it depends on fOctors such as operational computer paremetere (Inetriattina
set, word length, cp�i tiOc, etc). pwresining method. (elogle ut double precIsIon, linear or sultl*
dimension srreys4 exp.lottatioa -of a etric and spates matrices, etc.), the alga sad coimplexity (cross-
cou$iug) of the transition matrix, end methods d processing .aasuremant .4ata (aluultaaaoua, subgroup,
saiue.tiSl. dec.ntrslieed. *ec.).

The pairpoec of this paper is to provide en ordet-uag�1tud. appro�dut*oa on computatioosl requirements
of various filtering algorithm. vithoaat making any epecitic rec�sdatioae ma to which one is the 'btst'.
R.aults are given in tabulated Iog� (table. 1.12). In uclig these tables. caution nuat be exercised (es-
pecisily vbea comparisone ate made among a1�orla'ima) since tie)� era not - sad cannot be - compiled on a
uniform basis. VOr eiauple, herman's StEP Lad Vactoriced fitter. ste dealgoud for the proteesing of
ae�uentiei meseutement data of a cero otde.r dyamic cyatem; the Part itionlag filter is designed tO deal
vith uaknowm parameters sa veil as state a�stQsatloa. hence this algorithm I. efficient in the sense that
C separate adaptive routine (a nOt needed. The 0ecen�re�iaed Iilter�is meet approprist. for large-scale
bait decompoced aubsystems e�ipiicstioo; it is efficient in the sense that computer operations are lee. for
a act of stibsystesa than that reqvired for the eggregate systpe. Therefore users of theta algorithms awe
advised to perform coet-.fiectiveaees trade-off studies sccordie�g to given situations - before deciding
ukich algorithm to be selected. It a hoped that this paper alote provide sufficient infoematto. for such
trade-oft atiadies.
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SUMMARY

Implemental design ef real -tine estimators is viewed so; .hc~ mapping (mechanization) of estimation
algorithms into A softmare structure iesigneA to function in a real-tie environment. This means
meeting real-time conrtraints of the problem and overcoming the lia4.stione of hardware while attaining
the specified functional performance. Use of a microprocessor or a distributed system of small computers
as hardware imposes additional constrainta on mechanizatior of real-tie.-e estimators: the "smallness"j of individucl processing elamsnts, arranged in a loose federfitton, must be overcome.

Distributed hard~ware architecture is suitable for a clasp; of real-time control systems, built
around an estimator, that do not require sophisticated and centralized management of resources. Such
systmes are designed to work under predetermined maximum loading and ire characterized as being boundedly
loadable. Small- to medium-scale estimation schemes used In navigation, guidance, and control application&
typically belong to this class.

The article proposes the use of multiprogrammed processing, supporting execution of concurrent
processes, as a s;Aitable proces~iln& en-ironment for real-time estimators which are tc, be Implemented on
the above described hardware. Cnnc..rren. processing is presented as the basic technique for
overcoming the hardware limitations and for meeting the real-time constraints of the estimation problem..

Design of a decentralized real-time operating sy~twr for controlling multiprogrammed execution of
processes in a distributed system is outlined next. This operating system consists of autonomous,
local real-time executives, which operate under fixed allocation of resources. Process scheduling snd
communications are discussed.

The established structure of real-time software and process control can thun be utilized to mechanize
estimation algorithms; as concurrent processes. Several knowin schemes for decomposing a Kalman filter
Into concurrent processes are illustrated.

I. * INODUCTION

A. TECHNOLOGICAL PERSPECTIVE

During the last decade, adoption cf microprucensora and distributed systems of micros as hardware
for implementation of real-time estimation -:hqe*e has proliferated the use of Kalman filters in new
and. unttl recently, undreamed applications. The new hardware technology and improved theoretical and
implementational understanding of Kalman filters have vide many of these applications technically
feasible. Due to dramatic decrease in the coat of hardmire. Kalman filters -even In applications for
which a few years ago only a very crude estimator would have been considered -have become economically
attractive. In many newly emergin~g real-time control systems built on the methodology of artIfi-1al
intelligence, Kalman filters Vill continue to play a central role. The new artificial intelligence
techniques will enable the system to *soee and perhaps, to some extent, interpret its own environment,
However, the need for a mechanism wbich would estimate the otate of the system will continua to persist.
In fact, such future systems will place even :.igher technical demands on estimation, portly due to
increasing availability of smart mensors (deaij~ns of which also exploit the microprocessor and special
chip technologies) and of expanding variety of measurements free such sensors.

We complement the above Introductory philosophical remarks by quoting k.K. Sayth (Soayl, who states
that "great change#, propelled by lotcroproceiseor technology, are sweeping avionics and control' sod
that they will continue io the dec.&..e ahead. Ue further Identifies the disciplines and technologies
which, according to him, will scat likely Influence the next gonerarion of systems. They are MNAVSTAR/GPS,
ring-laser gyro., ai r-ttaffic'-control update, digital fly-by-wire, full-authority digital propulsion
control, flat-panel displays and integrated dstacontrol centers, modular and distributed4' avionics a~chitecture, cost of airborne data proces~nX, digital hoses1 including potentifil Of fiber
optics, modern control theory including Kalman filters and optimal-state estimation, direct digital
synthesis, high-level sot twsr* languages, YLSII'?dSI circuits, and actuation and power-gonerstion devices
made possible by new rare-earth magnetic materialo..

Successful integratien of such diverset factor* requires a multidisciplinary approach If the potential
synergits is to be exploited. This requires that each specialist member of a multidisciplinary design
teem understand the other cifeciplinso affecting 'his aspect of design. As an exataple, consider a control
specialist who is a member of the team entrusted with the design of & real-time estimation schema.
Such a person should be capable of not only performing his traditional functtons (such as selecting an
appropriate system eodel and the right estimation algorithas ) hot also statittg the functional reqttiremansa
for sensors (whose seasiteaents the estimation scheme is to use) or specifying the sechanitation of
estimation algorithms in the fots of real-times oftwa're. Current digital technology makes designing

smrt sensors, capable of aiding the estimation pro**@s, a practically attainable goal. (These are
th sensors capable of producing not only the basic estimation measurements but also seem system identif-
ication data. Having such extra information continuously furnished to the estimator may preempt the



formidable problem of determining the parameters of noise statistics unider severe timing constraints.)
In the same vein, understanding the possibilities offered by recent ideas in operating system theory
en'ý software engineering may greatly facilitate the transformation of the mathematical model of an
estimation scheme (i.e., of estimation algorithms) into robustly working real-time software. This
latter aspect of real-time estimator development in the main topic of the present exposition.

B.* IMPLE14ENTAL DESIGN OF ESTIMATORS

Development of Kalman filters (or, more gonerally, of recursive estimators) for real-time applications
roughly involves three aspects of design,. system modeling, algorithm design, and implemental design.
S4ystem modeling, although critically important, is very dependent on the problem at hand and so it is
not discussed in the sequel. In a wide sense, algorithm design addresses not only the design of kernel
estimation algorithms but also the des-ign of complementary procedures, such as one whose function is
to detect and then respond to detected nonwhite noise in measurements. Algorithm design is extensively
covered in current literature. The esae cannot be said, however, about the implemental design, i.e.,
About the process of mapping the algorithms into a system of software procedures which, when executed
on some target equipment, will interr~ct correctly with the euvironment and among themselves and also
will satisfy the real-time constraints of the problem. One possible reason for this paucity of attention
in literature to implements'- design of real-time estimators is that it cannot be discussed in a
mathemaetically concise way. The other reason, which is probably more fundamental, is that it has bean
viewed as an exclusive domain of programters.

C, SCOPE AND OBJECTIVES

The present article addresses estimation and control system specialists who mainly are experts in
* system modeling and algorithm design but who also would like to learn more about transforming their

designs into working real-time schemes. ki it will become evident from the sequel, such a control
specialist msnt depend on system programmers or on software engineers who also are members of the
design team, for advice and contributions. Since the design team is often led by the control specialist,
it is important that he know how to communicate with his software counterparts and state the requirements
for Liqlemental design. Thus, one of the main objectives of the present article is to help a control
specialist Acquire the technical background for performing these functions.

The level ol the present article is introductory: we assume that the control specialist knowse
* little about the designi of real-time software, especially about its processing environment.

Hence, in the sequel1, we do not discuss a wide spectrum of design possibilities In generality but
rather concentrate on a few approaches that have been experimentally proven to work, explaining them
sotectimes in detail. We feel that this will enhance the tutorial vaiue of the exposition. One aspect
of implemental design, which is stressed, in the real-time process control environment for estimation
algorithms . However, this Is not intended to be a general exposition of real-time operating systems,
so hi~re again we take a narrow path through the labyrinth of istues concerned with operating system
and software engineering design.

We further narrow the scope of discusbion to real-tive estimator design for implementation
on distributed microprocessor systems, although we use the term mwicroproctissor" generically. it
refers to almost any smell computer. IHowev~~r, this restrictive assumption about hardware has implications
on the class of control systems considered.

0. BOtINDEDLY LOADALE VS. NONSATURAbL.E SYSTEMS

Currently, distributed vyinttas of anall computers are used matinly for small to medium site control
systtems. Zxamples of such systems built around est~imtore are navigation, guidance. and flight control
systems, as wall as varioiii types of artificital intelligence systems in which the dynamics of system
state can be modeled stochastic'41y and must be estimated. We refer to such systems as bousdej
loads ale; 0ý., tey are a priori designed to take a certain maximum loading, perhaps Ikhe foa of
fiXed maximal 0-OUVO for ffifalUrtftnt inputting and proceeiaing. We do this for two reasonst (1) typically,
such controi Rystem. do not require sophisticated reoaourc4 allocation algorithms and so they ore easier
to understand; and (2) they ate the system smoat l1.ely to be imploementtd on the computers of the type

* considered here.

In contrast, we twNl tlso have cntw.,4ered estimator design for large-sca)e control system* which
ara #mart enough to eoalcr intelligeacly auy additionpl loading pest a sear-saturation point .o as not
to overload thamsolvos andl, at the tame time, to perform their %Jtsion in some optimal way. For

conenince weshall call them ponevaturabls systems. Various Lai~ge-scale air traffic control and
defense ,.yatems, discussed in literature 4ulnrig the sixties aol seventies. are examplea of the latter
type of onzotrol system&. A.tlraugh mavvy otwh iyotems use estimators an kernel algorithms, they would
.aot (4v-an nowadays) be latl'ated~ on dittributtd systtmes of .oli "ompuosrs. More likely, multiprocessor
airchitenttures, augawnted ,,c special (such as parallel) proceovorm would be Applied to such a problem.
They would Aans require the use of complex processing resource .llceatiin algorithms and. thus, of a
very different philosophy ri raA-tima pracosting contrsol froft the one presented in~ the sequel, The
use of spUltlticsted resovrcef i *ocattio probably would awke cenatreisd protecsirt control preferable.

4 Such Ovocossisq control schemes a-tý,hot only mot* difficult to t'oderetaud but also ouch mawn difficult
to .laLae.Istead, ws slw.l I d41ecribe what could be tharacterizod "~ a fixad aL~location, decentralasod
processing coatral scheme, iedeceatralitad* ow"~ the processing elemets 1 a. distributed system.

Th# total state of as nsA~t.urabl# sYstes if pertly 4sf uite in terms of Clam stawe of N objects
currently bandled (procoeesd) by the systoa. for ezeaplf4 if each object toprteseot a tracked aircraft,
0thestates of an object may coosist of the doesriptiou of itr position, velocity, to sumi patmeterts
Aa the number of handled objects ivtacroses sand as a nonsatairable system approaches'its saturation
point. the system most 4ectde (typically on the besis of some VIsk t.A~ction) *tc~h preasent objects
could be dibleted at a minimum risk in order t# create prooespaig .ýspmctty fur vnewly incooing and

At



possibly more critical objects. Often the estimation procedure for all N objects is nearly identical.
In such a tctuation, the use of large scale computers with parallel or vector pipeline arithmetic
units is attractive. This leads to estimators which differ in structure and mechanization from those
considered in the present exposition, for such large-scale computers can be best exploited if all N
parallel estimation processes are centrally controlled.

In contrast, a boundedly loadable system is a priori designed to handle no more than B objects,
where B is a fixed, small positive integer. Simple, fixed allocation, decentralized real-time process
control schemes are effective for boundedly loadable estimation systems.

E. OUTLINE

Typical microprocessor system architectures under consideration consist of small generic building
blocks, such as microcomputers, stand-alone direct access memory units, and digital interface units,
the latter needed for communications among microcomputers or with the "outside" world. These building
blocks are interconnected by means of bus systess and direct access global memory units. Smyth (Say]
mentions the DAIS and the Draper Laboratory Fault-Tolerant Multiprocessor as prototypes of such new
architectures. We shall loosely refer to such architectures, formed from "small" building blocks, as
"distributed microprocessor systems." Consequently, we begin (in Section II) by examining the implications
of microprocessor use on algorithm design and implementation. Then (in Section III), we proceed to
the problem of controlling in real-time the computational processes resulting from the software organization
recommended in Section II. Next (in Section IV), we review current practices of Kelman filter design
for real-time applications without paying too much attention to the complications imposed by the hardware
under consideration. The next section (Section V) addresses the problems arising due to hardware
limitations and timing constraints. It illustrates techniques for overcoming many of these problems
by decomposition of filter algorithms into concurrently executable procedures. A summary follows in
Section VII. Three appendices follow at the end: Appendix A summarizes the standard Kalman filtering
equations; Appendix B reviews the so-called U-D factorization algorithms for a Kalman filter; and
Appendix C states the estimation problem is GPS navigation, which is referred to in several examples
throughout the text.

I1. PROGRAMMNING FOR REAL-TIME DISTRIBUTED SYSTEMS

A. HARDWARE ARCHITECTURK

For the development of our main theme, we need a generic model of hardware architecture. Thus,
we view distributed system; considered here as built from constituent computers by interconnecting
these computers either through shared, directly accessed global memory units or through data links
(bisaes). These links may vary in speed, parallelism, and length. Obviously some distributed system
use both typos of interconnections, i.e., direct access global memory units as well as buses.

For our purposes, a constituent processing element of any distributed system under consideration
is assumed to be a small computer, not necessarily a "microcomputer" in the strict sense of the term,
which consists of a CPU (an instruction/arithmetic processing unit) and interconnection ports/devices.
It usually has some local (or private) memory and may also have special devices, such as a floating
point arithmetic unit, connected to it. In the sequel, such a constituent computer of a distributed
system, regardless of whether it is a microcomputer or a computer of some different type, is called a
2rcesing element (PE). As a special case considered, the entire distributed system may consist of a
single PE. If a FE accesses both global and local semories, then its instruction address space must
possess facilities to address both types of memories.

Another building block needed for the assumed model of distributed systems is a global data asory
unit. "Data" refere here to the read-write and random access properties of such memory, while "global"
emphasizes that such a memory unit Is accessible from at least two processing elements. In cons trast,
a processing element may have two types of local memoryt local data memor for storing the problem
data which does not have to be communicated to other procesig eleentisand local progra memoe of
the read-only type for storing the instructions of programs residing in that processing elemant. In
our model ot a distributed system, executable instructions of a program are always assumed to be stored
in the local memory of a processing element.

As an aside, many ideas presented in the sequel apply to hardware architectures more general
than one just introduced. for instance, we could have considered hierarchical distributwd systems
in which some processing elements themselves are distributed systems; or distributed systems each
processing element of which is a multiprocessor system by itself, consisting of several CPUs inter-
connected by common access memory modules. But the generic model introduced earlier, Ahich is simpler
and less centralised than the architectures mentioned in the present paragraph, coo be effectively
used with a relatively simple, fixed alloeation operating system. Furthermore. It is suffini.nt
for the applications considared here. Hence, it will be as#used In the sequel.

a. PRLOCESSES EXECUTED 10 A DISTRIBUTED 3YSTRM

The notion of a (coIputational) process Is fundamental in modern theory of operating systems and
is discussed In recent texts on ovoeratiftg systems and system programing (e.g., ICof 731, (Frel. (Gral,
and (Han)). It is also used extensively in the sequel to explain our models of real-time software and
real-time process control. The term *process' vill be used to describe the behavior or. say, the
dynamics of a computer program that is stored (or Is "residing") in a computer.

Freemen ([Fre). p. 108) further elaborates this concept by noting that "a program specifies a
sinrgle sequence of actions. VGen We admit the possibility of a program stopping before it finishes
execution (to vait for a signal or because the processor has been taken away frog it, for example), we
most associate with each progrm in execution some information that records its current state (what
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the value in the instruction counter is, where the program is in memory, and so on). The concept of a
program being "in execution," but not necessarily being executed at a particular moment, is what we
shall now term a process. Operationally in a system, a process is a program specifying a sequence of
actions and the associated information that represents its current state."

Thus, a single process is just a generalization, or an abstraction, of a processor moving through
the text of a computer program. However, one additional idea is implied: there exists a controlling
mechanism (an operating system) which is keeping track of the state of the processing resources (hardware,
data, and programs) being used by or reserved for the executing programs. Keeping track of the state
becomes important if the execution of a program can be temporarily interrupted by the operating system
in favor of another waiting program.

Analogous to finite automata theory, it is convenient to characterize a process by describing
the process states which such a process may attain and by defining the rules that govern transitions
among these states. When a program is in execution or is considered by the operating system to be
scheduled and executed, we say that the process created by that program is in an active state; otherwise,
i.e., the process is said to be in an inactive state. Typically, there is only one inactive state.

The concept of a process is a powerful tool for understanding, modeling, and designing a computer
i * system in which several programs reside in memory simultaneously so that the central processor of the

computer (which in our case is a processing element of the distributed system) keeps switching among
them according to some scheme or schedule. In such a situation, processes created by these ptograms
are said to be executing concurrently, i.e., interleaved in time. The resulting processing environment
is called multiprogrammed processing. This is the processing model which we assume for estimation
schemes executed on a distributed system, or even on a single processing element.

When a distributed system is operating, several processes may be executed concurrently.
Concurrent execution of processes can occur in several ways. On a single processing element of a
distributed system, for example, processes may be executed interleaved in time by dividing the time
line into segments and alternating the processes among segments such that the process which starts
execution at the start of a segment is interrupted at its end, at which time the use of the processor
is passed to another process. Thus, concurrent processes may occur under multiprogramming, even on a
single processor. Another form of concurrent process execution in a distributed system arises when
processes are executed simultaneously and possibly asynchronously in several processing elements of
the system.

The hardware facilities needed for data communications among two communicating concurrent processes
depend on where these processes are executed. If they are executed in interleaved time fashion within
the same processing elment, the local data memory unit of that processing element, provided that such
a unit exists, may be used for communications among processes; otherwise, a global data memory unit.
accessible from that processing element, is needed. On the other hand, if two communicating concurrent
processes are executed on different processing elements, then two (not necessarily mutually exclusive)
possibilities existi either a mutually accessible global memory unit is available or data links
(buses) interconnecting the system are needed.

* Designer of a real-time estimation (or, more generally, of a realtime control) system is
responsible for structuring his algorithms so that they result in computational processes which
properly cooperstv among themselvei in real-time; i.e., they are appropriately synchronized and
can correctly communicate (exchange) data. Selection of an appropriate programming language- Und
access to convenient real-time process management utilities (the latter to be furnished by the real-time
operating system) will make designer's work easier. Still, in order to be assured about the implement*-
bility of design, he must conceptually understand the logical consequences of process synchronisation
and communication requirements and must be capable of translating these requirements into his design.
The purpose of Section III in the sequel is to introduce process management concepts and techniques
that have proven themselves in implementation of real-time estimation scheme.

C. SOFNWARZ M4ODEL

Workload partitioning, algorithm scheduling, and memory sizing are critical tasks in design of
real-time control (in our case, estimation) systems for implementation under severe processin, constraints.
These tasks are begun early in the development cycle, usually during preproposal time investigations,
sand are reiterated many times thereafter until a design that satisfies requirement specifications
emerges. The capability to transform algorithas into working real-time software ts the key to success
in this endeavor. This process of iaplemntal design is greatly helped by having a suitable model of
software architecture. As will become evident in Section III, such a modal is also needed for design
of a real-time operating system.

The software model introduced next is the sequel is intended for a boundedly loedable system
which is to be Implemented on a distributed system of small computers or even on a single microprocessor.
This model ass-s that some extended form of FORTRAM is used as the prograng language. It is mentioned
later in the sequel how a softwere model for an ALGOL-like language, such as ADA, would differ from
the model to be introduced net.

MODRU

a. The entire real-time applications software Implmenting an estimation scheme Is partitioned
into a set of program and data sets.

b. Each program contains a main prtceduit- and my also contain subprograms (subordinate or lower-level
pmoeedures).

c. Each program can create precisely one real-time process (which may remain Inactive). so there
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is one-to-one correspondence between programs and processes. (This assumption is not too
restrictive for boundedly loadable systems implemented on small computers. Besides, the
resulting implerqntation can be more easily understood and tested than that of a system with
no restrictions on the extent of reentrancy. Here, a program unit is said to be reentrant
if it may be shared, or executed concurrently by several processes at a time.)

d. Subprograms of the following two types are admissible:

* Private subprograms - such a subprogram belongs to a single program and, by Assumption c,
to a single process, because it may be invoked only from that program;

o Shared subprograms - such a subprogram may be invoked from several programs and, thus,
used by the processes generated by these programs. Shared subprograms must be implemented
as reentrant procedures, but only as reentrant procedures of a priori known maximum concurrency.

e. Fixed allocation of programs to a processing element is upid: at design time, each program
is assigned to a single processing element and is never "split" between several processing
elements, In the event that software redundancy can be tolerated, the present assumption
does not forbid rssigning replica of a program (or of a subprogram) to several processing
elements, or even to a single processing element.

f. With Assumptions c and d, data sets of applications programs can be divided into three hierarchical
globality levels: interprocess (interprogram) cmnmunication data sets; intraprocess (Intraprogram)
communin.ation data sets; and local data sets. For example, when FORTRMA N{-( Oisbly extended
to handle 'limited reentrancy) is used as a programming language, interprocess and intraprocasa
communic'ation data sets are implemented as ordinary labeled CONMMON blocks; local data sets,
as locally declared data with special provisions made for handling local variables in reentrant
procedures. Furthermore, variables and constants are always placed into separate
data sets. In order to distinguish between two types of constants -- (I) physical constants,
such as the speed of light or the equatorial radius of a reference ellipsoid, and (ii) design
parameters, such as the length of a state vector, which may change as the design progresses,
but become constants by the time it is completed -- they are put into separate data sets.

Although the use of an ALGOL-like programming language, such as ADA [Weg], instead of FORTRAN
would hardly perturb the model described above, it would affect the format And the str'icture of the
source program. First, the nested block structure of ALGOL-like languages such as ATA would facilitate
hierarchical nesting of procedures (private to a program) and the corresponding nesting of dare sets
according to the globality (scope) of data access. Furthermore, ADA provides basic language constructs
for defining and implementing process control and synchronization mechanisms, such as the mechanism
for synchronized communications among concurrent processes discuased in S-ctlon III. (For more information
on this subject, refer to discussion of multitasking in (Weg]).

D. IMPLICATIONS ON ALGORITHM DESIGN

Adoption of distributed microprocessor system* as hardware has far-reaching implications on algorithm
design. In order to meet the real-tim response conatrainta while not exceeding the throughput capacity
of individual processing elements, the entire estimation procedura must be partitioned Into concurrently
executable and interacting processes. The main implications of the resulting workload partitioning
are that some algorithms will be decomposed into a set of concurrently executable smaller algorithms,
the functional performance of which will not be as good as that of the original algorithm.

In the second part of the prevent exposition, we review several common decomposition schemes for
a Kalman filter. It will suffice to mention at this point that for a recursive estimator, such as a
.Kalman filter, the covariance processing and the computation of Kalman gains are tims-consuming procedures
on a microprocessor and so may become prohibitively expensive if the microprocessor has no hardware-
implemented floating arithmetic and If, consequently, all floating-point computi-g must be performed

*7 in interpretive form. On the other hand, there may exist a requirement, or just a need, to process
the incoming measurements at a rate which would exceed the processing capacity of a processing element,
i.e., which would "bu~tt its time line. As explained In the second part of the present exposition,
this problem has several solutiois, each of which results in suboptimal performance.

According to our earlier characterization of distributed microprocessor yestems, it would seem
that such a system could be incremented In small steps by adding to it, on the basis of need, processing
elements, global data memory unite, and other special boxes, besides, hardware coats are relatively
low. Then what are the rea~sons for having to struggle with an austere hardware budget? The answer to
this question is that, in estimation applicationv considered here, severe constraints ar, typically
imposed on -the power consumption, vclume, snd weight of equipment. Besides, if the equipment under
consi-deratlon is to be manufactured in large quantities, even small savings in coat per unit count.
Another reason Is the etalIness" of individual processing elements. For example, a single elment
nsy not have lutbletnt throughput capacity to acecom4At* a Kalman filter with a minimally acceptable
rate of measurement processing. On the other hand, we may not want to split the filter algorithm
among two processing elements 'for reasons such as the complexity or degraded performance of the
mdified algorithm.

Z. rAi OXOIu OF WORKLOAD

utin a design cycles the processitg workload resulting from algorithms Is s"vtal times
rmpartitioned into concurrent processes until a satisfactory partitioning is obtained. We say that a
wotkload partitioning is acceptable if it (1) satisfies the overall hardware buds -t1 (i1) dote not
overload Individual processing elemental (iti) yields minimally required or better execution -etes
to tim-critical algorithom; (iv) dos sot appreciably degtade the functional performance of algorithms
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through their decomposition; (v) does not excessively complicate the overall structure of real-time

k •software; (vi) does not cause too much real-time processing overhead through introduced concurrencies.

It Is difficult to satisfy this long list of requirements without some compromises. However, the
first four are essential to the implementability and performance of design.

Workload partitioning is a critical design issue in distributed real-time processing. Thus,
several years ago, when the interest in such processing began to emerge, attempts were made to formulate
the principles and derive the algorithms for optimal workload partitioning. Samples of work from that
period are [Gyl 76] and [Jan]. Later design experience showed that it is best to take a heuristic
approach, roughly based on the following principles:

(1) Distribute the workload over the processing elements (PEa) so as to ain!.&ize the level of
commumications smong the processes executed on different PEs, thus minLAizing the inter-PE
data traffic and the use of global data memory, while not overloading individual PEa.

(2) Decompose the workload assigned to a PE into processes so that the tasks that must run at
about the same rate and can be executed at about the same time are assigned to the same
process sad thus are implemented as part of the same program.

(3) Guarantee that all time-critical algorithms (in their original or in a decomposed form) will
execute at acceptable rates.

Ideally, hardware requirements should be stipulated as a byproduct of completed workload partitioning,
but in practice this is seldom the case.

It should be evident from the foregoing that quantitative prediction of processor and memory
loadings must be obtained for each candidate partitioning before it can be evaluated. Thus, the activity
called "software timing and sizing," is very critical.

F. PREDICTION OF PROCESSOR AND MEMORY LOADINGS

Real-time system designers often refer to the task concerned with the prediction of processor and
memory loadings as software timing and sizing (STUS). This task produces input data for workload
partitioning and also evaluates candidate partitioning schemes. So it is reiterated several times
during the development cycle of a real-time system.

Load prediction requires much clerical effort (compilation and tabulation of input data, performance
of arithmetic, and generation of reports). Hence, these tasks must be computerized. After this has
been dons, the effort is essentially reduced to derivation of exeCuLion timing and memory occupancy
data for individual modules of the currently tentative software model. Once the STUS data base has
been established by entering in it the initial timing and sizing estimates for Individual mdules,
from then on it needs only to be updated as better estimates become available.

Even the derivation of execution timing and meory occupancy for individual modules can
be expedited by mseoa of automated data processing techniques. As an exsaple, the following methods
have been found to be usofult

(1) Extending the compiler of the programming language to enable it, as a byproduct of compilation,
(I) to segment the source code into block*, each block ending with a branch operation, then
to tine each block while uring an inputted timing model of the target machine; and (it) to
•estimate the memory requiremects of each module of executable code and of each data set
defined in the source code.

(2) Using an instruction-level Simulator to derive a timing model of each program, based on the
a priori inputted probabilities or on the exparimentatlly observed frequencies of various
execution paths.

With the information provided by (i) and (ii) of Method 1, so experienced analyst can quickly
time the moat critical execution paths and compute the mesvry requirements of his softuere design.
Method 2 produces a probabilistic model of processor loading ind data memory occupancy, and so
its outputs in a sense complement those of Method 1.

After either (1) or (2) has been sceomplished the first time, the obtained processor timinrf aai
memory siting date can be entered in the ooftware model data base, Thereafter, as the design progresses
toward taturity, this model and the processor and memory loaditg prediction for it need only to be
iteratively refined.

The toeboliues illaetroted ob~o•voseppose the availability of som source code. Often, the
source code of key a1lgritim become dAtilable early during the developmnt cycle and can be used to
bootstrap the timig aed lsung process by mams of the ahove described techniques. Typically, these
algorithms are progtramed early in the high-level language of the ultimate real-time code for
performance analysis siluations on a large computer in nooreal-t im mode.

In the event that the source code of key algorithms is not available when the timing and 9i2in4
process must be bootstrapped, one may resort to mathematical timing and szling odalae of key algorithms.
for a Kelman filter or a similar estimator, such a model is formulated in terms of the state vector
and measurement vector langthat it predicts the tiaing in terms of basic arithmetic operation cots
and the memory occupancy in terms of memty needed to store the principal vectors and matrices,
References (Nayl, [Tho], and Ilia) coutatn such loading prediction models for the estimation algorithms
considered in the sequel.



5-7

G. DATA IDENTIFICATION

Experience in implemental design of real-time estimation systems has taught a bitter lesson
about the identification of time- and source-dependent data and events. Implicit identification
techniques, based on the order in which data arrives (or is generated) or dependent on the location
where it is placed, are often favored by novice designers. But they are dangerous: some data may
arrive late or never; some sources may intermittently fail to send data: the implicit identification
of data by position in an array may be perturbed by the deletion or addition of sources. Also,
implicit identification techniques lead to rigid and cumbersome implementations.

Explicit identification of data and events and recording of their reference times constitute
a safer approach. It also leads to a more flexible implementation in the sense that the meaning of
real-time data no longer depends on the time when it becomes available and on the memory location
where it can be found.

Technically, eirplicit identification means that every data group (or record of an event) which is
time-dependent is tine-tagged by its reference time. Similarly, every source-dependent data group is
tagged with tho identification (ID) of it* source. For example, suppose that a real-time Kalvan filter,
used for target tracking, operates on range and range-rate measurements of tracked targets. Then
every simultaneous batch of range and rauge-rate measurements is time-tagged, say, with the estimated
time at which the radar signal is reflected from the target, or with the oiaerved time at which the
signal is returned. Furthermore, as new targets are detected and go into tracking, they are assigned
explicit and unique target IDs.

To facilitate the time-tagging of real-time idata and events, a clock is needed. Such a clock,
whi(:h will be called system control clock, is usually hardware-implemented and is driven by an oscillator.
The time of this clock must be available to all processing elements of a distributed system. In Section
I.I.C, we outline how the system control clock can be used to synchronize processes over the entire
distributed system. Such a clock would be needed even in a umiprocessor (not necessarily multiprogrammed)
real-time system. Computational processes retrieve the time of this clock by calling a special subprogram.

H. SOFTWARE DEVELOPMENT METHODOLOGY AND TOOLS

During the seventies, a great deal of progress was scored In the areas of software engineering
and software development management. Some of the events contributing to this progress were the emergence
of a robust programing style, known as structural programing., of software development management
techniques such as the chief programmer's team, and of computer-aided software development and softwsre
management tool* such as Interactive program velopment terminals, data base management systeeM, or
programing languages amenable to structured progremaing and concurrent processing.

These techniques and tools are useful in development of real-time software for the sultiprogramcd
processing environment, but they ere well covered in the literature and thus are not addressed here,
The only thing which we want to note is that software development, especially its teating and validation,
for the applications and processing environment addressed here requires a hierarchical sequence of
simulations.

One starts with high-level tumctional simulations of key algorithms in order to validate their
performance and to determine the required proctsslng rates. These high-level simulations are usually
put together and performed by the control specialist rtsponsible for algorithm design. They atr
performed off-line, (i.e., not in real-time) on a large-scale computer system. The insights obtained
from such simulations facilitate the timing end elsit* of software and the pettitioning of wor&Iloa
for reTl time.

As the design procets progresses and as the cootrol specialist beins to think about the implmentsttion
of algorithms for the real-time processing environment, he starts (6ile guided by the sefdbAck
from the performance analyaes, the tentative workload partitioning scheme, and the results of ooftvare
timing and siming) to modify sad restructure them. In this effort, he continu*s to use
the off-line simulator as a teethed. If this Iterative process of design reflnsmnt to continued IoN
enough, the modeled real-time software and algorithms begin to look sore and more siailar to the ultimate
product. Ar the saw time, the level of simulations pogroeselvely goes dow as more details are modeled,
siulated, and inveatigted.

SUltimately, the off-line simulation process eventually roaches a point of diminishing returns,
primarily because of the difficulties in creating sufficiently realistic siaulatio scenarios, needed
for complete validation of design, and in modeling with fidelity Interactions amog concurrent processes,
Also at this time, pertly teated real-time softwore for the target hardware usually become available.
(This availability can be speeded up by copying pertinent portions of off-line otwulatioa software and
than embeding the copied software into the ppoered control structure of real-ti-t s0ftwore.)

The nut stop ts to switct to on-line (or real-time) simulations In which the actual teal-time
hardware and software are driven by special test qugipment. In order to "eTve its purjoee, such test
equipment must

N ft capable of generteoti (or acquiring) at real-time rates the omweurmnte and other system
inputs that would be highly similar, if not identical, to the actual mesursemets (inputs)
of the target operational system.

a Fooessa built-in facilities for collecting and repottitw performance data.

Por comparison, it is desirable that the performanece analysis reports generated is simulations
on the special teat equipment be designed to lock similar in fotm and conteats to the performance r"ports

-- --Ie
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generated in off-line simulations. Finally, for testing various failure modeA, the special test equipment
must be capable of generating a wide range of extreme measurements and inputs. Examples of such special
test equipment are briefly described in (Dan] and [Gyl 801.

III. CONTROL OF REAL-TIME PROCESSES

A. INTRODUCTION

Modern theory of operating systems, based on the concepts of process (task) and of process management,
furnishes powerful tools for understanding and designing not only operating systems but al;o the applications
software executed under the control of an operating system. (In the sequel, the term "applications
software," in contrast to "system software," will refer to that portion of real-time software which
implements control or estimation algorithms; analogous meanings will also be assigned to "applications
program" and "applications process.") In real-time aultiprogrammed computing, the applications processes
are more intertwined with process state control than in non-real-time envirorment. Hence, the designer
of such applications software needs to understand certain aspects of process management in order to be
able to come up with a working implental design. In contrast, a casual noureal-time scientific
programmer, who programs in a high-level programming language, rarely needs to know smuch about the
operating system beyond specifying his Job to the operating system, getting it into the computer, and
writing input and output statements. Thus, he can perform his functions nearly without any understanding
of the actual environment in which his program is executed.

Understanding of the following aspects of process management, we think, is essential to a designer
of a real-time multip-ogrmsed estimation (or control) system: resource allocation, process
synchronization, process scheduling, and interprocess commmications. Hence, the purpose of Section
III Is to review these as well as other related aspects of process management. Although it is not our
intention to be digressed by a lengthy exposition of real-time operating systems, discussion in the
sequel is essentially self-contained, (We shall henceforth use the term "real-time executive' or its
abbreviated fora "RT executive" to refer to a real-time operating system. We shall also use the
term *process management" and 'process control" synonisously.)

B. FUNDAMETAL ISSUES OF PROCESS KAwAwwr

In the deecript-"n of software model for a distributed system, we assumed multiprogramming,
as the processing environment in the processing elements (PEs) of such a system. We also noted that
concurrent processes executed within a processing element or in several different processing elements
cmmr•lcate among themselves via an exchange of problem fnd control data. The present section review
fundamental lasu~ea- of process *ansgemant in the mult iprogrammed multiprocessing environment in order
to establish a perspective for the deaiqm approach described in the latter parts of Section II.

'Tese fundamental Issues, well known in operating system thenry, are mutual exclusion,
s hnjoaation, deadlock* and their prevention, and interprocees communications. Ur'tIas rexiosr and
c iUti on p•rimflit 1-- .'e pteoented as. technique for Implementing mutual exclusian
synchronization. There tro two additional issues of process management, allocation of memory resources
end alloc#aloo of processor time (or scheduling). which will be addressed in Sections IIt.C through
111.9. De to the limitation of space, this exposition of fundamental Itoues is sore concise then it
ought to be. The issues are di6scused only to the extent needed to make a control specialist awre of
their exitetnce and criticaltty. tor amore detailed expoeition, the reader to referred to recent
texts on operating systoes aW system progrming such as (Ces 731, (Fr.], (Oral, Iaen), or tMad!.
(ltvl and 14re) sre readable, elementary expositions of the topic, writtat, mainly for aspirin# system
pr-o rse•; •|ltauad. (Mad are more detailed but still elemntary t eeat, leas edvnced than (Cot;731.

1. crititcal meions

'Consider *-computer program, say WOGjj, and the process Pj created by execution of this program.
A critical region (C() of program PROG is an executable segment of instructions ti F9OGj, the
*ex t4 a ofvhIo. "Y ptodazca unpredictable and vsryiti results If the values of some variables
teferean•ed ft'o withit this (R are changed b7 another process, soy Pk, haile Pj Is executing the CK.
here, .Phis aeteutd to be a process concurtrent with P* This msy occur It (0) we do not know anything
about the relativo epeeSd of processe* Pj and Pk and 62) we do not program VO0j sad PRO~k to as
to pr~vet -tha unprtedittable results.

if it the illustration of the preceding paragraph C~j and Crk are critical regions in programs
VIOGj and PMOk, reapectively, then two mutually eclusivte possibilititez s tret either Ckj and Cltk
are critical with respect to each othet (due to accessing of the seam date set) or else Ck• and CRk
a•t' mutuelly, exclueiv because each of them eccesess a different data set. fleace, to order to be
precit's odt i crittcal rieos, eon must ale• pepcify the data set with rpsct to wtich the CR
Is critical. In the preceding paragraph, we could hae dons it by witing CY(D) and C•D(), where
o would have referred to a mutually scesesed data set.

"The nist example illustrates the use of critical rslione in a Wranma filter.

:IAftl: Umpredictable results is a parallely mechanized Kalmse filter.

. -""' -u•o that:

41 Process P0 propagates the state vector s, predicts the measurement vector., stores (perhaps
occasiorally) in a buffer the data needed for computation of linearized state-to-%mvvurasent
*, trantsformt tonsg. computes residuals rtrieves Wean pgas I coputed by proceas Pe. mad
appleUs them to update a.
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0 Process Pc propagates the state error covarlance matrix P, retrieves the data for computation
of H, compute& Kalman gains K, and updates P.

Two segments in program PROGs are critical regions: one [say CR, 1 (H)] contains the code for
storing in a record (from which PC reads) the data for computation of H; the other (say CRs 2 (K)]
copies (from the array into which Pc writes ) for its own use the Kalman gains K computed by
PC. Similarly, there are two corresponding segments in program PROGc which also are critical
regions: one [denoted by CRcl(H)] retrieves the data for computation of H; the other (to be
denoted by CRc 2 (K)] stores the computed Kalman gains. If the relative speeds of proceses Ps
and Pc are unpredictable (even if they are executed concurrently on the same processing element)
and If no precautions are made to synchronize or othervise regulate Ps and Pc in accessing
mutually accessed data, then the results are unpredictable.

Section III.E reviews interprocess communication techniques for preventing such disasters. The
preceding illustrations lead to the first fundamental issue of process management, mutual exclusion of
communicating processes, which we discuss next.

2. •ittual Exclusion

Mutual exclusion of interdependent processes (of each process with respect to a mutually related
critical region In its generating program) means that no sore than one process can be in its critical
region at a given time. We say that a process is in a critical region if it has already started the
execution of the first executable instruction of this region but has not yet completed the execution
of the last. Actually, the statement "the time when process P is in a critical region CR" refers to
the entire time interval during which the above defined conditions hold, i.e., to the time interval
spanned by the following two events: "P has entered CR" (P has started the execution of the first
Instruction of CR) and "P has left CR" (P has completed the execution of the last instruction).

We assumed in the above the principle of indivislbility of instruction execution. According to
this principle, execution of an instruction,-such as storing a quantity Into a memory location or
reading one from It, is an indivisible operation in the sense that the action performed by such an
instruction cannot be interrupted after its execution has been started and before it is coupleted. By
programming a short uninterruptable procedure, we can generalize this concept to an "indivisible
macrooperation." In Sectlon 111., we discuss the use of such indivisible macrooperations (or
procedures) in construction of commnication primitives. These vill be uninterruptable segments of
code, sometimes implemented a untnt3rruptable subpro-gams, deasgned to protect entries to and handle
exits from critical regions.

3. Synchronia tion

Synchrouistion of a process Pi with some other process Pi. where i#J, or with several
other processes means ensuring that P, will not proceed past some given point without an explicit
signal, which P• itself cannot generate due to lack of Information obour process Pj (or about several
other processes,. Nence. this information must be explicitly or Implicitly provided to Pi from outside,
I.e., by Pj. by other processes, or by the resl-time executive. Noet that strictly sequential processing
on a sitnle proceasor does not require sny synchronitstion Information.

A real-time executive passes synchronieation information implicitly by achedulin presses for
execution. KUplicit atchange of synchroneiation Information mong concurrent processes S*nerally
roquire. the use of critical regions serviced by appropriate camtmicatioo primitives.

4. Doodlocks

Týwo processes ore said to be deadlocked if neither can cooitime until the other continue#. A
system deadlock occurs when all proteseas In the system become deadlocked.

Two concurrent processes P1 and N, communicating through the execution Of critical regions CRA
and CR2 , respectively, mey becme deadlocked If the critical regions are Improperly Implemented: for
example. if PI hae% up after entering CR! when it finds out that P2 swsnahile hAa entered C12.
and vice vters.

As pointed out in literature on operating syatem concepts (e-g., (Pre). p. 157). the occurrence
of a deadlock I* defined by the simultaneous codexitence of the followint coaditiona:

(1) Processes claim exclusive control of the resources that they need for execution.

(2) Proeesses hold resources already allocated to them while waiting additIonally needed resources.

(3) *esources cannot be forcibly remoeed f•om the procoeas holding thei until thea processes
no longer ned then.

(4) There eaists a circular chain of processes, such that each process in the chain holds so"
resources requseted by the next process in the chain.

Although there is little probability of a deadlock in a typical uultiprcgiend syetan designed
eve• without any saftuetrds against de6adloeks, it is lperative that any real-sti system be deoignad
*so that deadlotks in such a system cannot occur, i.e.. eo the above four conditions cam atner be *atiotled
simultaneously. In applications considered here we shall attain this objective by proper design of
commicatioa primitives and by requiring that no process by design ts allowed to stay- in a critical
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region longer than some a priori flixed length of time.

C. DECENTRALIZED RIAL-TI)M EXECUTIVE WITH FIXED RESOURCE ALLOCATION

Next, we characterize a class of RT executives, several variations of wh~ich were successfully
used in Phase I GPS (Global Positioning Systom) navigation user equipment sets designed by Texas Instrumentsa
(references (Dan], (Gyl 801, and (Upa) describe the navigation filters used in these sets). The main
features of this class of RT executivesarer as follows:

(1) Decentralixed coaxtrol - each processing element (PE) has its own autonomously functioning
RT executive which supports nultiprogrammed execution of concurrent processes in the PE.

(2) Fixed allocation - there is fixed allocation of Pts to programs and of memory to global
data sets, with the assumption that the software nodel defined in Section II.C is used (one
Implication *f which is oneý-to-one correspondence between programs and processes).

(3) Synchronization of processee - processes executed in the distributed system and data communications
among these processes are synchronized by measn of periodic, systemwide interrupts.
For this purpose, the time line is decompoaed into consecutive intervals of fixed length A~t
and an interrupt is broadcast systemwide at the end of each interval. Such Intervals are
often celled fundamental time frames (FT~s). Uovever, the J-.h processing element, P~j,
may be set up to respond only to every (nj)th interrupt and t,% ignore the others, Typically,
njIs chosen so that (nj)At equals the period of the highest-rate, periodically executed

process in Psi.

(4) alestrIcted Reentraocy - since (according to the software model outlined In Section II.C)
there is one-to-one correspondence between the program and the processes created by these
progrmsm, subprograms concurrently shared by at least two processes are implemnted either
as uninterruptable procedures (if they execjate fast) or else as reentrant procedures of
a priori itnown maximum reentrancy.

(5) Scheduling - three types of processes are admissible and characterised according to the way
they ace schedluledt

a Cyclic (C-) processes - such a process Is executed at a fixed rate, with the
stipulated execution rate guaranteed to be met.

0 Deadline (D-) prcoesses - each time when such a process is scheduled.* the deadline
of Its execution completion io specified; the IT executive tries to moet but
does not guarantee this deadline.

a U!Aound (I-) rocesses - such a procoea is allocattd all the procesaaing time
ofaFE tha 1iwi os fter (or between) execution of foregroun4 and deadline
processes, at any time, at moat a siogle active beeckground process Is allowed
in a Pg.

Scheduling of processes Is further discussed in Section 11I.0.

(6) lotresptocoos coammicstions - depending on the nature of interaction between two processes.
o*ly the first or bo0 of the following Interproetse Ccmasicati~ou types ane permitted withot
turttar reservoti-nns than those stated belowt

a Critical regions (sections), protected /controlled by the WAIT and SIGNAL caeami-
cation primitives, may he used to implement data com~muicaetions among suy two
concurrent pirocesses.

a bets tef tres. whose access Is controlled by a Il/SWA T fleg, my be used to
implement on*-%my commicitione bet"*e two cyclic procsses, scheduled at the
eme rate, IMoec executions are "stally not interleaved In split fashion; is,'
It A and I are two suth proeosass, then when procss A start* eft evacutlon
instance, it will complete this ameeaation before I ca" start Its next =*ection
tostance.

Interproceas cammwieatious ate further discussed in grosater detail in Secion 111.13.

0. UOUSSOIMMLING AMIS u k PRCS tl owhlm

I . Scheduling PhUosophy enod WequIleents

Froee"s schedulikV allocates the processor time to procereses. sad thus dateraises %%en processes,
vilk be, emacut&l. VItta our moedl af decentralized process control, all processes asigned4 to a prosseai*
element will be scheduled independently tif processes amecuted on athpt pirocessing elements.

Since scheduling also influeoces the structuriva of algorithe iate coecurreat processes, echedulift
is an Important laew of real-time system design. scheduling can be best expleined tharough process
states MWd PM60es state control. Mei is the approach which we take to the onesear section. out we
proceed with diecussioo cc process state Control only to the asteat needed to deli.,o selected scheduling
sirs egiee for the doearalizad, fixed allocat' a* scheme Istraduted in the precediss section. Cof ftsm
JCof 731 end LC0E 761 4iscuss process 80heduling on an 8dV5ncsd (abstraCC) level; refeT0nces Iffrs!
(Maul, sAW (WadI deal with it ona somre elementary flsea exthemstical) level. Literaturo an sd"duliag
for rsai-tiss prokz~aasiag is* typically difficult for a nonpecialist to (ollow sand is mainly confinedl



to Journdl articles: references [Bas], (Berl, (Jor], [Man], and (Liu] supplement the
narrow viewpoint on real-time taken in the present article.

As noted above, process scheduling may be beat introduced by defining the states which a process
of a specified type may attain and then by defining the rules governing state transitions. We do
this, but in an Informal fashion. Detailed design of a scheduler for a real-time executive is a task
which is usually delegated to system programmers; thus, a control specialist is seldom concerned with
such details. However, to do his port of design, he needs to understand, in addition to the information
coa.veyed by the state transition graphs, the scheduling priorities of processes, the facilities provided
to him by the real-time executive for changing process states, and the attributes by which he can
define or redefine a process or change its state.

Many strategies are possible for setting scheduling priorities. In literature (e.g., (Frei),
priority disciplines are often divided into two major classes:

0 Static priorities - such a priority is set a priori in the sense that it cannot change while
the process to which it applies is in an active state.

* Dynamic priorities - such a priority may change while the process to which it applies is in
an active state.

In contrast to nonreal-time systems, scheduling of real-time processes requires some use of dynamic
priorities or perhaps of a mixture of static and dynamic priorities. This becomes clearer if one
recalls that in a general nonreal-time system, (1) very little is a priori known about the incoming
jobs (processes); (2) incoming Jobs are imprecisely characterized as they come into the system; and
(3) the optimaiity criteria, such as maxisixing the throughput without much regard for the turnaround
time of individual jobs, make sense. Besides, the techniques for Implementing 8chedulers operating on
fixed priorities are better understood by programmers. These observations explain why static priorities
are so widely used in general, nonreal-time processing.

On the otoer hand, tl'e main objective of scheduling in the real-time applications considered here
is to meet the response-rime constraints required for specified performance while minimizing the cost
of hardware or while staying within the allocated hardware budget. Designing a real-time scheduler
operating on fixed priorities Is not difficult if the available hardware resources are comfortably
adequate. For example, Jordan (Jon] discusses a simple scheme for doing it by meants of en a priori
fixed multiharmonic scheduling pattern. We could proceed similarly, since nearly all processing load
in the applications considered here is due to the algorithms which must be periodically reexecuted.
We called them cyclic algorithms. Usually, it Is not difficult to (1) identify a cyclic algorithm
twith the shortest period, say 4To; (2) define a harmonic hierarchy of h periods 4T0.4TI. 41T2. ... 4h
such that 4Tk - 2ATkL for k - l....h; and (3) assign every cyclic algorithm to a period clAss.
Jordan then uses this technique s a basis for conscructing a aultharsmontic scheduling pattern. But
such an approach, based on the aetimates of algorithm maximum execut-on times, wnorterilies the
available processor resources.

A better approach ts to classify all procedures andlor algorithm. into three c*tegorles: (1)
those with periodic rates that cannot be slipped btecause of the enormous penalty that would have to be
paid otherwise (in estimation work, these typically are the procedures which logically control the
estimation schem but are not the estimation slgorithms thetwelves)i (2) those having period boundaries
that represent desired but not absolutely required completion deadlines (in estimation work, these ore
the estimation ligoritheas)l nd (3) noncyclic procedures/al.itirthme which have to be executed only
occalionally due to special conditions that may arise and which typically hAve no strict d*edline (for
example, a filter infLtialiestilu procedure).

2. Process Types, Their States and State Transitions

Experience chows that nearly all real-time estimation schems of the type considered here can be
realized by m**ns of the three types o proceses (cyclic, deadline, and background) introduced in
Section III.C. Next. Ue characteoiss thees processes In greater dtistl than previously sad, by amafe
of the stat* graphs showe In Figure IUI.D-1. define their states and the rule* xovrani st*te
transitiona:

(1) W (C( Procaess - at the beginning of each new cycle (echeduling/exeCUtion period)
of n active cyicprocs, the RT executive automatically reschedules this process by
puttirg it into the ready stateso that the process is exetuted within each cycle and
the events representing the starting time and the coepletlot•. =ia of am execution Instance
are not soperated by the boundary of a period. In other words, thee two events are
always located within the time Interval spannieS a single ocheduling/eecution period.
Ae indicited in FIgure nlt.O-I, a cyclic process, after it becomes Mtivated by another
process or by the AT executive, teislna aictie until it becomes explietly deactivated
(which to not showe in the state transitlon diagrm) by a process or by the IT executive.

(2) reeli..(O-) process - such a process -ot be activated by another proocnse or hy the
iRTiecutive. ith tach activation, one needs to sapcify the completton deadline. The
stheduler of WT executive does its beet to met the specified 4eadltn or at least to
edaisies %lippilg the deadline. After the completion of each execution. a dadlLine
process autmawtically returns to the inactive state.

(3) Iaki oud 1i-) pgroft8s - at most out active buckgromnd process at a tine is alloeiid
ta .s reo ~sig oloemt of a distributed syert.e Such a proess is then gives all
protiiMor time that rfteins after all Currently active CyClic and 2eadlne4 proc1e4sm
have been serviced. After each complete execution pascs e, a ackround proceas autoomtically
returns to the inactive state.
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adb > 0, then F(r~x) to strictly increasing both in r and in x); (it) Atp(x) is the processor
time needed to complete the current execution of process z; (Lit) AtD(i) is the time remaining
until the current deadline of process x.

Since at most one active B-process is allowed at a time in a processing element. no resolution of
priorities among the I-processes assigned to the same processing element Is needed. Priority ties
among deadline procesces can be resolved randomly, i.e., arbitrarily. However, it is best to rpe Ify
a priori hoy to resolve the priority ties among a set of cyclic processes Cj, C2 , . Ck with periods
of Wjentical lengths, for it afferts the order In whtich these processes Vill be executed.

4. Overaill Synchronization of Processes

Suppose that the distribute, system under consideration contains ripg processing elements (P~ts).
For reasons of simplicity, we have assumed decentralized executive control over these npE P~s.
Unless appropriate measures are taken, processes executed not oniv In different PEa but even within
the same PE any remain unsynchronized. Actually, t~wo (altholigh related) kinds of synchronization are
Implied here: synchronization of actions among processes, which can be attained by means of Interrupts
and interprocess data communications, and synchronization of processing with the outside world. The
latter type of synchronization to usually accomplished through the monitoring of progression of time,
of Incoming measurements, or of other signals received from outside.

One technique for obtaining synchronization is to introduce systemwide timer interrupts, driven
by an oscillator, for Oividing the computational time line of each PE into time intervals of
length Alt. In Section 1llI.D, such intervals were called fundeental time frame# (FTF*); the timer
interrupts separating Me~ - MF invrerrupts. The length a an MF depen-dso-on The estimation problem
and can be chosen to represent the fastest wurking rhythm in the system or in Its measurement acquisition
process. For example, lit the estimation problem of GFS navigtation (outlined In Appendix C), MeP were
chosen to 20 milliseconds long, because 20 millisecond cycles represent the basic transmission rhythm
of 01'S satelites; the length of an estimation cycle varies, but typically io sbout one second long.

To enable the applications processes In a pcocessing element (PE) to read the time (actually, to
count the FF7 Interruptvt), the local real-time executive of such a VE must furnish a noninterruptoble
function subprogram, each call to which returns to the caller the current count of completed FTY
Interrupts. Applictitons processes, espocially the measurement acquisition process, can Use this time
Information to ttme-tag their outputs.

The syncbronlizstion method based on FTY Interrupt*, introducod above. can be extewrid to synchronize
the cyclic processees 4f the entire -distributed system.. This can be done by oeateiiing the scheduling
scheme credited to Jorden Wiort in the nex-tlet aaarp fSbeto ftepeet edtio
Wfith the notation~ itrtoduted in that subeection. this extension is as follows:

(1) Let the lengths of fundamental time froems (MOTe be exprtssiblo as At -A1T/k
for some used noanneative lototer k', with Ar now reprosenting the part.~
(cycle) lengths Of poteatially highest rate Cyclic pVVocess Ilk the entire system,

(2) $ym~~t~neteni all proc***9 po rocsain the periods of lerath.171a with Me? by requirina
thet the cycle boufdareo of ouch ptocesses bo aklwtyi silgovd vith VW boundaries.

tOCle the period of 4ny Creli'- ptottss in the system big CAPrsseiblo44 as * r21
for soom nonnegative inteavr ki.
(4)if ~Othe aychrne t n oypi -*rotten with the. periods of length .lT6 with all

c-fliW prpc**sns wilh the periods of lenigth AlT v* r 'feke~i. ouch that the cycle
boumidarie, of fore r letsive ihto.o the latter.

5. Eecast1*e service Wotioote and rnamroes$Totua Toblsi

Each time when the processing elevmen ".turns the vitocutioo contral to its WT ***cutsve. a subsYst#m
of this executive, talled a schoduler. deci~des1 16ith Ptocess peccatly *Osted Oft Oft of the rend7
4queues Vill he exeCuted "ext. (A ready qauau can be thought of go5a list v4 all ptfoesres of the same
ty~pe Vwhich are In the reidv state.) To make this decisotoo the scebdulor follow, the oleCtion logic
Implied by the pritrity nehtw edo0ptod preVtoiousl. Control specialist's parts of tool-tive Software
Interface with these Pr"cese esongemsot lecilities Via a got of sObplrcwrmes, which samotiaps at* called
saetattIst service tooutitsr tech oxecutive aervito routine ts a* mbnitercuptobls proceduve. the oxeculoan
of which rssquittat a r"Olligibe sswknt of prooessor timw. It ts Invocable true applicstio* procoaasW
amd operates on Wat otored in progromlprocsess status taboles. Tuntlonsliy. executive *ervtce toutiae.
can be divided tsot two ty~pes: those which dfn/ssfisa process for a program listed to t1e

eroramprceis.steuetables 0"P)i &an tboase which 4sange the state of 4 ttt

lyam earlier tsaumptiou about the processing *nvIraament, tech Program 0f applications part of
real-timet #oftwore teslsoo at "et ti'ne process at a ties. Thus, the progtrem/pOrese status tables
may be visualized ao a twa-dlwlsns 'nal rtrey, &Clb tow of w~hich represenhts a program sai each column
of uhich describes an sttrI the 61 'rfogrm or of proesese Eerl led for these Program. The 0 *rios
In a tow of P"S tables characterizet a program and siectfy the state seW chsarcterttties of tOn process
4#f11ed for this program. I't It nOO always requIred that a Process be &*flood for a program. It the
latter is true at sm tims, such a pecosra way be Visualized as beiV4 inactive at tuat ties, I*Icb Is
eota eqtaivaiewt to a possibly teaet ive but 4etimed process.

The fisMCtIOf Of an64 u VXCAIV# serVICe& rotie which 8eierssie aProcess for A speci!ied
prograim is to entert the Characer&Ct~~ic9 of the procaes to be defied iot to approprwiate tow of the P"S
tables. Initially. a newly deieflod/roiefimssl Process to always detl~aree to be iftactivo.



Process definition/redefinition subprograms enable applications processes to change the nature of
the process associated with a program by changing its type, execution rate (if the latter is applicable
to process type), prior4.'y, or other attributes. For example, a program which at some given time
realizes a cyclic process may at some later time redefined to realize a deadline process (provided
that the program logic allows doing it); or it may at some later time be redefined as a cyclic
process with a changed period a". a changed priority.

One could consider an alternative approach in which process types are defined and fixed prior to
real-time operations, say, perhaps at procesr construction or program load tieo. Such an approach
inconveniences a contro)l system specialist because, at the start of design, he often is not sure himself
under what scheduling ru.es various algorithms sh'uid be executed. At least, the capability to define
the process at cold start offers a control system specialist a desigr convenience. Furthermore, the
capability to redefine in real-time the process for a program enables the real-time system to reconfigure
its mode of processing after a partial failure of equipment or after a drastic change in operational
environment.

Executive service routines which change the state of a defined process will not be described here
in detail. It in only important to note that, for each process type, a procedure must be furnished
for every state transition defined in the process state transition graph.

E. INTERPROCESS COMMUNICATIONS AND SYNCHRONIZATION

1. Introduction

In order to perform common tasks, concurrent processes need to communicate through data. In the
present section, we discuss the intetprocess communication problem, as well as the related process
synchronizAtion problem, by taking a restrictive approach similar to our eerlier handling of other
aspects of real-time excutive design. For a more complete treatment of the subject, the interested
reader should refer to a recent text on system programming or on operating systems, such as [Cof 73],
(Frei, [oral, [Ha•e], or [Mad].

A unit of data exchanged at a time is often called a message. In the applications considered
here, a typical message is an array of homogeneous data (such as a Kalman gain vector/matrix), or a
record of heterogeneous data ksuch as a Kalman gain vector, plus an identification tag of the measurement
to which the gain vector curr-sponds), or just a flag indicating occurrence of an event.

It is easier to understand the interprocess communication problem if, with each message type, one
can associate an area in global data memory reserved for storing a single or several instances of that
message. One often uses the terms "buffer" or "commuitcation buffer" when referring to such a dedicated
memory area. Typically, a message contains two tyoes of data: communicated (or applications) data
and comaunication protocol data. The function of protocol data is to control the accessing of the
buffer by the processes.

Messages of a certain type implement one-way commmnic,,tion between two or more processes if each
unit message is entirely produced (written) by a single writer process and may be consumed (read) by
one or several reader Erocessas. In such a case, a buffer for storing messages may contain the
communicated data produced only by a eingle writer process. On the other hand, several processes may
be involved in generation and exchange of protocol data.

2. Assumptions and Design Principles

Next, we introduce the following restrictive assumptions as interprocess communication dusign
principles:

(1) One-way communications - only one-way communications are admissible, which
implies that any buffer may contain applicationa dita produced only by a
single writer process.

(2) Restriction on the length of stay in a critical region - n, process remains
in a critical region longer than for an a priori prescribed maximum length
of time, such as a *cw milliestconds. (Recall that a process is assumed
to be noninterrmttable during the time interval spanned between eater',ýg and
leaving such a region.)

(2) Limited waiting for the reading of data - if a reader process during its
execution reaches a point where it tries to retrieve interprocess communication
data frcm a buffer but cannot do it, because thu buffer is locked out by a
writer process which presently is wriing into that buffer or because the buffer
contains no new date that the reader process has not yet read (cosumed), the
reader process (perhaps after waiting at most for some predetermined length
of time) proceeds to process other tasks without this time having retrieved the data.

(4) Limited waiting for the writinjgof data - ii a writer process during its
execution reaches a point where it wants to write interprocess communication
data into a buffer but cannot do it because a reader prnuess is presently
accessing that buffer or because thv buffer is full and its contents
are not supposed to be overwritten, the writer process (perhaps after wsitinp
at most for some predetermined length of time) proceeds to process other tasks without
this time having written the data.



'~1 Principle (3) implies that on occasions (when no fresh data can be obtained) old data, such as
old Kalman gains, will be repeatedly reused. Siuilarly, (4) implies that sometimes the passing of
produced data will be skipped. The Important idet here is that the processing logic must be designed
nnt to fall apart if the situation described in (3) or in (4) rises. Only the overall system performance
is allowed to degrade somewhat.

Adherence to the above stated principles for design of interprocess coomunications eliminates the
possibility of deadlocks, ior then the four necessary and sufficient condit~ons for a deadlock (e.g.,
[Frei, p. 157) cannot be met.

3. Communic..tion Mechanisms and Their Implementations

Next we turn to specific designs of communication mechaninins, examining the capability of each to
attain mutual exclusion of communication processes. In the sequel we examine the following interprocess
communication techniques:

o Time-serarated communications under- the control of a single flag.

o Communications via a multiple buffer with or without a critical region.

o Noni ntertu pt able communicatlons via a critical region under the protection of
Dijkstra's P and V seasphores or, perhaps, under more general communication
control primitives.

It was noted in the discussion of mutual exclusion (Subsection 2 of Section III.B) that implemetitation
of communication control mechanisms, which we called commumication primitives, requires special indivisible
operations. An operation was said to be indivisible if its execution, in-.ludimg the accessing of
memory during its execution, cannot be interrupted. An indivisible operation may be implemented on
several different lev.ls:* it may be a single machine langutsge instruction auch as a test-and--set
instruction, an uninterruptable sequence of machine language instructlons reaulting from the :ompilation
of a single or several high-level language statements, a single subroutine, o'r a pair of subroutines
and a program segment between suc'.t a pair.

Aa an aside, the fallowing two uninterruptable test-and-aet instructions are uaeful in constrtuction
of communication primitives. The first testa whether its operand flag (the contents of a memory locZition)
is nonzero; if it is, then this ixistruction sets the flag to zero and skips the next instruction;
elie, it proceeds to the next instruction without having changed the value of the operand flag. The
second instruction 'type complements the first in the !olloving sense: it tests whether the operand
flag is zcro; If it is, then the Instruction changes the value of the flag to I and skips the next
instruction; If not, it goes to the next inatruction.

4.Time-Separated Communications wtider the Concrol of a Flag

Use of a single flag to control one-way communications between a writer process W and A reader
process R is the simplest 4f all three communication techniqutet presented he-re. It attains mutual
exclusion of processes because t4 the restrictions which it imposes on. the participatirg processes,

To define one possihlo fimplementation of this ccswsunication method, let BUFF!R be the name of the
communication buffer and CY'LAG he the netau of the variable rooresenting the control 11ag. The w.ite
procedure, executedi by the w-iter process, is at !ollowai

writ: TLAG - 0 then mot alpha;

alpha: write dU~fEIt

and
beta: (The1 next executable statement)

With the *ame variable namas, tht rood procedura, executed by a reader process is a* io~lowe:

reed:i betin
if 0CtA - Ithen Rots alpha;I

alh: else nt wo
red r Ia

end
beta: 'Tth. next exacuttble astaement)

Despite the.$r structural simplicity, tht e bove writs and rood proc~dutes should to be u~ed only
with sti4-, for they may pr*v'nt iev data from beinig totarew into tthe commins-tion butter until Its

previous Contents have, beta read, On the either heand, this simple tech~nique irnforitAe mutual exclusion
of eeommei~eting prtecoese wthout assuming Ainythirts about their relative, 11poeds. It io useful when
the writer and rvad1ur proeosase arc cyclically e~.euted at the eam a votacg rate. because Information
will rarely b4 lost then. In Auch a corn., it is cornwsnientj although not ýbselutoly nece~aaery to
have the writior proesas prtoede the readar proceas ia ech qytlo,

S. Comamxiations Via ftlti~pi. sufter

A multiple buffer of sulti-plicity M4 conitains H data areas (each called it buffer) of Identical
IT 4atruetret site. budfetv ore usually circulArly orritged in the sea"e that the uritmer procaass
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after writing into the 14th buffer, next writes into the first huffer; similarly, the reader process*
aftex reading from the Mth buffer, switches to the first. Hence, such a storage scheme is often
called a circular buffer. In preseace of fluctuations in execution rates of two comamuicating processes,
communications via a multiple buffer, due to extra storage capacity, are less lIkely to loose information
than communications based on the method described in the preceding subnection. Muitual exclusion is
now attained by not allowing the reader process and the writer process to simultaneously'access the
same buffer. However, unless the communicating concurrent piocesses mutu~ally exclude one another

* through scheduling control, safe implementation of multiple buffers requires the use of protected
critical regions.

6. Uninterruptable Communications Via Protected Critical Regions

If one cannot or is not willing to make any assumptions about the relative speeds or execution
cimes of communicating processes, then the following technique constitutes a general approach for
controlling the access to a global data set by two or several concurrent processus9, which always works
(although iie will later qualify "always"):

A, With each global data set D, accessed by at leass- two processes, associate an Integer
valued access control flag S.

aJ Alloai each process, Pi, coazunicating throu.5h 0, to access D only from within critical
regions, CRu(S), each protected (enclosed) by a pair of communication (synchronization)
primitives operating on S. Let these two synchronizetion primitives, one at the entry
point to a critical region and the other at its exit point, be integral parts of the
critical region.

* Make the process which enters a critical region uninterruptable from the moment it
starts to execute the first Instruction of the entry point primitive until it completes
the execution of the last instruction In the companion exit-point primitive.

Thus, a pair of corresponding communication primitives is A mechanism operating on S, which,
after having been started, is executed to completion without Interruption and which can he executed by
only a single proceso at a time. Flag S is an integer that may be operated on only by a synchronization
primitive or by a special procedure (the lUtter could he port of ctmpilation or part of cold-start
Initialisation) designed -o Initialise S.

It cart be shown that the following primitives, derived from Dijkstra's P and V synchronization
semaphores., handle all mutual exclusion -and synchronization probleam encountered In xultiprograsmed
wltIproitsssr systems of the type considered here (following the notation given on p. 129 of t~rej.

411 operationi enclosed beow within a pair of brackets are assumed to be uninterruptable)z

WAIT(S) (S .a 3 - 1; if SKO then
place tho proiess vh~cl called WAIT on a wait queue,

QOand releasee the processor to another process; else
enter the critical regiono.

SIGNALM~ I S a 8 + 1;If SO0 then remoevc a process from Q# and
hange Its Statei to Sady for processor allocation.)

for ouch a pair of aynchrunizataou primitives, one can define an initialization function, INIT(r,Y),
which ioltralttes astmphore x to value* v. Thuc, If S is laftitiaed to I by executins INIT(S.l), thre
writr process V and the te..d process R ,isn use tho fallowing procadures to commUnicate via the data
written into (ruad from) the data set D. tach time that procoso W want# to write Into SUFPII, It
exetcutase a cods aegment of the forat

write totr Di A critteve. region

4 V4adsrly, eanch time *ften proet, v Ants to read from data set b, it ou~t estoute a cod* tegmsat,
such sat

v'(xr~ ~~ ()1Acri tictl rs~jun
read f.-ft 0; for proceas K

Yz I asstaDR that~ tho globol veriabi. 9 io known as a oseaphre to both of the above code 04Wt,*un..
%'*r a d,1scutsioll of ocher (*ad tore g~esr*J..) uses of tire *ynchrouiaetion prlmitives 10AIT sand SIChAL,
as ,*Il 4* for defirisiose of ot**r tyubrrsoniadou primitives. the Interested reader is reforred to
dOaitoe 4 of Oral.

In a fortgeoio parograph, we sasdrtaid that O te *avo &fteribod commiuattation* contvi4 smehasiamt
;sdtFi-out for the prcsi&eniomn srmed here. The key to that to the aosuavaton4 (4#*Ur.

priatiplas) tateitf in subsection 2 of this *action, esPaciall Otir Second assumption. eteordiff.
to *IA a itrocss is not supposed to roexn in a critical region looger than nowe j priort defined
leagtW of ttme. Adheroaca to this principle- prevent; deti-locks. This sriocipim muss be Oriarend at
4esigen time (at *srecutI66 ties a r-roc*0ss4 wdvaotrruptabie whten it io Inst.4e a tr-iical regiti **d SID
"cAnot bt tott,*1 out of it) by exercising ear. about the easotable cads which 1* O"00se 16AIds critlcal



i •regions. In applications considered here, only the code segments requiring a limited amount of processor
time and needed for writing data into a communication buffer (or for copying it from such a bLffer)
are allowed within a critical region.

Finally, we want to say a few words about the implementation of communication (or synchronization)
primitives. First, the form in which they are implemented depends on the progemming language used.
If assembler language or a high-level language such as Fortran is used, these primitives should be
implemented as an integral part of the real-time executive service facilities in the form of
uninterruptable subprograms. If a programming language such as ADA (Wag), which is designed for
multiprogramed task execution, is used, then these or similar primitives are furnished as facilities
built into the programaing language.

IV. ALGORITIKIC AND PROCEDURAL ISSUES IN IESIGN OF REAL-TIME ESTIMATORS

A. INTRODUCTION

In the first pert of present exposition, we examined computer implementation aspects of real-time
control system design. In the course of doing it, we described software architecture for the real-time
estimators to be implemented on a distributed system of small computers. The ideas on implement•a
design presented up to this point applied not only to realtime estimators but, more generally, to a
variety of real-time control or communication systems.

In the second part, i.e., in Sections IV and V, we narrow down our focus to real-time estimators.
We do it in two steps. The present section reviews selected issues pertaining to the design of computational
algorithms and procedural logic for Kalman filters, although nearly all ideas will also apply to other
types of recursive real-time estimators. Finally, Section V will illustrate filter mechanizations
resulting irom several known workload partitioning schemes. Typically, we end up with schemes requiring
multiprogrammed processing environment. Concepts and techniques discussed in Sections II and III can
then be applied to complete the implemental design of estimator software.

It is difficult to be objective and sufficiently broad in selection of algorithm and procedure
design issues: 4hat is important to one designer often is determined by his background and interests,
and may appear to be insignificant to another. In our selection, we were guided by what we viewed as
being critical to the real-time estimators of the type considered here. These factors are (i) modeling
of the estimation problem, (ii) computational algorithms for implementing the covariance/gain filtering
portion of the estimator, (iti) system identification in real-time, (iv) increasing the robustness of
the estimation process against the perturbations such as burets of high amplitude noise due to
environmental disturbances, sensor failures,-or sudden and drastic changes in the system model.

It is difficult to exaggerate the importance of modeling. But modeling depends on a particular
problem. Hence, we shall not discuss it here. The purpose of the present section is to remind the
readur about and to comment on the other issues identified above. However, since they are well covered
in recent literature and really do not belong to our main theme, we shall not discuss any of them in
detail. Rather we shall refer the interested reader to recent literature on topics related to these
issues.

S. FILTER ALOOkITHNS

In a Kalman filter, filter algorithm are the computational algorithmas which perform covariance
and gain processing and, after having been programd, Implement a critical kernel of real-time estimation
software. They are critical mainly for two reasons: (i) they may potentially destabilize the estimatioo
process or prevent It from converging and (ii) they may require an excessive amount of processing time

* and awry.

Covarlance and •in (C/O) processing (filtering) algorithms perform the following functions:
time propagation of state error covarlance matrix P, computation of Kalman gains, and masurement
updating of P. The currean practice io to stru-tture an estlmatioi scheme so that the elsuramnts In
an estimatioo cycle are processed sequentially one by one and the Kalean gains are computed and state
error coyariancee updated for each measurement separately. Such a scheme to called sequential
prcosing of measurements.

Appe•dit A seumrizes the original form of CIG proc•s •ng algorithms for a linear Kalman filter

with discrete measurment. Unfortunately, the measuremnt-update operation in the original form of
Iw al f tilter algorithms l(qustioc (7) to Appendix Al is potentially unstable. Roundoff errors may

eventually mak the state error covertance matrix acquire negative characteristic roots and, thus,
lose its positive definiteness. Hence, the criticality of simericel stability requirement In applications
cowsidored here motivates the use of equare root filtering algorithm. for covariance/gsin processing.

Severwl variations of sqmare root filtering are known. The version which has been defined
and refined largely by lieruan Is summorized in Appendix 3. (References [|leJ and (Thol describe to
uhat w shall refer as Morasne method a-d give timing and silit models for it. The first of these

aroferenc* also dis oes applirtions of *quare-root filtering techniques to information matrix
aestiati~on.) There is Isom controversy to lit*-ature about iAtch particular form of equare-rook filtering

-*hould 4 used. Carl@** M(arl decribs %bat could be viewed a an alternative to blerman's method,
%hilh is almo attroctive, Our solettion of Merman's aethod ham been motivated mainly by yes"r of
e_ isftctory experlence V10k it in app I.•tione to naviration problems. In any case, saving just a few
p.rcepti of prosefog time shatuld not be the decistie criterion Top using ona met of algorithms instemd
of 04eth#.

for 4k ýeutral' ovetowi of avalloble options in square root fillteritq the tnterest•e, reder is t

- re-red to ahpr. l data fez betteO Vant.



One benefit derived from the use of numerically stable covariance and gain processing algorithms
is the feasibility to implement them and to make them perform in single (or reduced) precision
floating-point arithmetic except for computations of some dot products. In a microprocessor, this
often saves not only memory but also processing time because vf the relative disparity in the speeds
of single and double-precision floating-point operations. This disparity in processing speeds becomes
especially large if the microprocessor does not have floating point arithmetic implemented in hardware
form.

C. SYSIEM IIENTIFICATION

1. Identification Problems in Real-Time

We use the term "system identification" in a restricted eense to indicate acquisition of
knowledge about the distributional properties of the stochastic processes representing the process and
measurement noise sources in a Kalman filter.

In practice, one usually assumes that each noise source is represented by a stochastic process
from some particular class of processes. In such a case, the identification problem reduces to
determination of the parameters which define a particular process in the assumed class. Two distributional
parameters that are usually of interest are the mean and the covariances of the stochastic process.
These quantities may not be time invariant and so their values may have to be updated repeatedly. As
the system model of a Kalman filter in Appendix A indicates, each noise source is typically modeled as
a white, zero-mean gaussian process with unknown variances or covariances.

Should there be any suspicion that the process representing a noise source has a nonzero mean of
unknown, but significant value, the unknown mean should be included in the system model as a state
variable and estimated. Most often, the unknown parameter whose value is sought is a noise variance
(for a scalar-valued process) or a noise covariance matrix (for a vector-valued process).

In cases of sequentially correlated noise, one also must effectively estimate autocorrelation

coefficients in order to whiten the noise.

2. Identification Methods for a Kalman Filter

In the presence of colored noise (as is pointed out in Chapter 11 of (And]), retention of optimality
properties of the filter is usually possible, although at the expense of increased complexity. This
reference illustrates a few special cases (such as a situation in which the measurement noise process
is Markov) and techniques for handling them which save the optimality properties of filter without
increasing the dimensions of the state vector. Another approach is to replace the filter with one
that is less complex by means of model order reduction. References (And] and (May] probably are the
best introduction to the subject.

Methods for identifying the unknown covariancea of noive processes can be roughly divided intot
(1) adaptive (i.e., estimation time) methods, (2) heuristic on-line methods, and (3) a priori modeling
methods. Occasionally, several methods are combined.

3. Adaptive Identification Methods

In Kalman filtering, the term "adaptive estimation" usually refers to on-line estimation techniques
which include estimation of unknown distributional paraneters in noise models. During the past decade,
many adaptive estimation schems were investigated and the results of this research reported in literature,
e.g., refer to brewer [3rel or to Ohap and Stubberud [Ohal.

Unfortunately, these on-line system Identification techniques nontrivially increase the processing
load in almost all cases and so way become prohibitively expensive with respect to processing time.
For example, sny measurement bias (i.e., nonaero moan a? measurement noise) in principle can be estimated
by modeling it as a component of the system state vectorl but the computational load due to the processing
Kalman gains and coveriances in a filter is roughly proportional to Kn3 operations, %here a is the
length of state vector and K is a scaling factor which depends on a particular algorithm used.

The adaptive techniquos become even more camputationelly expensive when the noise random process
under consideration is nonstationary or sequentially correlated. Then it is not enough to estimate
the unknown distributional parmoters once, say as the start of the estimation process, and then to
continue using the obtained parameter estimates throughout the remaining part of the estimation proceas3
but there is a need then to continue the estimation of changing distributional parmters throughout
the estimation process. Purtherm•ee, in sow applications such as missile dynamics during powered
flight, the noise characteristics may charge no rapidly that even with almost unlimited processing
resources it is impossible to input the measurements needed for system identification at a sufficiently
high rate.

I4. VNuristic On-Line and A Priori Modeling Nothoda

Current itorpprocessor and, in particular, special chip technologi"a, aided by modern methodology
of software design and implementation, have smade heuristic approach to system identification attractive.
This approach utiUtes the following twn ideas.

First, with oasn planning, one can design the sensors and other measuremet input ports (or at
lest the digital tontrollers of these devices) for a real-time estimation system so as to sake them
produce metra information in addition to the 'regular" masurements specified in the system mdel.
Usually, such extra Information can be obtained at little additional cost as a byproduct of regular
wasmimts. This metre imfotmation is often Intended to htep the estimatiou woaes (1) prmptly



detect a change in the characteristics of a noise process or, more generally, in system state;
(2) accurately approximate the values of process and measurement noise covariances.

Secondly, real-time test equipment (capable of creating a wide spectrum of possible operational
environments and producing close-to-real-life measurements plus their extras) can be utilized
to calibrate the noise parameters as a function of the received extra inputs for quick computation of
covariances.

Next we illustrate applications of the heruriatic modeling techniques outlined above to two estimation
problems in CPS navigation. (Appendix C defines a simple version of the estimation problem for CPS
navigation.) Several models of CPS navigation equipment have been or are being developed. A typical
set of CPS user's equipment is built around a system of microprocessors and utilizes a specially
designed receiver for obtaining pseudo-range and delta psevdo-range measurements at a high repetition
rate. The receiver passes these measurements to a microprocessor based estimation system. The latter
recursively produces a primary navigation solution (i.e., estimates the state vector) from which other
navigation quantities of interest can be derived as byproducts.

EXAMPIE 1. One type of CPS navigation equipment was developed as part of test instrumentation for a
long-range missile [Gyl 80). Analysis of the process noise showed that all dynamics-related elements
of process noise covariance matrix were expressible in terms of a single parameter, the acceleration
variance. During a short powered flight, each of the three engines of the missile undergoes an
acceleration peak and an acceleration valley; after the missile goes into the coasting flight, nearly
all acceleration is due to gravitational attraction, which thereafter changes very slowly. In early
design, several adaptive process noise covariance identification techniques were tried, They responded
too slowly and were too expensive computationally. Thereafter, it was decided to instrument the system
so as to provide the estimator with a discrete warning (completion) signal before (after) each event
that drastically affected the acceleration (e.g., liftoff or a change in engine). Special real-time
test equipment -- producing not only realistic CPS pseudo-range and delta pseudo-range measurements
throughout a test mission but also the above described discrete event warning (completion) signals --
was used to select experimentally the best possible acceleration variance for each segment of a test
mission.

EXAMEPL 2. This example deals with CPS navigation equipment for a medium-dynamics user [War]. The
CPS receiver of this navigation equipment is designed to produce, in addition to 0PS satellite pseudo-
range amdt delta pseudo-range measurements, several parameters for computing the measurement noise
variances; also the velocity variance from which all dynamics-related process noise covariances can be
directly computed.

D. INCFEASING THE ROBUSTNESS OF AN ESTIMATION P'ROMSS

Judging by a large number of current publications, much interest has been recently shown in robust
statistical inference, including robust estimation (or, to be more specific, regression), the objectives
of which are to handle the situations in which classical methods do poorly; for example, classical
regression methods have difficulties with outlier and collinear data. What is nice about "off-line"
statistical analysis is that, if one method of inference leads to suspicious results, the statistician
can always try another one on the original data. In real-time estimation, however, we do not enjoy
this luxury: data is processed at about its arrival rate; If the on-line analysis of data fails, it
may be physically impossible or too expensive to repeat the experiment. This strongly motivates us to
increase the robustness of an on-line estimation process. Proper preprocessing and screening of
measurements contribute to it. Thus, while designing a real-time estimation scheme, one should always
examine whether the considered application requires special procedures for (1) screening the measurements
against isolated outliers, (2) detecting the leading and trailing edges of high-amplitude noise bursts,
(3) detecting the onset of and then taking appropriate measures against nonwhiteness in measurement
noise, and (4) censoring (imposing boundst on) measurements. One should also examine whether any special '

procedures are required for detecting the onset of a drastic change in the system model and for taking
appropriate measures aainst detected changes.

One area which should be examined for each application is whether it is necessary to have procedures
for monitoring the esti•atee and for altering them in case their values exceed a predetermined range.
This simple heuristic technique, known to statisticians as censored estimation, has saved the situation
in several known applications.

[Sch) is a highly readable reference which complements the discussion of algorithm and procedure
design issues in the present section. Its discussion of the balancing of covariance mitrices for

filter convergence and stability is especially noteworthy.

V. •3OD14iSITION Of A KAIAN FILUMA INTO CONCUaUNT PiiOCcSSuS

A. NOTIVATION AND OVRVmw

Sections 11 and III outlined software engineering techniques for decomposing a real-time control
problem into concurrent processes. In applications considered here, such decomposltion may enable an
estimation scheme to satisfy the real-time constraints of the problem on a distributed system of small
computers. Specified limitations on the weight, the volume, the power consumption, or cost of equipmant
often do not allow extending a distributed system through addition of extra processing elements.
Thus, trying to satisfy the real-time constraints by incrementing the equipment is often unacceptable.
In such a situation, decomposing the workload into concurrent processes is the only recourse.
The present section illustrates this approach by eaens of several schemes for decomposing Kalman filters.
Such decomposition of a Kalmn filter (or of any recursive estimator) into concurrently executable
procodures often constitutes part of what is knoow as filter machanisation, a term we mainly reasetiv
for filter structuriag.



In the sequel, we first i~ntroduce two basic structural formulations, direct and indirect, of a

Kalman filter. Each can be used as a basis for decompositions presented subseqttently. -Next, in order

to establish rationale and common reference for discussion of decompositions, we review the processi!ng

tasks comprising a single estimation cycle of a sequentially structured filter. Finally, we exaain-z

several schemes for decomposing the computations of such a filter into concurrent processes.

B. DIRECT/INDIRECT FORMULATIONS AND FEEDFORWARD/FSEDBACK MTE~S OF USE

1. Direct and Indirect Mechanizations

Two alternate approaches for formulating a Kalman filter are known. In the first, called dCrect

(or total state) formulation, the state vector a. which describes the total state of the system, is

directly estimated; i.e., in each estimation cycle, a is first time-,propagated and then measur-s-ent-updated.

In the second approach, called indirect (or state error) formulation, a Kalman filter estimates not

the system total state vector a but che error- as in s. Thus, if an indirectly formulated fl~ttr is

used, each estimation cycle involves three major steps: time-propagation of a; estimation of error

as in a; and updating of the propagated value of a by subtracting from it the estimate of sar. For the

estimation cycle with reference time tk, the last step can be symbolically written as

a(kjk) - _j(kjk-1) - A~s(klk).

Literature suggests that indirectly formulated Kalman filters were first introduced i~a navigation

systems, although such a filter can be used in nearly any situation to which a directly furmulated

filter also applies.

2. Feedforward and Feedback Modes of Use

There are two basic modes, illustrated in Figure V.B-1, for using a Kalman filte: (or any

recursive estimator) in a control system: feedforward use and feedback use.
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figure V.5 1. Three POr~ggation and Uiue Node Combinations
of a 18al3an filter

A recursive estimastor, used is feedback mode, feeds mom of Its estimates back Into th. control

system from which It Is receiving measurements. %Feedback mechanitation to widely used in ibotegrated
navigotion systems, I.e., In navigation systems built &arud a recusrsive estimator which operates on

measuremnt* from several different types of sensorse or waaeulmant subsystems. Consider, for example,

an Integrated navigation system operating on two types of measuremeatat (1) position, velocity, and

F, acceleration outputs of an Inertial measurement subsystem; and (2) pseeado-range and delta pseudo-range

measuremants of G 016 stlites. A loop which feeds back the estimation outputs into the Inertial
measurement subsystem could be used to recalibrate the Inertial subsystem while the CPS measurements
are being received and when they produce excellent navigation data. Another feedback loop could be



used for feeding siding data to the MP sensor (a special receiver) for quick reacquisition of GPS
space vehicles (SVs). (Estimates of SV ranges and their time derivatives are the quantities which aid
acquisition of a new SV or reacquisition of an SV whose track had been lost.) With feedback mechanization,
it is often more convenient (ilthough not mandatory) to use an indirectly mechanized Kalman filter.
Part c of Figure V-B-i graphically summrizes the above described filter mechanization, with the "AIrED
SENSORS AND )9ASUREHENT SUBSYSTEMS" box representing both the inertial measurement subsystem and the
GPS receiver and with the "UNAIRID SENSORS AND MEASUREMENT SUBSYSTEMS" box standing for other possible
(unidentified) measurement sources, say, such as an altimeter.

In the exasple of the preceding paragraph, if the user of equipment were interested only in accurate
etimates of navigation quantities (such as position or velocity) and if he were indifferent to the
calibration of the inertial measurement subsystem, he could have the filter mechanized In feedforvard
fashion, as illustrated in Part b of Figure V.B-l. In the latter case, the filter estimates errors in
the navigational outputs of the inertial measurement subsystem (INS), which, in Part b of Figure V.B-l,
is the box outputting al. Estimates of these errors are then subtracted from the navigaitional outputs
of the IMS. Note that in the present case, (i) the Outputs of the IMS are shown to be used by the
RCalwan filter for time-propagation of the navigation state vector s and (ii) ihe GPS receiver, the
outputs of which are represented by.!, is not being aided (which Is not a realistic assumption) by
the Kalman filter. Similarly to the feedback mechanization, it is often more convenient (as indicated
in Part b of Figure V.1-1) with the feedforward mechanization to use indirect formulation of a Kalman
filter.

Care muht be exercised in the design of a recursive estimator used in feedback fashion. A feedback
loop may become unstable, which sometimes will manifest itself through sequentially correlated (nonwhite)
measurement noise.

3. Proe and Cons of Indirect Formulation

In many applications of the type considered here (such as navigation systems), an indirectly
formulated Kalman filter, designed to estimate low-frequency errors, can be executed at a considerably
lover rate than the rate at. which a direct filter would havs to be run In order to perform comparably.
This is because a linear moedl is often adequate for representation of low-frequency error dyoatgiine
On the other hand, indirect frorulation of a parallely structured filter usually costs more in processor
time overhead than does direct formulation, because the error estimates in such a filter generally
must be t1m-propogated in order to match their reference times with those of the stste vector at
each update of the latter.

C. REVIEW Of PROCESSING TASKS IN A SEQUEZITIALLY STRUCTURED KALMAN FILTER

1. Sequentially Structured Filter

Befo.-e discussing parallely structured estimators, tv briefly review the processing tasks comprising
a single estimation cycle of a sequentially structured Kalman filter. We assumte that such a filter
processes stasurments sequentially as scalars and that It is Indirectly formulated. The atandard
Kalman filter equations summarized in Appendix A, then. suggest decomposition of. work at time tk into
the following taskst

(1) Tiae-piropagation of *tat* vector s from tk to tk; ioe., teemputation of (k) jkik-1).

(1) Tiua-propq~ation of *tat* error covariance macrlx P I'i.e., computation of P<k) P(kik-1).

(3) Setting-uip Of the measurement processing loop, which (dependirl on the type of filter
* 'mechanization) way include antivitle*a such a* the clearirg of state error estimate vector Si,

the saving of state data, etc.

(4) Meaasurement processing loop, each pea through which procqtasoo acAlar measuremnt aj(k) (I
-1,2 ... no) and requries *escution.of the following tasks:

(4.1) Setting-up Of -indices and logic for t~hi ith pass through the loop.

(44ý) hatprocassing of nj(k).ý which may Include tts convoulson, transformations, and

(43): Craputation of predicted meaturemeent linear (or linsarised) seate-to-seasaurment
trasaformation vector h(k), and weauremsugtesisdual.

((4.4) stroasntg of ma ' ur~eat ai(k) fot accoptanettrfJetiau by sea"n of residual

(4.5) Nsawasweat-9apdattve of state error covariatice matrix Plauch that the Update
*j)+4 F(k 1k) -oemepleted In the last pass through then mesurement lonpi andL ~ ~~~~~~camputotatt: f rluan pait vector ti~k) for mi ha heotptoftisse

(46 pdaii% f h eatimate fsat ro Ss(k) tuhta h upto hsso

lit the last pa.. through the messwemeat loop is 84(kjk) .
(4.7) Rod-of-tteratioa processing.

MS .lbA4smeta t VpdtiVg 09 state vICtof, i.e9, computation al i(IL) *(kik) a j(kjk-i)4Csk~k).



In the sequel, the above tasks (4.1) through (4.4), (4.6), and (4.7) will be collectively
referred to as measurement incorporation; the above tasks (2), (4.5), and modified forms of
(4.1), (4.3), and (4.7), as covariance/gain filtering.

2. Departure from Sequentially Structured Filters

After decomposition of workload into the above identified or similar processing tasks and after
obtaining timing and sizing estimates for each task, these tasks can be recombined into concurrently
executable processes in many different ways. With timing and sizing data for each identified task
available, it is easy to predict not only the processor time requirements for processes formed from
these tasks but also the memory requirements for the programs and data sets implementing these processes.

This leads to candidate filter structures. The designer next faces the problem of selecting
the most suitable structure (or set of structures) for the problem at hand. He may select a set of
structures, each suitable to a particular mode or phase of his estimation problem, and then apply the
process control facilities of the real-time executive outlined in Section III to have processes adaptively
reconfigured (redefined) in real-time.

The price to be paid for solving the scheduling problem via structures of concurrent processes is
poorer functional performance, because it leads to algorithms uhich usually are less "optimal" than
their original, sequentially executable forms. Thus, one task which the designer now confronts is to
determine by how much the performance actually suffers. This is normally done by means of simulations.

D. PARALLEL STRUCTURES

1. Introductory Remarks

Next, we illustrate several solutions to the real-time constraint problem through workload decomposition
into concurrent processes. For this purpose, we outline several ways for parallel structuring of
Kalman filters.

Figure V.D-1 illustrates how a slight restructuring of the procedure used in the sequential model
of Section V.C changes a sequential scheme into a parallely structured estimator with two concurrent
processes: one for propagation/update of state vector s; the other for processing of measurements and
covariance/gain computations. The outputs of the Kalmin filter, i(jj), identified as usar's estimats
in Figure V.D-1, are not "strictly" Kalman in the sense that every second time they are computed while
using a time-propagated value of 66. For an Indirectly formulated filter, the second process estimates
the error 6s in state vector s.

Further separation of measurement processing and covariance/gain computations by introduction of
an additional concurrent process leads to a triply parallel filter structure consisting of three concurrently
executable processes: one for State propagation/update; the second for weasurement processing; the
third for covariance/gain computations. The resulting scheme it illustrated in Figure V.D-2.

If, instead of decomposing the workload into two processes as in Figure V.D-i, me allowed one
process to propagate the state vector, process the measurementu, end update the state vector (with the
Kalman gains computed by the other process), while assigning to the other the processing of covariances
and the computation of Kalman gains, then we would obtain a doubly parallel estimation scheme with
concurrent covariance/gain filtering, %hich Is described in Subsection 4.

Next, we examine the above introduced three parallel filter structures in greater detail. We
assume that only one processing element is available for filter functions. Hence, concurrent processes
resulting from filter decompositions must be executed in interleaved time fashion on a single propessor.

2. Parallel Estimation of State Error

This is the doubly parallel structure shown In Figure V.D-I. For this structure, me now assime
indirect filter formulation. Rence, as mentioned previously, one process (called the error estimation
1rocess) ý4stli*tes the error 8h in state vector a (and actually perrorme all functions normally ascribed
to a Kalman fU.lte), while the other process (called the st~! poa on/updating process) propagates
the state vector ± and then updates a by subtracting from noit m te o 1 passed by the error
estimation process.

Compared to the other tvo parallel filter structures discussed In the sequel, this scheme yields
high-rate propsgarion/updating of the state vector. However, somewhat stale estimates of 6a (although
properly tlme-*ligned by propagation) will in general be used for updating of a.

This schem may be the only recourse if it is required that the state vector a be prop"ated/updated
at a rate much faster then that at which the whole filter can be executed. For ex-,aple, this may be
required in the navigation applications (where a represents the navigation solution) to computations
such as aerial cargo drops or weapon deliwerlese. Wth this filter structure, it is helpful to aid
the propagation of a with outputs from a measurement system (such as the velocity and acceleration
inputs from an inrtial eubsyetei), complementing the primary measuremets on which the filter it
operating.

This doubly parallel scheme reduces to a sequentially structured filter when the axecution rates
of the state P/U process and of the error estimatim process are equal. in such a case (or when the
rate ot error estimation process is not significantly lower than that of state P/U process), this
scheme, it properly handled, displays Nany good properties (such s robust initial CoUerVsnca) Of A
WslOn filter.
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The parallel error estimation scheme easily lends itself to measurement screening and nikely
* responds to real-time changes in the system model. Its chief disadvantage is a relatively low rate of

measurement incorporation, which may prohibit its use in dynamically lively spplications. However, by
introduction of a third concurrent process for covariance/gain filtering (and thun by separation of
these functions from error e.atimation), the problem of low rate of measurement incoxporation can be
all."viated, hut at the coat ef in additional increase in dissimilarity from the structure of canonical
Kalaan filter algori..hms. Such & triply parallel scheme is discussed in Subsection 3.

If the state propagation/update and error estimation processes are the only two processes assigned
to a processing element, they can be implemented by defining the first proceso as a cyclic process and
the second as a background process. The latter will be given all free processor time remaining after
execution of the cyclic process. Should there be otther background processes assigned to the same
processing element, the following two options Pcre available: (1) define the error estimation process
as one of several background processes but allow only one such process to be active at a time; (2)
define the error estimation process as a deadline process.

3. Triply Parallel Estimation: Covariance/Gain Filtering Performed Concurrently with Error
Estimation

This estimation scheme (summarized in Figure V.D-2 and obtained as indicated in the preceding
subsection) processes measurements at a higher rate than the doubly parallel scheme with concurrent
error estimation, but does it at the coat of p~erforming ..he covarianct filtering and the rain computations
at a much lower rate. It should be used when a high. rate of measurement incoporacion is wsore essential
to performance than optimal gains.

It is not difficult to see that this filtering scheme is awkwnrd in screentng and rejecting~
measurements and, at best, only sluggishly responds to changes in bystem moedl and poorly converges
after initi.alzation. All these poor properties are due to liiw-rete. autonowous Frtr-essitig of gains
and covariances.

To implement & triply parallel estimation scheme on a processing element, three processes need to
be defined: (1) a cyclic state propagation/ update proeess, which can also be designed to serve as a
logical controller of the entire K~alman filter; (2) a measurement incorporation process, which (depending
on the measurement acquisition mechanism) may be implemented either as 4 cy:1ic proceas or an almost
cyclically scheduled deadline pro-cess; and (3) a covarlance/gain fiterijag pru)cevi, defitted or a background
process, which will be given all free processor tiam remaining between repziateI executions of the
other two processes. However, s~hould there be other bickground proceesex on -te xr-sue nrý-ceasing element,
then either one background process at most would be kept active at a time or ýbo covariznnelgain 1llltering
process would have to be defined as a deadline process.

4. Doubly Parallel Estimation with Concurrent Covariance/Gain Filtering

This scheme Is based on two procossea. In t-ach estimation cycle, the first (tn-Ate est1z..tiun)
process first propagate# the state vector a, then sequentially processes the current measurements
while using the gains computed by the other process, and f inally updates thle stats ve. ~cr. Any of the
two filter formulations (direct or indirect) can be used In state *stiention. Mhe other (covariance/gaon
filtring) process propagates the stats error covarian-ce matrix P. then enters a loop (structurally
similar to the measurement processing loop in state error estimation process) to update P and
compute gains.

This scheme Is similar to the triply parallel estisation scheme Introduced earlier except that
the propagation/updating of stats and the processinig of measurements presently are done withint the
sow process. Thus, (due to low-irate, autonomous computation of gains) this sichme has properties
similar to those of triple estimation, the only main difference being that state propagation/updating
and maesurseent incorporation .rt now perforoed within the sawe proc*es. This limits the rats at
which a can be propagated and updated.

This type of filter mechanization has been used successfully in CPS navigation applications
described In [Dami and ICyl $01. In these applications, the linearised state-to-masuirefnt transformations
change slowly after the Initial convergence (which justified low rate of gain computation) Ord good
performance depends on 41 hilb rate of weasurement Incorporation. The Initial convergence end sudden
changes in the system moeal ot io measuresientosetill require special care.

To implemient this schems, one can define the state oesimation process as a cyclic process and the
covarianc*/gaiti filtering process as a background process. The lhtter will be given all fran processor
times rtams ln between cyclic executions of the state estimiation process. Should there be other background

VI. 5SRaiAY AND CONCLUMSIK

In this article, we addreassed the control specialist who to facing the problem of havivg. his
estimiation. algorithms implemented as a working resl-tifin system. Us attached the nex lapipemmntal
design' to the activities caacerned with adaptation end restruactusrin of algorithms for computer
implamentatioa.

from the start, we esmumied that distributed systems of microprocessoto (or just of sbill computers)
wers the type of hardmire on which isplematal desil" ues to be execuated, but this did not rule out
system eonsisting of a airgle computer. With this assumption, is inarrowd the discussion to a g*aas-i
clase of eat isatiou/control real system considered to be suited to implameanateaion distributed



microprocessors. We characterized them as small-to-wedium-scale conitrol systems designed to be boundedly
loadable, i.e., to accept a processing load not exceeding the bounds established at design time. To
this category belong practically all real-tine control systems which are equipped with estimators and
which are to be implemented on hardware of the type considered here.

Next, we introduced multiprogramming as a suitable processing environment and detined a structural
model of software architecture for this environment. Such a model is needed for software timing and
sizing, which was identified as an important task in implemental design of real-time software. It is
also needed for design of a real-time operating system, called real-time executive.

We also introduced process as a fundamental concept from theory of operating systems and defined
it to represent a program in execution, but rot necessarily executing at the moment. To simplify
the processing environment model, me also required preservation of one-to-one correspondence between
program and processes.

Our next topic was real-time executive. Selected issues of process management and resource allocation
(such as deadlocks and their prevention, interprocess communications, and process synchronization)
were reviewed. Thereafter, our attention turned to two issues in real-time executive design which
very much affect a control specialist engaged in implemental design of estimation algorithms for real-time
operations: process scheduling and interproceas communications.

At the start of the second part of the present exposition, we turned to the issues directly asVociated
with esimatorm. In Section IV, we reviewed several algorithmic and procedural aspects of estimator
design, which wjst be considered if the resulting real-time estimator is to be numerically etf.ble,
computationally efficient, and robust to disturbances in measurements. Discussed were stable algorithms
for covariance/gaiu processing in a Kalman filter and real-time system identification techniques. In
Section V. by means of 1lSLrations, we looked into practical schemes for decomposing estimators of
the Kalman filter type into structures of concurrent processes. Two basic filter mechanization schemes
mere .ompared, underlying such parallel structures, were compared. They are direct and indirect filter
fomulat.ons. Also, two modes of filter use, feedforward and feedback, were introduced.
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APftlDt, A: XJW. FILM A0110RtTIIM F A DI0CRUth LIM.A SYSTTI Villi IAMMN O ASRUW-MiT

In this ppopensin a s tais for tte1ee purtpo the st•a4rd Itors of Ialn fi totr Iltorittm,
1nclu4ir the system em•sl which this algorlthm asesme, for a dieCtte Uiea yet-a W11%h sampled

I. ?ftapgeaaioti iat system stat veator tres t - ti.I to t kii

, *k -(1 hk-l),Jk-1) 4 •h-IL•k-I). (1)

2. NsmUCOWe Sa t t- t*

rn.lk) - hi(k)(h)} + ulh), (2

3. atiol e•Litieos at t-- tot

.lKO(O)l - ;(o). calee(o) - i(O)l -P(o). (3)



4. Assu.mptions about system ststistica:

a.The processes [!!(k)) and [!u(k)1 are zero mean, mutually Independent Gasasian

processes with covariances

R[!(k).(i)TJ Q(k) k

and

g[u(k)u(J)Tj - (k) Sj

b. Furthermore, o(0) is Independent of w(k) and u(') for any k.

B.* ESTIMATION PROCEDURE

1. Propagation of estimates from t tk-j to t tk

ý(kY - VF(k,k-1)i(k-1Y+, (4)

P(kY . F(k,)t-1)P(k-1ye7(k,k-1)T + G(k-l)QXk.-1)G(k-1j)T. (5)

2. Upd~stIq of eetimwtes at t , *

K-) Hkl(k)TIH(k)P(k)-H(k)T + It(j)J1, (

K -k) I- P k) kM~J~) (7)

i -) i(k)- + K(k)(m(k) - H(k)~j(k)k-j. (8)

C * EMS IONS TO NONLTNEA KWAURDLWI EQUATIONS

w~ eaeuroment suottons (2) ar* replaced with rn(k) -his(k), tkJ + u k). (9)

The linearized at~t.-to-amauramnnt transforoatiozn K appearing In filter equiations (6)
through (8) are now obtained by means of vector diffeteatiotion of hds,tI with respect to a:

lt~k (t!,ri/±)rt(10)

0. NOTATION USED ABOVE

* tkpar-camo lettere represent imatrices

0 Lor-ee lstr represent ecelare at (it worked with bare widoro~ath) column waetter.

* XWh rspgsa6444s the VIW' Of tOlUM VOCCt It at t - tk4 sWImar G"4410o6 10 Used tv tuw-tao
i eaars oa4 tricss.

* AT represent# the transpoes of matrix Al It to a. colWaxe ta.n the* wtT reprMeate the
traioepooo .t X. which to a tow vector.

* (kit) do atstea so *tlaato of # at tima tk that has b~vi 9M*Iaine by usil * a istor'y of

mWaaurs"mot up to and tociuding the ttm tiCSth).

A. hIDTO

Cowrisnoo and pino proctsolfg aIloritlew, opoatetlI o~n Vi and factors of *tat* ejrrot cowarience
motrtit P, #to a tachiftlqo for 1,..lsmatlog **quire root f~tltrI04( without tequiritw ocrmpatatice ot

* *square rotot. These asiorithoo ofter a te u teled@ approoch fo t owecomlop the wMattcel letfotbIity
loheret in the origoiaal fomlut..op of KSIMO filter *1lgorIthoe. The latter to aktamrtgag to A~Peudtx
A. Notical tftstabtility problee* &to casuo* by tho rpteatd u~v of feormul (7) to AppI*VIs A fot
inassuct~mt updotiog of *tat* error coieriance, tmttle P. Eut@0I~atioD 6f that fformlAX MhOeu that
seckalation oa ramdof! otters say oreaut~alty to~e wattl P to lose Its poolivtl deipn~ltamase. It
should also ho uowtlomtd at this polot that the UýD t~vsrlenee* tectorleat lea olgovithew art just *

* ti140l'ttfilly Stable &-d COsputhtOinaliy efICIent Oethad for IQ1P1~tlt* KeIImne' 94tieeti. procedure
(outlieed to AW41%ii A). but sot an estimator 81, terrt. from YAlsox filtor.

ILI s* '"r et-V ~artgaoct fo4Ctorerlsat Iou 0 fro* a Property -f 0anoegastI dp(ftiIta *740trIC
ootrlces, stcortdiv to %ich positive seWidefieltt ustrtt P can be foetp *4 into P' - v %hU, eto Is
a* uoperý trloarA~lar vatris with unit olamsato It* wista dialaftal Oud 0 Ia a disagoal eswtrlx.

* Vfor coa"ee4eswe in nust sumantil 04e basic V3-0 r~avrimac. factoraztinoo slg$rltm%. nT 4t0t,41.10
the reader to referked to [&Sol &#d IThol. the soanod beal,0 sm updated r*%iew of the topic. aithokus

"Atrroe to scop. than the firt*.

Suppose that -,the refirrealc tive of the oc'rreat eatlinetion cycle is tg1. To simplify tto notation
used to Appeadly A (mad to sash it *at* compatible %4th tMe nototlee v*9edt I Tho). I w drop eupliett
rsfeteactio to ttm sma write il for Rytlk'-I. I for (b);Similarly. I for 1~kjk-l) and F for P(klk).
f'ertwisowe, amus the amm letters as ic Appc.Jlz A To doeote the quantities it teems to %ALAh the
*pts.madar& a&W the Wamlats flter alguoitIaw are fasmmalted.



In specification of computational algorithms, we use (in agreement with the current practice of
algorithm definition) ":-" instead of "-" to connect the left- and right-hand sides of assignment
statements. We do it to emphasize the idea of value replacement.

The following symbols are used to specify the size of system model: "n" to denots the length of
state vector a; "ni", the length of process noise vector w ("q" here relates to process noise covariance
matrix Q); and "nm the length of measurement vector m, although, in the sequel, me consider only
the sequential processing of scalar measurements.

C. U-D FACTOR ,ASUREMENT-UPDATE ALGORITHM

Suppose that the following input quantities are given:

H - I=n matrix representing the linearized state-to-weeasurement transformation for the
scalar measurement to be processed;

R - noise variance (AoO) of the measurement to be processed;

U,D - U- and D-factors of P (time-propagated to tk or measurement-updaL,-d at tk for all
measurements so far processed at tk).

Proceed as specified by the algorithm contained in Figure Ap.B-1 in order to perform covariance/gain
update processing for a scalar measurement. To process a vector of nm measurements, this algorithm
would have to be embedded in a measurement processing loop (e.g., Section V.C) and then executed
iteratively nm times.

This algorithm uses a scalar X and n-dimenbional vector f and E as intermediate variables.

The outputs are:

k = n-dimensional Kalman gain vector or (following the notation of Appendix A) nxl matrix
X;

-U,D U- and D-factors of P (measurement-updated for all measurements so far processed at
tk.

Instead of outputting k, it is often preferable to output separately

V = n-dimensional normalized Kalno•n gain vector and

0 the innovations variance, which, following the notation of Appendix A, can be expressed
as [H(k)P(k)-H(k)T + R(k)].

This is because a is used in the measurement processing loop for screening a processed 'measuremenr by
testing whether its residual lies within ýn acceptance interval of the form (-bon, bo0 ), where b(>O)
is a scaling parameter.

UDMUPD"t f ' :=RU ( where J .=[fl , .... Ifn i)
1 : - 6f ; '%where I [l T 1 1 .... 19n])

for J-l,...,n do;
aj'- aj-i + f *gj; (where a0 R and aoan)
ifa -0, toej:k 'n '6else bj " .7a'-,'o J;

iJ "I, then Ni .:o ELi;-- If " I.'--, th::-• =o
-- ls~e X:= i'I/ajl

for i " 1,...,J-1 do:"--Iij '" - i Q

end (Recycle if i<J-1)
ELJ: end (Recycle if J<n)V -:• ' YO /Oad ; Q.[k 1,. .. ,k nl

"end UOKUPD

Figure ApB-1. Executable (computational) part of U-D Messurewent-Update
Algorithm, defined in (Tho], pp. 198-199. Inputs, outputs,
and intermediate quantities Are specified in Section C.

D. COMPARISON WITH TM ORIGINAL FORM OF KALMAN FIL'TER

Next, we restate the covariance/gain filtering part. of the original form of Kalman Filter ,defined
in Appendix A by equations (5) through (7)] for processing a single scalar masurement ton term of the
notation introduced in the present appendix. We do it in order to facilitate comparison bet•aen the
original algorithms and the U-D factor covariance/gain processing a•lgorithms summaried in the present
appendix.

. . .. , •



In terms of the simplified notation used in the present appendix, equations (5) through (7) of
Appendix A yield the iollov:Lng L~rocedure:

nl, T
r:'FrF +cQGT; (Covariance p-opa-etion to tk)

:= PHT; (Normalized Kalman gain)
" : HY+ R; (Innovations covariance)
k O-. (Kalman gains at tk)

P _--kVT; (Covariance measurement-update at tk)and

The 2bove form of covarisuce measurement update for equivalently formula (7) in Appendix A) is known
to be computationally unstable in the sense that it may make P acquire negative characteristic roots
as a result of roundoff errors and overconvergence of P. A stabler, and although
computetionally mere expensive, version of that formula for a scalar measurement (with H being lxn
matrix) is

P :- (I - kH)P(I - kH)T + k•kT .

Its vector measurement version is

1' :- (I - KH)P(I - KH)T + KRKT

where K now is an nxn, matrix and H is an nxn matrix. Due to the amount of processing required,
this stabler form is rarely used in real-time applicatiov.ao

E. TIME-UPDATING PROPAGATION OF STAT EPROR COVARIANCES

When the U-D factorization algorithms are used for meaxurement updating of state error covariance
matrix P and computation of Kalman gains, the following two alternative approaches for performing the
time-propagation of P are available: the Corventional Propagation-of-Covariance Algorithm and the
U-D Factor Time-Update Algorithm. In the sequel, these two approoches are outlined for propagation of
P from time tk to tk :. le- tk + AtK' l.a.. for romputing P(k+l)" P(k+ijk) • frm the measurement-update
of P from the precedlg estimation cycle.

F. THE CONVENTIONAL PROPAGATION-OF-COVARIAN(E ALGORITJHM

This algorithm for computing , given from the preceding cycl. in terms of factor matrices
and D is based on the following procedure.

a. Compute

which yields the canoni-cal product representation of matrix P; here, FmF'k+llk) .ts thu state
transition matrix for propegatioor of the state vector a from tk to tk+j.

b. Compute the process cocarit"c matrix 0 O(k,4tk)- Vhich Owy be a function of time and of
the propagation step $ita dtk.

C. Compute

I * +e GC T  (2)

where GG(k) is as defind by equation (I) in Appndix, A.

d Factor i into 9 and 6 by mesre ot the U-D fecctration Alorit0w, pecItled in figuve Ap.3-2.

Althou•h the ecoputtit imlied by the. aov step.# a througb d Is thought *f sa a trabia Process.

it It noted on ý-. 14 of[ | that there exist taportane exce Lown *on If As large eadlor P Is
ll-conl tio ned. In ouch Situations, the resultii. *tris P my kave etowis errors, Problems sty

also arie#* whae due to rounoff errors, seem charecteruleti values becomw salShtiy 4eegriv*e.

On the pooltive side, the aboe coverian" propagation algorithm yields (after Step C) i expressed
in the eanonital produ-ct orm. vscilia perts of 1*ict (especially its WaLs disagonal elements) ore
often used for both on-line end RoJteigsion perforana- sanlysis. Also. the appearence of slightly
Wative ebharatetlele roots In I £ t "b* avoided by keepin G4QCT  uffliciettly "laet compared to

abd/or by waitortng and then b•oeel.g, an the basis of need, the elements of diagon.'l wetrix
Another technique (in cids 0 is not #A adettiy matrtix), botrored ftom ridge --Urasaon, Is to aid to
tha right han side of (2) a poltive dehilte diagOnal matri x1 on detet0a of the used to boost P.I0 U-0 V1ACIOR M0PAGATIOZV (TUI.i*-PtXTM) QO3UTW•

This algorithm tL bae ona ntdiftod Qas-Scbddt o0hbIgmoUaetlom. It is described on 1agIvs
200-203 of (Thoi.

It order to summarize ii, we first need to dWfine a weighted inner product of two tvIcamponwnt
vettots a and c, '.eighted (norueliaed) by the wlý -diagonal elamte of an Dan vmtrtua I *diagIi,.,bl
Us defic; thlilamr product as

(I. s-) na b e " a),



Input: nxn symmetric matrix 1ý, Vith main-diagonal and upper-triangular elements stored in an
nxn array P.

Output: nxn unit-'diagonal, upper-triangular matrix Twith its upper triangular portion stored
in nxn array U (which optionally can be "equivalenced* with array P so that the original
Sis destroyed).

Output: the main-diagonal elements of nxn diagonal matrix 1Y stored in vector D (which optionally

can be stored in locations of ti-i vain-diagonal elements of array 1').

Remark: the algorithm does not explicitly generate the main-diagonal unit elements of i

UDPTZTR: begin

for j n , n-l,...,2 do:

Di :.i~j;

0 /-lD1 ;

for k 1..jldo:

for I 1 ,...,k do:

Pi,k Pi- l P*ij

end

end

UlPIl

4pnd UDPCTR

Figure~ Ap. B-2. U-fl Fact-rization Algorithm

Next, we use two matrices from the system moedl defined in Appendix A. the nxn state tronaltion

mat-rix P - F(k+l. k ) and the rxnq procesk noise transformation matrix G. to def~ine

W FUIG). )

(Here, Uand Ddenote the measurement.s updates (from the preceding *at iqation cycle) of V and D"
reapectively.) Thus. V Is an =mN a ax(n + Nq) matrix, the jth row of which will be denotled by !T

Finally, we combine In the indicated order the mA.'n-diagogsi elements of nxu diaganal matrix t
with those of flqllq procers noise matrix 0 to define an NxN diagonal m~trix~ (whnre satin N Vn +
n 3) as

*diag ij..lI

* '.g (i*.D, (5)

With the needed definiteion# 4,tplured, va ani reedy to smatrize tthe U-D Factor Prop"Agsoo
Algorithm, wihich we do in Figure 4p. 8-3.

Ht. CONCLUDINC W~igs

only the very basic forms (of *4tarman's mtthod") of Ui-0 factor 'cov ri ance/gaia procoosela algorIthW.
hsve be oon averlead and etpamred here with the artinial fi~ra of Welan's filter. Fur U. Nore Vampletv
#eeaunt of Bier~ao' approach Wrse to (%It@) or to %*tJ. #'or different approaches to 'aquae rnot
filterIng, refer to Andwet lAo~r) or Cerlsoo (Carl. Coaptet * at JAWd) mr-d Chaptur 7 of (Nay) coatoin
tatwtbook itatoduetiova to this topic. Cosparasiv* tmirs I&W stated o 11fitertag altorttW" sro 41.s'ýqsasd
to Mie), (Thel, And INay).

e As #opedto Seclmtiton V, oofpamna dspa real-tim. Waima fitatni f-or ree't(at.

their miaerical atebility, (2) their suitability tor islomontstion In eiagi..pr~cItaio floatIeg-Voint
arithmetic (except tor tw"potatted of saw dot pretacta). tad (3) their rsomo~ble tomgputattanal
effieisecy compared to WKaleun or4igal fotauuitiaas. Crlttsroo (2) is icpabrtart lik twmpeaoistiora of
r#4l-time 6stIimaton on the sit roproc"esort thith do sot haWt flosattag-ptus hatdost. The disparity
between the processing sp*ed, of singlW- and double-pr~clstioa fors ato floatiog-point sarirthitic 40Ra

as 9o*e ie& ro harwersr to soft tsre 0... *tatrpretive) I~lnp toetioco WAi artbietsic.



Input: mct matrix W (with rows Z

Input: NxN diagonal matrix 5 defined by equation (5).

Output: the upper triatigular part of nxn unit-diagonal, upper-triangular

matrix .

Ou.~pUtr the main-diagonal elements, stored as a vector, of nxn
diagonal matrix Di.

Def Ine: (0 for j 1 - .. n

UDFCTRPR: begin

for i n, n-!,...,2 do:

* : (n-J( ) , w(nij))

for i i, ..., J-l do.

Xj(n-j+l) := J(n-ýJ) - ,J*,Jn-)

end

end

-(Wi (n-1) I(n-l)),;

end UWC-TRPR

Figure ApB-3. U-fl Factor Propagation (Ti~se-'Updata) 4,1gorithm

Conatraints in the available pirnceossL'g resources and in the required real-time constraints usually
motivate the expliitatlnnt of problem structure in order to reduce cae processing Joad. There ars- three
areas which should alwayu bve carefully examined end possibly exploited. Tile first is avoidance of
florting-'9oint operations on tero'-valued ooeraods. This can be attained via careful programming of
alporitht... The otcqnd is structuring of vectors '~nd matrices in the system model so as to introduce
zero subvettors and subantrices, %Ahich vwoud in tuvt' yield an estimation problem of smaller size.
This c~en often be accomplietied throu6j careful structuring of systes model and mechanization of estimavion
algorithms. Finally, oll ktrn~el algorittma, operating on or producing matrices, *hould be designed to

hanl* uerics a on dmsnslihol' rras. kelast feature allowo efficient Application of the Same

coasidored 'hte.e dmivtoiwn af the system model way Chan~ge -in reel time.

AM HUMl. C t ESflITUOT MMOIZU IN GPS MSR'S NA&I~VGkfl0?

A. nIMooucrxo

Th4 proovnt appendix sumvriaee the CPS eotimation problem sod defines a system model for It.
This problee to cited at a4n illustratiop several time. im the "ain body of the present excposition.

A user af CPS Tiavigatiofi ovotpoett It attumed to be# either moving or staying stationary close to
the surface of the earth, See~ral difforent types of CPS usor's navigation equipment for various
CIA* to of users (ega sItationary user, a land vehicle, an aircraft, or a ship) worn recaently
dsv*1o-*d or era still undtr development. tDam.ij )tyl #01, and [Up.) at* asapleS oZ literature describing
CPS u~itr'la tnaviattoss anid/or Ito equipment. ICoitl discusses integration of CPS with ineortial oystems;
tVanj dastribes GIP$ esgs The est imation problem of CP'S navigation and Its system modtl actually
depenid on th* particular type of equipment tznder consideration. to% pedegogleal rasuones, we overlook
mas" technicnl details to the estimation problta and deftes an ow~rsiaplWa system model for It.

An oartgbcentorod. eerth-fised (IM~) coortlnat* system (%ith cootdinate axes denioted by x, y,
and a) ta ured in .51 1 PD navigation processing described hare. The t-oalT of auch a coordinate frame
coincides %d th the PelIAr AXIO Of the reference X~i.U VA edY lit In the equatorial plane. Thle

pittcu1lr versilon 4 IMP frame saussed here has Its x-taxl volteting toward the GrsenwLth meridian;
the ye-axis 90' eAst of the a-axis.

C. NAZAThIO SAA WCMi

The novigotioo state vettor (whlctt,. in geeal., h* A fueorIko of time) Is defined by

T

b *the range bit* In range messurementm, due to a Was. to the clock of user's navigation

equipment sat relative to the 03~ rial



f - db/dt - frequency drift rate of user's navigation equipment clock;

T (x,y,z) - EEF coordinates of the antenna phase center (PC) in user's navigation set;

vT -(Vx,VyVz) ECEF velocity components of the antenna PC.

* In OPS navigation, even for moderate dynamics users, one usually models acceleration. For simplicity,

•acceleration is not modeled in the present case.

D. DISCRETE-TIM MOIEL

The discrete time model of state vector dynandcs is

s(k) - F(k,k-1) s(k-I) + w(k-1).

Let

Atk -tk -tkI,

S•and ideally one would like to assume that w(k) is a zero mean white noise Gaussian process, with

E[w(k)wT(k)] = Q(kAtk),

E[s(O)] = W(0), and

E((s_(0) - _(0)[_s(O) - _(O)jT) P(O).

The state transition matrix F is defined by the following transformations:

b(k) - b(k-1) + Atkf(k-l),

f(k) - f(k-l)exp[-Atk/rb],

with the range bias correlation time rb assumed to be a constant or a slowly changing parameter; furthermore,

" p2(k) - 2(k-1) + Atkv(k-1);

v(k) v v(k-1).

NAVSTAR-GPS satellites (on the pseudo-range and delta pseudo-range measurements of which the
navigation filter operates) will be referred to as space vehicles (SMs).

For each tracked SV, the navigation filter during a measurement processing cycle receives via the
GPS receiver in the navigatic:n set a pair of pseudo-range and delta pseudo-range (an observed change
in pseudo-range over a count period of fixed length) measurements. For the jt SY SV , these two
measurements will be denoted by PRj(t) and DPRj(t), respectively. A pseudo-range roughly is a range
that has been synthesized from the readings of two distinct clocks (SV clock and user's navigation set
"clock) and that has not been corrected for the bias of user's navigation set clock with respect to the
SV clock. In the sequel, it will be assumed that incoming pseudo-range measurements are already corrected
(actually they are not) for other errors, such as the SV clock errors with respect to GPS system time
and atmospheric signal delays. Thus, if b(t) denotes the true but umknown range bias at time t and if
PRj(t) is the corrected pseudo-range from SVj received at time t, then the range of the signal received
from SVj by user's navigation set at the same time t is represented by

Rj (t) - PRj(t) - b(t).

Hence, the predicted pseudo-range measurement for SVj at time t can be written as

p~j(t) - ij(t) + g(t).

Similarly, the delta pseudo-range measurement DPRj(t) for SVj at time t is defined by

DPRj(t) = PRj(t + 6t) - PRj(t- 6t),

where 8tDPR * 2 St is the duration of delta range count, which is characteristic of the receiver.

Hence, the meseurement DPR4 is predicted at time t by means of
DPDS(t) P~j(t+') -

-lj(t+6t) - Rj(t-8t) + b(t+it) - b(t-it)

- j(t+6t) - R(t-at) + f(t)StDpR.

In a measuremot processing cycle, a (PR, DPR) measurement pair is received from each of four (or
occasionally fewr) tracked SMs and subsequently processed by the navigation filter.

To complete the system model, the measurement equation at tk is written as

I(k) - hjs(k),tkj +_u(k),



where we assume that:

*"The transpose of vector m(k) is of the form [PRj(k),...,PRnk(k), DPRI(k),...,DPRtk (k)],
with nk (_<4) being the number of distinct SVs from which measurements are available at time

u u(k) is a zero mean, white noise Gaussian process with E[u(k)uT(k)] diag 2  ..

62 82 ~ 2-~ PRnk, 82DPR11-'' 82DPRnk];

0, y(k)} and[_u(k)j are mutually independent stochastic processes, which are also
independent of s(O).

It is assumed that the GPS receiver which acquires and preprocesses for the estimator pseudo-range and
delta pseudo-range Ieasureme~ts is designed to furnish extra observables from which the estimator
directly computes 6 PRj andI DPRj. Such a receiver is described in [War].

E. EQUATIONS FOR PREDICTION OF RANGES AND DELTA PSEUDO-RANGES

The signal range Rj(t) from SVj(received at time t) is computed by means of range equation

R Rj(t) = ([xj +ayj-x] 2 +[yj-&xj-y] 2+[zj-.] 2 ) 1/2 (1)

where: . [(Axj)2+(xyj)2+(A.zJ)] 1/2
~where:

0 0- (.)(AtT(j)) is the angle by which the ECEF coordinate frame is rotated during the
signal transit time from SVj, with SQ representing earth's sidereal rate and AtT(j)
being the duration of signal transit from SVj, a quantity which is unknown and must be
estimated.

0 (x , y, Izi) represents the ECEF position coordinates of V at time t t
tey must be computed by means of an extended form of Kepler's algorithm while Using the

transmitted orbital parameters (called ephemeris data) of SVj. The best approach is to
recompute periodically (at a relatively low rate) the least-squares polynomials for predicting,
as a function of time, the position coordinates of SV4, (xj, yj, zj). This approach
savee processor time and yields, by means of analytic differentiatlon of polynomials,
approximations to the rime derivatives (x* •y z) of (x yj z•1 ) These time derivatives
are useful in obtaining the time derivatives J j j, AyJ, 4z).

* (x, y, z) are the ECEF coordinates of the position at time t of the antenna phase center in
user's navigation set.

To predict Rj(t) [i.e., to obtain Rj(t)], the quantities (x,y,z) in equation (1) are replaced with

their estimates at time t. The expression

Rj(t+St) - Rj(t-ft), (2)

needed in computing the predicted value of DPRj(t) at time t, can be (as experience has shown)
efficiently and with sufficient accuracy approximated by means of

((dR(T)/dr ]•t)6tDPR - [xj AXj YjAyj+zjtzj ]/Rj (t), (3)

where, as earlier stated, StDPR is the duration of delta pseudo-range count. To obtain the predicted
value of (2), one substitues in (3) the estimates of Axj, Ayj , Azj, 4xj, Aj , and Azj at time t.

F. MODELING OF PROCESS NOISE COVARIANCES

Suppose that the process noise manifests itself only through the unmodeled acceleration and through
the range bias and the range bias rate (i.e., f - db/dt) components of state. Let Atk be the effective
time step used for propagating the state error covariances P from tk_1 to tk. Then, the process
noise covariance at time tk is of the form

r b( tk), 02x6 1
Q(k, AtO)

[ 6x2 'Qd(k, tk)J

where subscript "b" refers to range bias and its rate of change and subscript "d" to user's dynamics.

The 6x6 user's dynamics process noise submatrix 0d is of the form

Qd(k, t) -J-- -

Hence, Qd is constructed from three generating scalar parameters 4pp, 4pv, and -vv"

Define an auxiliary 2x2 matrix Qd(k,Atk), constructed from these three parameters, as

_1,



S• p qpv tk

d(kAtk) [Fd(r)] N Fd(r)Tdr,i! qpv qwV

where 1 ' 0 0
Fd(T") = " N .

and n - 2 a-2/r 2 represents the power spectrum density of velocity aoise due to unmodeled

acceleratioc, %v2 is the variance of velocity noise, and rv is the velocity correlation time constant.

In general, av2 and rv are not time invariant.

Submatcix 0 b of Q is of the form

.r qbb qffqbf

Qb(At) 
|qb f 

'

qbf qffj
where, assuming that the range bias rate correlation time rb is much greater than At,

Sqbb '¢ (nbb)At + (nff/3)(At) 3 ,

qbf a (nff/2)(At) 2 , and

qff - (nff)(At).

Tt
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This article discusses some global approximation procedures for nonlinear filtering.
These procedures yield algorithms for recovering a signal from a measurement containing
signal plus noise. The celebrated Kalman filter solves problems in which the signal
evolves as the solution to a linear differential equation driven by white Gaussian noise
with Gaussian initial condition and where the signal enters linearly into a measurement
corrupted by white Gaussian noise. For problems where these linear Gaussian conditions
are weakly violated, the Kalman filter serves as a good approximation. In many interesting
problems, however, these conditions are not satisfied. For example, one of the random
variables may have a multimodal density function or the signal may enter nonlinearly into
the measurement. The techniques discussed here give the designer some tools to use when
the Kalman filter is no longer a reasonable approximate solution to his problem.

1.0 ORGANIZATION OF ARTICLE

This article is organized as follows. The first section is devoted to a brief state-
ment of the general problem addressed here, and a discussion is presented, by means of an
example, of the difference between global and local approximations. The extended Kalman
filter will be seen to be a local approximation, and the hope is that the example chosen
will illustrate the inherent difference between the extended Kalman filter and approxima-
tions to be developed later. The example problem chosen to illustrate the difference
between local and global approximation is that of analyzing a feedback loop with a non-
linearity in the forward path. The local approximation for this problem is a small signal
analysis or linearization. The global approximation chosen is a describing function anal-
ysis. The difference between these two is that the global approach predicts fundamentally
nonlinear phenomena like limit cycles, whereas the small signal gain approach cannot. The
particular example chosen is also useful in that it will recur when filtering is discussed
in the second section.

Section 2.0 develops some global nonlinear filtering approximations and illustrates
their use with a radar ranging example. The first part of the section is devoted to the
introduction of this radar exampr1. A radio ranging problem, similar to the radar prob-
lem discussed here, provided the authors with motivation tu explore global approximation.
The problem is one that cannot be solved satisfactorily by an extended Kalman filter.
The remainder of Section 2,0 is devoted to the introduction of particular approximation
methods and their application to the radar problem. The applications are developed and
compared and their performance demonstrated.

1.1 Problem Statement

The object of this article will be to give some approximate filtering algorithms for
the problem of recovering the signal from a measurement containing signal plus noise. It
will be assumed throughout this article that the signal to be estimated is a random pro-
cess which satisfies

- f(xt) + g(xt) n(t) (1)

where f and g are known functions and n(t) is an m-vector white noise with spectral matrix
Q(t). The signal x(t) is an n-vector. It is further assumed that the measurement from
which the signal is to be extracted is of the form

x(t) - h(xt) + v(t) (2)

where h is a known function and v(t) is a white noise with spectral matrix R(t) and is
independent of n(t). Section 1.2 presents a radar tracking problem which has this form,
and many other physical problems can be modeled by this set of equations. The vector x
is called "the state vectore or "the message," depending on the situation. The vector Z
is called *the measurement.* The object is to give some algorithms which process the
measurements, &(t), to determine the state, x(t), with the smallest possible errors.

Some of the approaches to be used for extricating the signal from a noisy measurement
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require the equations to be in discrete-time form. Discrete-time state and measurement
equations have the form

x(i + 1) = f(x(i), i) + g(x(i), i) n(i) (3)

and

z(i+l) = h(x(i), i) + v(i) (4)

where x and z are the discrete-time state and measurement, respectively. The functions
f, g, h are assumed to be known. The noise sequences (h(i) and v(i) are white, independent
and Gaussian.

1.2 The Difference Between Local and Global Approximation

In this section an exanmple problem illustrates the differences between gobal and local
approximations. The problem chosen is to analyze the behavior of a nonlinear feedback
loop. The loop to be analyzed is diagrammed in Figure 1.

motion x(t)

Figure 1. A Nonlinear Feedback Loop

This tracking loop is first order. It has a nonlinearity in the forward loop which
is linear for errors smaller than one in magnitude and which goes to zero for errors larger
in magnitude than two. The input, to be tracked by the loop, is a Brownian motion. A
Brownian motion is a Gaussian random process, a typical time history of which might look
like the trajectory in Figure 2.

Figure 2. Possible Trajectory for a Brownian Motion

The Brownian motion can be thought of as the integral of a white noise. It shall be
assumed that the spectral level oZ this white noise is q. The magnitude of q determines
how difficult the input is to track.

The form of the forward loop nonlinearity is an obvious source of difficulty for this
tracking loop. Since errors larger than two result in zero restorative force, it is
expected that there in some level of q for which the loop will be unable to follow the
input with a finite error. If the input were a ramp and q its slope, then it would be
clear that above some magnitude of q the input would be untrackable by the loop in
Figure 1. This would be clear because the tracking loop is first order and follows a ramp
with a steady state error. For a ramp input to a first order loop, the magnitude of the
steady state error in proportional to the ramp's slope. When the slope gets large enough
that the steady state error is greater than one, the loop in Figure 1 will no longer follow
it with a finite steady state error. The object is now to demonstrate the same kind of
dependence of the loop following error on q for the given Brownian motion input.

Two approaches shall be taken. First, the loop will be linearized and analysed sta-
tistically, and, secondly, a describing function approach shall be taken. The lineariza-
tion approach is a local approximation and is directly analogous to an extended Kalman
filter. The describing function approach is a global approach and is directly analogous
to some of the approaches which shall be taken to the nonlinear filtering problem in
Section 2.0.

To begin analyzing this loop consider the differential equation which the loop error
satisfies

d
a e(t) a -K f(e) + n(t) (5)



In this equation f(e) is the forward loop nonlinearity shown in Figure 1, K is the forward

loop gain, and n(t) is the white noise which is the derivative of the Brownian motion
input. The first approach to analyzing this loop is to assume small error and linearize
f(e) about zero. This yields the equation

de(t) -Ke + n(t) (6)

This linear equation is easy enough to analyze. The mean square tracking error is defined

by

p(t) E•e 2 (t)} (7)

and if it is assumed that Ele(o)l 0 (that is, that the loop is initialized without any
intentional error), then (Jazwinski (1)) p(t) satisfies the differential equation

p(t) : -2K p(t) + q (8)

The steady state mean squared error ps satisfies (t) 0 and is easily found to be
ps - q/2K. Large input dynamics (large q) result In large tracking errors and large for-
ward tracking errors and large forward loop gain (large K means a fast tracking loop)
results in small tracking error. If q is small enough and K large enough that the errors
stay small, then this linearized analysis is a sufficient characterization of the loop's

4 behavior. The problem with linearization is that it gives no indication of the loop's
A • behavior as the errors get large. As the one sigma error predicted by linearized analysis

gets large, only a small part of the error trajectories stay inside the range where the
linearization is valid.

A second approach to analyze this loop is to use a describing function. The describ-
ing function procedure in this instance (Gelb and Vander Velde (2)] is to assume that the
error is Gaussian and to replace the nonlinear block with the linear block whose output
best matches in a mean square error sense that of the true nonlinearity. The gain of the
linear block is called the describing function gain.

Assume that the error has a Gaussian density with variance p, then the describing
function gain G(p) is

G~)-.~ ef(e) exp { 2 I}de (9)
G(P) - 21

SoGe manipulation yields the describing function gain to be

This gain depends on p, the mean square tracking error and can be thought of as the gain
an avera'ie error trajectory sees. As p, the error variance, gets small, G(p) approaches
one, which is the linearized gain. As I gets large, the describing function gain G(p)
approaches zero - a reflection of the fact that most of the error trajectories are outside
the range to which the forward loop nonlinearity responds.

The differential equation for the tracking error when written using the describing-i,.i •function gain is

aep a au f e(t) - -KG(p) e(t) + n(t) (11)

The same approach as used for the linearized approach yields the variance equation

S- -2RO(p) p + q (12)

Dependence of the describing function gain on the variance complicates the variance equa-
tion. Finding the steady state variance requires solving the algebraic equation

G(P)

Closed form solution of this equation is not possible, but a graphical solution demonstrates
its qualitative properties. The function G(p) p versus p is graphed in Figure 3. It is
clear from the form of the graph that if q/2K is larger than about .42, then no steady
state solution exists.
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Figure 3. Left-Hand Side of Steady State Variance Equation

The describing function appzvach has provided two pieces of information which the
linearization approach did not. First, it anticipates some gain reduction as the variance
grows and correspondingly predicts worse tracking errors. It also predicts a combination
of q and K for which the loop will be unable to track. The reason for the difference in
the type of information these procedures give is that the describing function approxima-
tion depends on the global character of the nonlinearity. That is, it depends on the
response of the nonlinearity to all different input magnitudes, not just one. The linear-
ization approach, on the other hand, depends on the character (derivative) of the nonlin-
earity near zero. The describing function approach is therefore called a global approxi-
mation and the linearization approach is called a local approximation. In Section 2
these same ideas will be seei to apply to the nonlinear filtering problem. The extended
Kalman filter will be shown to be a local approximation, and global approximations will
be given. The difference in the type of information obtained from these two approaches
will be of the same character as in the example just studied.

2.0 SOME GLOBAL APPROXIMATIONS FOR NONLINEAR FILTERING AND THEIR APPLICATION

This section gives snme global approximations which have proven themselves useful in
nonlinear filtering and applies some of these to some radio navigation and target tracking
problems. The intent is to introduce some global approximations and to make clear how
they are used by applying them.

The reader will observe that these global approximations are more burdensome to
derive and implement than the extended Kalman filter. The global approximations will, as
a reward, give filters that outperform the extended Kalman filter, particularly when the
errors are large compared to the range for which linearization is valid. Additionally,
these filters will offer more complete insight into the effect of the system nonlinearities
on the filtering process. The describing function example in Section 1.2 illustrates the
benefits of a global approximation. In that example the global approximation gave a more
accurate description of the error covariance when the errors were larger than the linear
range of the forward loop nonlinearity. As the error grew, the describing function analy-
sis predicted gain reduction not predicted by the small signal approximation. In addition,
the describing function approximation predicts a level of input that the tracking loop will
no longer follow. Global filtering approximations will give improved fidelity and an ana-
lytical description of fundamentally nonlinear phenomena just as the describing function
approach did.

The next things in this section are a brief discussion of nonlinear filtering and a
description of the physical problem which serves as an example. A radar tracking problem
is chosen as an example problem. Several different approaches are taken to thin problem.
Each approach leads to a different mathematical formulation of a nonlinear filtering prob-
lam. Some of the mathematical problems which stem from this radar problem are qutite simi-
lar to those arising in other physical situations. Among these others are optical target
tracking and laser communications.

The extended Kalman filter approach is demonstrated to be utterly unsuited for appli-
cation to some of the formulations and inadequate in the others. The failure of the
extended Kalman filter in this radar tracking problem makes it a good example problem for
heralding the benefits of a global approach.

The last part of this section is devoted to some global approximations and to their
application to the radar problem. The global approaches will prove to be quite effective.
They will give filtering algorithms which are valid over a wide range of operating condi-
tions, and they will provide an analytic description of the effect of the system nonlinear-
ities. This description will be intuitively right and useful in understanding the filter's
operation.

2.1 Background for Nonlinear Piltering Theory

As indicated earlier, the problem addressed here is that of eutracting the signal
from a noisy meas-rement. It is supposed that the signal evolves as the solution to a dif-
ferential equation driven by noise. The signal will be denoted by the n-vector x(t) and
is assumed to satisfy

S.. . .,. ,o= •,• . .. ... . .... •:, :.•...... ....- ..... "... . .`• `•'•;:.!`•• •.*• ` .•!P••`••: :;! :; t`` • • I " •o



(t) = f(x(t),t) + g(x(t),t)n(t) (13)

The functions f and g are assumed known as is the initial probability density of x(o).
The measurement z(t) is assumed to satisfy

z(t) = h(x(t),t) + v(t) (14)

where h(x(t), t) is a known function. The time functions n(t) and v(t) are white noises.
They are assumed to be independent and to have spectral density matrices

E(n(t) nT(t+).0 Q(t)6(.) (15)

and

Eav(t) vT(t+T) = R(t)6(t) (16)

The approach taken here to extract the signal from the noisy measurement of Eq. (14)
is to compute at each point in time the conditional expectation of the signal, x, given
all the measurements taken up to that time. Throughout what follows this conditional
expectation shall be denoted by a hat. Thus, x(t) is the conditional expectation of x(t)
given all measurements collected up to time t.

The measurements themselves are processed to yield the conditional mean, x(t). The
measurements may be processed in other ways which might reasonably estimate the state
vector. The conditional mean, however, is the estimator which minimizes the mean square
error and is therefore a highly desirable one.

In this section the conditignal mean is computed by propagating the solution to a
differential equation. Kushner LKushner(3)] first derived differential equations for the
conditional mean. In fact he gave a differential equation for the conditional expectation
of any twice continuously differentiable function of the state. Suppose #(t) is such a
function, then

;(X( f + c c'J + (4-jfi) RiC (z(t) - h) (17

where f, g, and h are the functions appearing in the problem description q1ven in Eqs. (13)
and (14). In Eq. (17) #x is the partial derivative of # with respect to x and #xx is •he
second partial. The symbol tr stands for the trace of a matrix, that is, the 1,um of its
diagonal entries. To obtain a differential equation for the conditional mean i(x) a x is
substituted into Eq. (17).

In general Eq. (17) cannot be solved in closed form. The reason is that on the right-
hand side appear hats V) denoting conditional expectation. Taking the conditional expec-
tation requires having the conditional probability density functioo, Propagating the
conditional mean using Eq. (17) is generally not ennugh to propagate the conditional prob-
ability density function.

In the case where the Kalman filter applies, the conditional density is Gaussian and
can be characterized by its mean and variance. In this case propagating

x and (x-i)(x- )T

is all that is required to propagate the conditional probability density.- Differential
equations for tht foregoing can be derived from Eq. (17). In the more getaral case. the
mean and covariancoe are insufficient to characterize the conditional density. Generall.:,
an infinite numbei" of moments are required. It is not possible to propagate solutions to
an infinite (or even large) number of differential equations, so some type of approximation
is required. Such approximations are the subject of this article.

2.2 Description of a Radar Tracking Problem

A radar tracking problem serves, throughout this article, as an example. This section
introduces the radar tracking problem to be used, Tho probleam is described and posed math-
ematically. The basic task for a radar is to detelraine the distance, or range, froh
Itself to some maneuvering target. A radar accomplishes this by transmitting a signal and
measuring the time required for the signal to travel to the tarqet, be reflected, and
return to the radar transmitter. Often the sam antenna that transmits the signal is used
to receiva the return. The return signal is then processed to estimate the two-way transit
time. TVe range to the target is inferred from this transit time. In this article global
approxinations vill be used ta arrive at algorithm for processing the radar return.

kany different types of signal waveformv find us* in radars. The algorithms to be
developed here will apply directly, or with minor modification, to many of the different
waveforms to be specific, however, a particular wavefore is chosen for this example.
The basie waveform considered here is built fro a pseudorandom number (PMW) code.

The pesudorandom nme code is a piecewlse owstant waveform built from a vequewnc



of pseudorandom numbers. A pseudorandom number sequence is a sequence of numbers which
can be generated systematically but which has some of the desired properties of a sequence
of random numbers. A familiar example of such a sequence is computer generated noise.
The method for building a PRN code from a PRN sequence is as follows. Suppose (ai}i_>o
is a sequence of pseudorandom numbers. Choose a length of time T and define a PRN code
S(t) by

S(t) = ai iT < t < (i+ I)T (18)

A possible PRN code S(t) is shown in Figure 4. The length of time T is usually called
one chip. The inverse of T is usually called the chipping rate. For example, for a par-
ticular code with a chipping rate of 10 MHz, T - it7 7 seconds.

cbde value

10T 2T3 4T5T6T78TT 0T-1T

Figure 4. Graph of Possible PRN Code

A particularly useful class of the PRN codes is thc class of linear feedback shift
register codes. In proctice such a code is generated by a pseudorandom number sequence
in which the numbers are binary. Thes sequences look like coin toss aequenoes except
that they repeat at some low frequency. tinary sequences are useful in practice because
they can be generated by simple cligital circuits.

A PRN code is usev, to build a signai waveform by multiplying a slnkiaoidal carrier
wave by the PRN code. Te result is then transmitted. If the PUN code is a ¼i binary
code, then multiplying this code by the carrier sinusoid simply introduces a j800 phase
shift when the PRN code equals -l or leaves the sinutoid unchanged when the coAe is +1.

. After being reflected and teceived at the radar, the eignal first has its carrier
wave removed. What is loft is a PRV1 code which is delayed by comparison to the code oQ3
the ttankmitted signal. The oble-vt is to dotermni how much this received code is delayed.
There are several tifferent approaches to the problem of determining the delay bqtwetm:
.th tr-ansmit-ted and rec•iv- wveforms. Suppooe that S(t+ (t)) is the reeived PRN
code and. kt) is the de-lay i-n that code. The delAy oft) is a function of time because
the targat is moving and the two-way transit tlme. chanqinq. Besides the delayed code
S(t4O(t)) the recwaived signal wrtaine Acmm noise. In some cavse this noise is thermal.
In other case' the noiso.i6 predom~inantly dtw to other radio transmicsawis cloe Ai. fre-
.quency to the radar's.I A illitary. tartwt, Pa.s, nxample. might transmit signals ta cofuse
the ra44r. These signals would lU,--ok ik, t ise *'o the radar recoiver.

The igwto be processed ir i coblato. ft). delayed P", tode. S(t+ Olt)), and
ntoise. If -lit) ia us40d. t6 denot3e thei rignal to 'bO Rkocsgtthn athmatically

r a t) S(c*0(0t) + V(t) (1' )

The "4e0eQf of events ifactknq to tXifs inasurnssnt is depicted in S.':ate. S.

{Wanrdttt

3(t) sjin Mit

- Sitaiw, antana

I rimS(t+ Ott)) *VWt ItAt)

Figure S. Sketch of Rdar Trecl t y .aa
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The measurement z(t) is scalar, and the measurement noise v(t) is white with spectral
dens~ty r(t).I.This radar tracking prob lem is now very nearly in the form of a nonlinear filtering
problem. A state state variable model for 0(t) is all that is required to complete the
mathematical formulation of the problem. Suppose that the radar antenna is at the origin
of a three-dimensional Cartesian coordinate system. The target has coordinates
(xjIt, x2(t), x3(t)) in this system. The target coordinates evolve according to the
equations of motion for the target. There is some uncertainty in tht evolution of the
target location, since the central inputs to the target (thrust level or changes in aero-
dynamic control surfaces) are unknown to ti'e radar. The coordinates of the target can be
aggregated into a vector x(t) which has n--Lements, the first three of which are the coor-
dinates x1, x2, x3. Other elements in the vector might be, for example, the target velocity
or pitch angle. The target equation of motion can be put in the form

* (t) - f(x(t)) + g(x(t))n(t)

The difficulty and importance of developing this state variable model is not to be
ninimized. The state model is the starting point for the filter designs which shall be
presented. The effectiveness of the filter will depend on quality of the state variable
model. A high dimension state vector leads to a computationally difficult design. It isInecessary therefore to find a state model which captures the important features of the
target motion in as short a state vector as possible. To be able to do this, the designer
needs to understand both the physics of the target motion and the requirements of the filter
not yet designed. Arriving at a state model is in itself a difficult problem.

For purposes of this article a simple target motion model will bc. used. it will be
assumed that the delay 0(t) is a Brownian motion. That is,

6-n(t) (25)

where n(t) is a white noise with spectral density q. This target motion Model is the
simplest that still has some randomness. Even though it is a gross oversimplification of
any real tarqet's motion, it turns out to' yield a filter that is useful for some problems.
Part of the justification for using this model is that it keeps focus on the filter design
problem instead of shifting it to the problem of modeling a particular target.

:4athemati-ýally, the radar signal processing problem can be posed as

a S(twi) V 60 Vt) (22)

The ent-ndcd Kalman filter (Egr) is inapproptiate t0 apply to thi~s problem. The 8KV pro-
Cctfture requiros diftersntiatittg Set'6(t-)) with respect to Ott), Sine. 5(t t Ott)) is piece-
vist constant, the dorivsetive with respect to 4Mt is either taro or undefined (infinity).

A One ý'oald ovetoiom this difficulty by using a finite difference Instead of a derivative.
but there is really no justifica4tion for a finite difference. Tito qlebal approximationa
s1howrn later apply directly t, 'this problow- The fAct that s8ýt'#t)) ien nt Continuous (or
differentiable) does oot cause, them any difficulty.

* There As another way to Pose this radalr signal processinge problem.. it is not quite
so fundAMenta as the ProlA* jugl posed. Some steucture loi imposd on the proengsor to
*rrivv at a difternht foraulation. Thore are two imain reasons for considering this other
tOrmiula~lon. riJrst, this second fer'oUlatiot, is Mathea=tically the sa"e #s the problem of

eagt tratking with a narrow f ield-of -view optical deviceo (a telescope erhaps) . This
I! sinteresting and maso~tA prob)0,ý an Its own rit~ht and a problem wh ' tI appeals directly

tor motflpt' tuitions.Setnnod, this see ndA formualtion Ietradktionally ueed to
design radrsignal crctos ti nlivhtteningto*#hwrotinasluo% v*
pare to wshat global appronimation yielfs and to coinpare thte solutions obtained for these

di~tnntformulatio",.

the ar-'ot2 formulation of thin radar tracking problem ansuoes that the~re-ceived sig-
nal, aftep 4lavinq the c-arriev ti-pal remhoved, is miultiplied by a code S (ti Wt)). This
code is the saae at; the received code axcmpt that it is delayed by 6(t) iostead of sit).

'i The delay I (tcan be. thkought of as the delay that tie radar expects for the received code
to have.

?'Aa expected result Of Multiplying the received signalt by S~t. Sit)) it the autocot-
..reistic Of dim flM codett time shift 6Wt - i(t) eorrurted by some noise.9

tI T 44e eo itt storrelationm i defined by

4,f



has the form

Rss()= 1 - Ii for _r-NT.1 L T

for N any integer (24)

otherwise

where T is the code repeat time and e(x) is a function which is small compared to one.
Figure 6 shows how Rss(t) might look. It will be assumed in what follows that the code
autocorrelation Rss(x) has the form

(25)

- 0 otherwise

This assumption is justified, as far .s the consequent estimation proceduie is concerned,
if the a priori probability of the state (range) is concentrated on an interval TR wide.

-T 0 T TAT TR TR+T

Figure 6. Picture of PRN Code Autocorrelation

In many practical systems the repeat time TR may be very much larger than a priori
timing uncertainties. For example, one ranging system in current operation has a repeat
time TR = 200 days, while initial timing uncertainties might be a few microseconds.

Mathematically the result of multiplying the measurement by a code with the expected
delay is

z(t)S(t+O(t)) = [S(t+6(t) + v(t)] S(t+-(t))
(26)

s(t+O(t)) S(t+O(t1) + ý(t)

In Eq. (26) ý(t) S(t+ ;(t))v(t) and is a white noise with spectral density r(t) just like
v(t) was. The first term on the right-hand side of Eq. (26) displays a similarity to the
integrand in the definition of the autocorrelation function. It seems reasonable to
expect ("nd can be demonstrated) that the RHS of Eq. (26) and R5s[e(t) - 6(t)]+ n(t) have
equal time integrals, or, equivalently, that the outputs of the circuits shown in
Figure 7(a) and (b) have equal time integrals. If these two outputs have equal time inte-
grals, then a measurement processor which acts as a low pass filter will have the same
response to one as to the other. The processors proposed later will act as low pass fil-
ters, so modeling the physical situation in Figure 7(a) by the block diagram of Figure 7(b)
will be valid.

"s[t + e(t)J + vt(t) OW -- +

S~t + 61Q)

(a) Physical situation (b) Mathematical model

Figure 7. Model for Code Correlator

The essence of the arguments above is that, after some multiplications by known sig-
nals, the input signal may be taken to be a function E(t) satisfying

- RaSS[(t) -W (t)3 + -(t) (27)

The input signal was correlated with a single known code to proiuce the measurement
9(t). Several such correlations of the input can be performed against several shifta of
the known code (i.e., against codes Sit + dl(t)] , Sit 4 d 2 (t)], ... I. This produces Rev-
eral measurements ii(t)

1• i i~t M Ras 0( W-di~t W + i Wt (20)



where di(t) is the time shift used to generate the ith shift of the known code and the
noises ni are independent of cne another.

This measurement model is quite similar in form to one which arises in optical target
tracking. The measurement ii in Eq. (28) has two components. First, it containn noise.
Second, it has a component due to signal. If the ith delay, di, is equal to the delay
on the received code, then the signal component is one. If the ith delay is grcssly dif-
ferent than the received delay, then the signal component is tero. 4 typical optical
sensor has the image plane (television screen, for example) divided into a matrix of small
squares. Each small square has a component of its output due to noise. It also has a
component due to the target. The target component is one if the target is in the small
square and zero if it is outside. The code tracking problem can then be visualized as a
one-dimensional optical tracking problem.

It is worthwhile at this point to briefly describe how the delay of a PRN coda has
traditionally been tracked.

Input Discriminator
Signal output

Shift GeneLator

Figure 0. Code Loop Discriminator

Figure 8 shows a block diagram of the circuitry typically used to develop an error signal.
The two multipliers shown in Figure 8 provide two correlations. The common input to these
two multipliers is the received signal. The known code inputs to the correlators are time
shifted by a fixed amount relative to one another. These time shifted codes are obtained
by putting the code, out of the code generator, into a tapped delay line (shift register).

Suppose that the code in the center position of the shift register in Figure 8 is
believed to be in synchronism with the input code. That is, the code s(t + i(t)] is in
the center of the shift register. The code one shift to the right is then S(t + 6 - 1),
and that one shift to the left is S(t + i+ 1). The results of multiplying each of thase
with the code (disregarding input noise) on the input signal are modfled, according to
earlier analysis, by Res(O - 6 + 1) and Rg(0 - 8 - 1), respectively. The difference
batween the two correlation, with the input signal yields a measurement z(t) which
satisfies

ý(t) -nR(o -- -1 R(0- l) + vit) (29)

Thn device shown in Figure 8 is called an early-late detector. Early-late refers to
the fact that the correlations are with local codes which are earlier ard later than the
expected input. Figure 9 shows the mathematical model of the device in Figure 8.

kFignr* 9. Hathmatical Model of Code Loop Early-Late Detector

The early-late detector then gives an error measurement over a'lmited tange. The circuit
can be enclosed in a feedback loop and used to Continuously track the input code Aelay.
The resulting tracking loop is called a delay lock loop. In optical tracking problems
there is an analogous error measuring circuit called a quadcell detector. This circuit
hat four optical sensors located in a square array - one sensor at each cornpr of tLe
square. imagine that the square is oriented so that its sides are either veatical or hori-
zontal. T" difference between the own of the outputs of the two right cells and the uum
of the outputs of the two left cells gives an azimuth error indication. The difference
boetwon the top and bottom gives an elevation error indication.

The probiems of using a non-.inearity of this sort in a feedback loop are fairly
obvious. Si-ice the forward loop nonlinearity gives no output for errors greater than two,
it cannoL ua itain errors of that siza. This limits the input dynamics and noise level
which the loop will track.

in cons'.ucting the early-late detector, only two multiplier outpiuts were used. If
it appears to offer some a.5vantaqe, many multiplier outputs can be provided. The object
of the workc which inhpired the authorA' interest in global approximation was to sto if
extra correl.tor outputs could be used to extend the range of delay dynamics and noise
through which the delay can be tracked.



One approach to extending the range of operation is depicted in Figure 10.
Figure 10 (a) shows, on a single graph, the outputs of several early and several late mul-
tipliers. Adding all the early correlations and subtracting all the late correlations
yields a broadened forward loop nonlinearity as shown in Figure 10(b) . This method is
suggested, for example, in (Spilker (4)] and in (Schiff (5)] . The difficulty with adding
these extra multiplier outputs in this manner is that each additional correlation brings
with it additional noise. The measurement resulting from adding more than two multiplier
outputs is then noisier than the traditional early-late measurement. This means that in
the cases where the traditional scheme is able to track with small errors, the extended
range scheme will experience relatively larger errors. ILecause of this, the traditional
wisdom is that extra multipliers are not useful for tracking. The fallacy with this is
that the reasoning only applies in benign conditions where the traditional scheme can
track with small errors. That is, the reasoning is based on a small signal analysis.
Use of global approximation will indicate how this reasoning should be modified. If con-
ditions are severe en~ough to cause the failure of the traditional scheme, then benefit
can be derived by including extra multiplier outputs. This will be demonstrated in
Section 2.3.

Individual Sum of
outputs outputs

(a) Outputs of individual multipliers (b) Nonlinearity obtained by subtracting
all early multipliers from all late
multipliers

Figurep 10. one Method for Employing Multiple Correlator Outputs

Two starting points will be used to learn how to benefit from extra multiplier out-
puts. One approach starts by modeling the output of each multiplier as a separate measure-
ment. The second approach starts by assuming the multiplier outputs are weighted and added
together to yield a single nonlinear error measurement. Thits m~easurement nonlinearity,
might, for example, look like the one graphed in Figure 10(b). in this second approach the
shape of the nonlinearity is not specified. An optimum shape is determined by using gl~obal
approximation techniques. This last apprcjach is analogous to feedback comtmunication
wherein the moduation or measurcement nonlinearity can be modified.

Altogether, three startirg paints have boen ouggested. The different approaches use
the same model for the delay dynamics, but differ in thot they use different models for
the measurement. The f~rat approach'is to call the received code and noise in Eqj.
the measurement. The second and third approaches assume the received code has been multi-
plied by various shifts of~ a code generated in the receiver. The second approach considers
"at' array of multiplier outpmts to be the mtasoremant. The third considers a single
weighted sum of multiplier outputs to be the measurement.

None. of these approaches ia amenable to exteaded Kalmaii filtering.. The extended
Kalmba-, filtoring usces the partial derivative of the measurement non, near .ty with. respct
to tbe -state variable evaluated at the expected state. At, mentioned e~rlier, the first
me.~euremnt inodel where the received code is the measurement is not amenable to this

ap~oa~,because the codo vither has m-ro derivativeo-ri is not differentioble. The second
approach where the multipiier butputa are tconsidered measurements in not anoinable, because
the derivative of the code *utocorrelatioA is toro further taian one away from its peak.
This caurii.ts tho exten~ded Kalron filt-Ar to ignore outputs of correlatora further than two
away from th6e xpected dtl~ay. The third approach wherein the measurement is =%deled as a
single adju~tsblo nonlInear function of the stato is not amenable extended Kalman filter-
ing &A~theri Since the extended Xalman filtfix chaiacteriiaes the nonlinearity by its slope
-evaluated at the expected value, of the- state, it considers the nonlinearities in Figures 9
ani 10(1)# to bO equivalent. In terms of *emall signal behavior they are equivAlent, but
in termsz of large irror' behavior they diertainly are not. These approaches Aror all amen-
able t.. globAl zzppkoiato as will be seen In Soctioli `.3.

2.3 Causaian ?,pproxiina'ion

The radar txackinq problemn described in Section 2.2.has been matho~'t-ticl1y described
In several different ways. Ali.of the mathematical. problems which hAve arison from the
radar problem fit-within the aneal rmwrko h nonlinear filtering problem intro-
duced earliar. In this section an aparoximAte solution for the nonlinear filtering prob-
lem-will be tised to arrive At solutions for the radar tracking problem. First, the
approxtimation will be 'losesibed generally. Next, the approximation will be applied to
cach of the mathemacic~l problems which -Uhva arisen (vom the radar tracking problem. The
inability of the extended K~alman filteir to accompiish thes.e design task's will be pointed
out, and the designs which result froma the different mathe&atical formulations of the
*ame radar problem will be com"ared.

In Section 2.1 VY.ihner's equations for propagatingy the mean and variance of th* con-
4itional density were presented. It was pointed out that the problem'with these equations
was that each equation required on its right-hand side-the entire conditional density,
while propagating the equation's left-hand side only yielded one Moment of the conditional
density. Since an infinite number of moments of the conditional density are required to



reconstruct it, an infinite number of equations must be solved to propagate the condi-

tional density. To circumvent this difficulty an approximation will be used.

Suppose that the plant equation is

= f(x(t),t) + g(x(t),t)n(t) (30)

and that an observation of the form

z(t) = h(x(t},t) + v(t) (31)

is made. Differential equations for the conditional mean and covariance can be derived
directly from Eq. (17) presented in Section 2.1. The differential equation for the mean
is

x f(x,t) + (x-x)hT p-(t) (z(t) -h) (32)

Denote the covariance matrix by P, that is

P X-)(x-x) (33)

The differential equation for the covariance is

Pie - (xi-xi)fj + (xj-xj)fi + (gQgT)ij - (xi-xi)hTR (xj-xj)h

(34)
P [(xi-i)x •- hj) -h- A)]^ R-(z(t)-h)

In this equation Pij is the ijth element of the covariance matrix P. The initial condi-
tions for the conditional mean and covariance equations, Eqs. (33) and (34), come from
the known initial density of the stete. Specifically,

x(o) E{x(o)1 (35)

and
P(o rx(o) -(o) Cx(o) -(O)T}

The approximation to be used here is best explained by an intuitive inspection of the
right-hand side of the mean and covariance equations. Notice that the conditional density
is required on the right-hand side of these equations in order to carry out the expecta-
tion operations. These expectation operations are the integral of the indicated quanti-
ties against the conditional density. For example, the quantity ?(x, t) appears on the
right-hand side of the mean equation. This quantity car be expressed in terms of the
conditional probability density. Suppose that the conditional density of the state at
time t, given measurements up to time t, is pt(xIZ). The quantity f(x, t) is then givenby

": ? (xlt), t) - flr, tlptlrlZ)dr (37)

Since t~he conditional density appears in an integral like this, perhaps its precise
shape %.s not critical to the accurate propagation of the conditional mean. The supposi-
tion is made that, in fact, as far as the quantities in the mean and variance equations
art concerned, only the mean and variance of the conditional density are significant. If
this is true, then the expectations in the right-hand side of the mean and variance equa-
tions can be carried cut using any density which has the right mean and variance.

A density which is conveniently characterized by its mean and density is the Gaussian
U density.and that is the one that will be used here. For example, using Gaussian approxi-

matiotj f(x, t) becomes

: (x, t f (r, t) p( )dt
•. (38)

f ) f- 1 exp1( (r(2rdetP)n-•ep rxTp1rx d

That is, all the conditional expectations on the right-hand side of the mean and var-
iance equations are carried out by assuming that the conditional density is Gaussian in
formawith mean value x and covariance P. The derivatives of k and P appear on the loft-
hand side of the mean and eovarianoe equations. what results is a coupled set of differ-
.ential equations which can be solved by ordinary numerical methods. The effect of this

__ __ __



approximation is then to truncate the number of equations reuired to propagate the condi-
tional density. Since the density has been supposed to only depend on its mean and vari-
ance, only the mean and variance equations need to be propagated. The procedure leads to
equations which are much like the familiar Kalman filtering equations in form, but which,
as will be seen, depend on the global character of the measurement and system
nonlinearities.

2.4 Use of Gaussian Approximation to Determine Optimum Measurement Nonlinearity

The first mathematical problem on which Gaussian approximation shall be used is the
deformable detector problem. Suppose that the input delay process e(t) satisfies

8(t) = n(t) (39)

and that the nonlinear measurement, built from weighted correlator outputs, satisfies

z(t) = h((t) - 6(t)) + v(t) (40)

The noise processes n(t) and v(t) have spectral densities r(t) and q(t), respectively.
The shape of the measurement nonlinearity h(e) depends on what weights the correlator out-
puts are multiplied by before being added together. Either one of the nonlinearities
shown in Figures 9 and 10(b) could be achieved by some selection of weights. More gener-
ally, suppose that weight wi is applied to the correlator shifted by i increments with
respect to the expected on-time code. The result of this is a nonlinearity composed of
straight line segments connecting the points (-(n+l), 0), (-n, w-n), (-(n-1), W-(n-1)),

., (-1, w 1), (0, wo), ... , (m, w) (m+l, 0) where the wi are the arbitrary weights.
This nonlinearity, shown in Figure T1, will be denoted by h(e). Notice that for an
integer i, h(i) = wi. The detector drawn in Figure 11 would probably not be a useful one.
The point is, however, that very general shapes are obtainable.

L f(e)

WW

W-3 W1 WS

Figure 11. Hypothetical Detector Obtainable by Using Weights wi

Noise is an essential consideration in determining the optimum detector shape. The
noises present on the different correlator outputs are independent, zero mean, and white
with equal covariances. Let ni(t) be the noise present on the output of the ith corre-
lator and let E{ni(t) ni(T)} = r6(t- c). The spectral density of the noise on the weighted
sum of the correlator outputs is then

E wini(t) L_ wn i()d = r 2w 6(t-t) (41)i1 n i J -n i -i=n 1 n

The postdetection noise variance is then proportional to

mnl

i =-n

The wi must be chosen so that their signal detection assets outweigh their noise
liabilities.

It will be assumed that the function h(.) is such that

i w2 Z fh2(e) de (42)

For the nonlinearities which will arise in this design, this condition will be satisfied.

The object is now to determine the measurement nonlinearity h(.) (weights wi) which
gives the best performance. The nonlinearity will be constrainod to have h2 (e)de - 1
and to be antisymmetric. Beyond that it is unconstrained. The procedure is to design a
filter with h(-) unspecified and then to choose.h(.) to oplimize the filter's performance.
The conditional moments [Pujisaki et al (6)) and (Clark (7)J satisfy



CO (- 6)-h L (z (t) - h) (43)r

and 1 1

h + q + (e- 0) 2 (h-h) (z(t) - (44)

These equations result from specializing Eqs. (32) and (34) to the present situation. A
lower case p is used to represent the covariance to emphasize the fact that it is a
scalar. Applying Gaussian approximation to this problem yields

d9 - G(p) dz (45)

(_dP) + q (46)dt *' +q

where

G(p) = eh(e) exp - de (47)

This can be changed into a move recognizable form by defining H(p) to be

p (48)

_ 1 1 eh(e) exp - de (49)

The function H(p) is then the describing function gain for the nonlinearity h(.). If
pH(p) is substituted for G(p), the filter equations become

d6 PH(• ) dz (50)
2

dt2 p2H(p)2
r + q (51)

These equations can be recognized as the Kalman filter linearized with the describing
function gains. Gaussian approximation can generally be interpreted as a Kalman filter
linearized using a describing function. In general, there will usually be a data depen-
dence in the covariance equation. Two elements of the problem under consideration combine
to remove data dependence in the covariance equation. The measurement nonlinearity is a
function of the estimation error, not of the state alone, and it is an antisymmetric
function.

The mean and covariance equations represent an approximate solution to the filtering
problem for an arbitrary nonlinearity h. The complete problem will be solved when the
nonlinearity is selected to yield optimum filter performance. Inspection of the covari-
ance reveals that only one term is affected by the choice of the nonlinearity. That term
corresponds to the qudratic term in the usual Kalman filter. To minimize the covariance
then, the best strategy is to maximize h 2 (p). Doing this makes the derivative of the
covariance as small as possible. The optimum detector h* then satisfies

max exp e 2 2 e (1

hC=fhle) exp de eh*(e) exp -e de52 [2hep~d] [ 2p e]

This is equivalent to solving the unconstrained problem

er(e) exp - de 1
max. (52)

-r2(e) de

and setting

h*(e) - r*(e) [ r*2(e) de]1

Z'



The Schwartz inequality may be used to solve tor Ir.

er(e) exp 2- e de f 2(e) def 2 exp -_- de (53)
V- 2p J P

Then

S[fer (e ep t de]
J-2e < d exp -Ade (54)

L _r2(e) de

and equality holds if

r*(e) e exp - (55)

Since

]r*2e) de I- de (56)

• ~r--
V lip(57)

"then it follows that

h*(e) = R)-1/2 (p)/4 - e2  (58)

Some discussion of this nonlinearity is in order. The optimal forward loop nonline-
arity is graphed in Figure 12.
iI h* (a)

'A'

Figure 12. Optimum Measurement Nonlinearity

It is more or less linear over a range (- 4p,+ 4-p). An interesting feature of the design
is that the nonlinearity is not fixed but changes in time. The nonlinearity depends
directly on the tracking err.r variance p. Since p changes in time, then so does the
nonlinearity. The variance, for example, might start out larne when the radar is first
turned on. As the signal is processed, the radar becomes more certain of the target
whereabouts and the variance decreases. As the variance decreases, the linear range of
the nonlinearity shrinks. The linear range of the nonlinearity is always between plus and
minus one sigma of the prtdloted tracking error.

This general sequence of operations is more or less like ones used in many optical
and radio signal acquisition systems. A narrow field of view is required for final track-
ing so that the final tracking accuracy is good, but a broad field is required during
initialization because the initial uncertainties are usually large. The -standard proc-
dure then is to begin operation with a brod field device and, after the errors have been
reduced, to switch over to a narrow field device. The procedure which has resulted fros
this nonlinear filtering approach agrees generally with standard practice and with intui-
tion. This procedure offers the additional benefit that it provides an analytical frame-
work for deciding when to switch between sensors.

Using the optimal detector gives mean and variance equations

r

r"q P (60)

where

,ehU.e exp {- de (61)
!iIF



and

h*(e) () ("p)4 2ep{~

Integrating yields
JP• H* (p) -1/4p-/

H*p = (62)

Thus
li • -1/4 p1/4

8(t) = Qr z(t) (63)

k q -1/2 Rl/2
dt = q -4 r (64)

The steady state covariance is then given by o = 0 or

p1 / 2 = 4ul/2 qr (65)

= 7.0898 qr (66)

Figure 13 shows results of Monte Carlo simulation of this tracking loop. One hundred
runs were made, and the predicted and actual mean square tracking errors, as functions
of time, are plotted in Figure 13. The conditions for these runs are as follows. The
error at the start is Gaussian with expected value zero and variance 10.0. The spectral
density of the noise in the state equation (called q) is 1.0. The spectral density of the
measurement noise (called r) is 0.354. This spectral level is chosen so that the pre-
dicted steady state one sigma error is 0.25.

Figure 13 shows that for this problem Gaussian approximation does not work as well
as ont might hope. The covariance does not behave as it was predicted to behave.
Figure 13 is a little misleading, however. The tendency is to believe that a particular
trajectory will behave roughly like the one sigma trajectory. This is not the case, how-
ever. A sampling of the error trajictories indicates that for about 80 percent of the
runs the errors behave as predicted. For the remaining 20 percent the errors are much
worse than predicted. An average computed on the basis of these errors falls somewhere
between the trajectories which are not captured and those that are. A given error tra-
jectory, then, looks either somewhat worse or much better than the experimental one sigma
plot which is shown.

5/

Average of

4 -100 runs

3

Staixtard
Deviation
(dhips)

Predicted0/
0 Time (eec) I0

Pigur. 13. Acquisition Performwne of Gaussian Approximation
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The problem with the system, as it is now configured, is that the actual errors do
not affect the covariance. Even when the actual errors are very large, the predicted
covariance as plotted in Figure 13 is quite small. Somehow the actual errors must factor
into the covariance comnputation. The reason that the measurement does not affect the
covariance is that the measurement nonlinearity is antisymmetric. In the covariance equa-
tion, Eq. (44) for example, the coefficient on the measurement is

e (-e)2 (h-h) 0 (67)

If a Gaussian density is assumed, then any antisymmetric function of (0- ) has expected
value zero. For this reason the data dependence drops out of the covariance equation and
the covariance equation runs open loop. That is, the covariance is not responsive to
actual errors.

This situation ;an perhaps be corrected by taking another measurement. The antisym-
metric nonlinearity was constructed by adding weighted correlations, and a symmetric non-
linearity may be constructed by the same technique. In Section 2.5 it will be seen that
this type of structure will follow naturally from posing the radar tracking problem dif-
ferently. If multiplier outputs are treated as measurements, then using the Gaussian
approximation procedure will result in a mean equation just like the one here but a sig-
nificantly different covariance equation. The difference will be that the covariance
equation will have an adaptive term. This term will be seen to drive the covariance, so
that it agrees with the actual tracking error. Thus the covariance estimation will be
closed loop instead of open loop.

2.5 Use of Gaussian Approximation for Processing Many Correlator Outputs

The next problem formulation to be considered is the one wherein the output of each
multiplier is itself considered a measurement. This formulation imposes less structure
on the problem that the last one did. In the last formulation it was assumed at the outset
that multiplier outputs were to be weighted and summed together. The filter design was
thus not allowed the option of processing each multiplier output individually and then com-
bining them nonlinearly. The only degree of freedom the filter design was allowed to
resolve was the shape of the weighting function. The approach taken there can be justified
since it is parallel to the approach normally taken to design this type of signal process-
ing hardware, and since the problem of determining an optimal measurement nonlinearity has
application elsewhere. For radar signal processing, however, it will be seen that a more
complete and better performing design can be achievdd by removing some of the constraints.
In Sections 2.6 and 2.7 less constrained formulations shall be pursued.

Recall that when the outputs of the individual multipliers are considered as measure-
ments, the system and measurement models become

= n(t) (68)

and

zi(t) hi(e -6) + v(t) (69)

where the measurement zi is the output of the ith multiplier. The function hi(x) is the
code autocorrelation function at shift x - i as graphed in Figure 14.

Ui- )T iT (i+Il T x

Figure 14. Output of ith Measurement Nonlinearity Versus Tracking Error

Kushner's equation can be used to find the mean and covariance equation for this formula-
tion just as it was for the last one. In this case the equations become

0- h(- i 1 (zi- i) (70)

and

-q- o-z)ihi +i+) (71)
i- i i

These are still unsolvable, but Gaussian approximation can be used to arrive at approximate
mean and covariance equations just as in the previous section. Applying Gaussian approxi-
mation to this problem yields the mean equation



: = : wjiz (72)

and covariance equation

q - ]2 + Qji- c] (73)

In these equations the quantities wi, ai, c are given by the following:

hi = to hi(u) eXp- JU2du (74)

w.=-.-f, uhiAu) exp -2-oA du (5

1 u2h (u) exp{ u du. (76)
!0

c a s h1  (77)

The mean equation in this case is somewhat different in appearance than the mean
equation derived in Section 2.4. In reality, however, the two equations are strikingly
similar. In the previous section the individual correlator outputs were weighted and
summed to form a single measurement which entered the mean equation. The optimum weight-
"ing for the ith correlator was determined to within a multiplicative function of p to be
of the form iT exp (- (iT) 2 /2p). The mean equation in this case is also driven by a
weighted sum of correlator outputs. If p, the error covarince, is large '=mparod to T,
then the weight wi is approximatoey

wi • iT exp UT)

The filter starting with a lest structured formulation has cholsen to estimate the con-
ditional mean with a structure quite similar to the one Imposed during the formulation of
the problem in the last section.

The covariance equation which has developed from the less structured fol'wuiation in
this section is different than the covariance equation of the last. section. The important
difference is that measurements enter the covarianee equation in this case. The effect of
these measurfmonts can be explained intuitively as follows.

The measurements are weighted and sumed, and the result used to drive the covarianee
equation. Each measurement is some nonlinear function of the error tplus noise) and the
weighted sum is also a nonlinear function of the error (plus noise), Thus, i.i.this t,4e
the error affects the covariance directly. The weight applied to tho ith correlator
output, when p is large, is

"This functioh is graphed below in figure 16. These weights are applied to tha correlator
outputs and the weighted outputs summed. Thus some function of the tracking error, hg(e2,
enters the vovariance equation. For integer argwent I h2(i) - a. It is also true that
when the error covariance, p. is large compared to one, the function hM(i) is.Ohe sOae as
the function graphed in Pigure 15. There is. then, a symmetric function of the tracking
error which drives the covariance. The scalar c which is subtracted on the right-hand
side of the covarlsnce equation (Eq. 71) is equal to the expected value of h:(e). Expected
value means integration against a Gaussian density with covariance p. The predictad covar-
iance, p# then influences the value of c. if tho predicted error Oovarianeu is on averago
equal to the actual error covariance, then hi(e) and -t cancel. %hen these terms cancel,
the covarianoe equation reverts to the open loop equation derived in the last section.When these two terms do not agree, then a correction term Is introduced to the tovariance

equation. This correction drives the cevarianee so as to bring the scalar c, the expectedvalue of hi{e), and the average value of h•to (}Into coinci dence. The covsriaom e quation

is enclosed in a feedback loop and driven to match the actual errors.

Montt Carlo simulation of this tracking syst was perforoed. The cotditions for
this uimulation vere identital to those leading to the results of the last section. wwob
changes have occurred due to the approach used in this section. The actual ertors are
smaller and the predicted errors are larger than those shown in Figure 13. Thert is a
good match between the actual and predicted errors.

A'



The approach taken in this section has been successful. it has yielded the qualita-
tive information of the approach in the last section and has added a feedback teria to the
covariance equation. This addition has resulted in improved performance. The approach is
still based on a form~ulation wherein structure is imposed. It is still the case that
correlation of the received code with codes generated in the receiver is assumed. in the
next section this structure will be removed, and what will result will be similar to the
tracking loop derived here but will show improved performance.

2.b Application of Caussian Approximation to Estimation of PN-Code Delay

in the third formulation of the radar tracking problem the delayed PN code wavefonim
is taken to be the measurement. This approach is the least structured of all those taken
here. in addition a more general model for the delay process (target motion) will be
assumed. it will be assumed that t~he delay is the first element in a vector whose ele-
ments are necessary to describe the target's motion.

Let x1(t) denote the varying PN-code delay due to target motion and x(t) equal the
n-dimensional state vector whose first component equals x1(t). We interp~iet the above
system as the two equations:

(t= Fx tW + Gn tW
(78)

r(t) - hMx(t),t) + v(t)

where

F -the state feedback matrix. possibly time varying
G - the input matrix, possibly time varying

n(t) - sca1lr white Gaussian noise (bGN) of spectral height Q which models the unknown
target dynamics

h(x(t),t) - S(t- x 1 (t)) - the -received code (79)

v(t) -tnti received noise (WGN) of spectral height r(t), and
S(t) - the reference PH-code waveform til-valued)

The extended Kalman filter cannot be applied to this syotem because tho measurement nonlin-
carity cannot be ltnet-rized about a reference trajectory. Attempting ta. linearize
hMx(t),t) arountd a reference trajectory U (t) fails because

. , I~ too)jwu

but

,2nd S*it) in very badly behaved beeause of the svitching discontinu~ities in~ the c040.
Extended IKalgan filtering is hetce rul*d out at the start because of the shar ness of the
nonliniearities In the observation equation. We sh41U haive to resort: to globe approxiaa-
tion of the exact tnoidinear filtering 4quations.

Lt xt)denote the conditional miean of xit) given the measurceaenta, and we have by
Jakwin=JJ1 formulas for the evo~ution of tfie first &Md seoond moments of the oonditional
probability lnsity function of xit):

dpt t)V *it i- t (t) [ 7 h 00
Ur Ft) 1 l a i

dP It)x ~L

"624e *Atat fi*n ars u* solvj*10, '~t Ar piratiesl procesakm, 001,ocitba can be 4sveloped using
daU4uiAA aM*94suie ih AtteV apPlYing GaussAn iaatin swr. 1M *JOt LC4.tOei
*aA be swie to the resultifq equations.

TMe firsttI1p ~nto that CAn be perfotvM o* t"h&i %,vation6 Listhe elimiation
of the *Ub"-Aetive PDr-ian 414) of the inmvat Iort yrocease (I lt I bh in tho' t mean quation..
Thi* follbot tft.-o* 4o hyptoe~stx it) the `Vc.Xtnas properei'*s .0 thf. Joint GAUsisian dig-

*tribation Ar4 (4) the Mt*u*OtiOh at hA4h cod10 f roqioue An lov'rAs* processor. Oxplitct-tly
Us Saguq*e mnse.~ oeaveraginq* Of'thi ptoduct of tvio'*W.es by the lovPAS* tiltott



S(t - x)S(t) S R(xW (83)

From Eq. (81) the term under examination is

r r(t)h k(t)1 h (84)

which can be rewritten

i (~)- x(t))h( Mxt,,t)) (85)

Using Gaussian approximation on Eq. (85) and merging the multiplied expectations yields

""( -X- (t)_h(xi t ) h(Y , t))Nx(i(t).P(t))NY(i(t).P(t))d•dY (86)

where Nr (X,P) means A is normally distributed with mean I and covariance P. Employing
Eqs. (7) -and (83) yields the useful identity

h(X,t)h(Y,t) R(XI-YI) (87)

Thus, Eq. (86) becomes

(X - x,• (t))- R(XI -YI)N X~~P )N y(ý (t) , P(t) )2dXdy88
L Z'

Define the error vector O(t) and associated dummy variables as such

e(t) - x(t) -x(tM ; V - X-x(t) z W.w Y-x(t) (89)

and translate Eq. (88) from (X, Y) to (V, W) coordinatos to get an expression for the ith
component of Eq. (88)

I AR(VI - W1 ) N WI, P W} ) NW_(O, P t) )dVdW 10

This expression equals tro for all i because the function Vi is odd in the argw•,nt
( W). whilu R, R.V, and Nw are even in the sea argumeft. Mona, the product is odd, and

.Integral in *06•.

The second simpli•ication occurs in the covariance equation. First, tha subtractivo
portion of the third tear of Eq. (82) iv isolated.

topiloying the Gaussian. assumption and instMtamtAeous averaging, we get that 9q. (91). after
translation. equals

V V (P ] (t)]R(VI - N(O.Vtm)%Jo.P(t))dVdb (99)

Se**ndly. the seeond torn of Eq. (0Z) can be vritten

- X (t -xii(t)) h (x , ) ItJ(-j (t) - K~(0))h(xMt)AV (911

Again# combining integrals under the Gaussian asestption. using instantaneous averaging.
and t,' alkatiLD the integratito domain yields for Eq. (3)M

- NV V 1-)U(O,.(t))PW_(OV(t))M4V (94)

The Contsntion is that tears (•o. (92) cr8 (94)] sue to taro. the calculation of thes
tw interals is detalled In petndix I. Ttey are



Eq. (92) 2 - ( -i)- i]

which negate each other, makinq recei-jer implemt'tation much simpler.
Writing the remaining integral terms of Eqs. j811' and i22i in tarms of the translatedvarieble V = X - 2(t), we get the final result for the receiver

x(t) = Fx(t) + I- _NV(O,P(t))S(t-&(t) - V1}dVZ(t) (97)

[FP(t) + P(t)FT + GQGI +• Vij Pi ]NV(oP(t0)Sit-.l-S)cV z(t) (98)

The receiver has the following notable features: (I) the first term of each equation isdynamics dependent and accounts for propagation of the estimated dlffusion in accordancewith the g.ven dynamical model, (2) tbo second term updates the -stimates continuouslyusing the received signal. Both employ locally generated PN-code waveforms,S(t-xl(t) +VI), (3) because of the use of the centered variable e(t) (or V) in the twoequations, there is feedback in the receiver from the present estimate (XlT)) to thephas., of the local codes, and Eq. (98) drives itself and also drives Eq. (97) throvghadjusting the value of P(t).
The correspondence b'tween this processor and those givtn earlier can be illuminated

by assuming x 1x and t:at F-0 s GRI in (Eqs. (97) and (96)1. The zeceiver is specified
by

x1(t) exp( V s(t) 
9t

r.-Yi. (100)

These equations can be interpreted in two wady. (I) ThVe integrals in Zqat (99) atut (100)are convolutions, and thus prescribe linear filters thrýonh which the f o46t"k ckrctolocal code tS(t-x % t))J ahould be sent and sibstequontly multipliej by i(t). The covari-ance P1 1 (t) in to be treated as a slowly varying filter paramtter. (2) r-vRnt •(t) insidethe integral, the equations instruct us to form all ro iation. s(t-•(t; •V,)a~t),for all V1 in (-a -. and Utrn use the specified weighting p~terhtL %o r'i Item~. I f weapprximate the ceutxnqo,': donawin integral by a grid with rapcwiq of c-.u -1-p, then we willhave derived the structure dixg-c. oed previously. Docause of th-n difficulty -a implfnt-ing interpretation (1). we %hall use this cecond approach hok-t.
* Approximatinq Equ. 098) and (100) by discratigation o*I V , et

*Vaight.s eorrelator outputt

S(t-jj{t) *L) is the local cne Wh3ich Lms Lea-hinn Vie rn-tine -de. S(t-.(tM)) by Ichips. The infinite sitA in Eqs. UQI1)And U102) ovst be truncated for physical realit.-billity. We shall assu;% that I goor r-oa -We to *No, and that the u'tghts are mall "oarthose edge values. The weljits In Eq. (101) are the *&,o at thosa derived by [(bowle (8, 9)]providad the values of Pýst are thbe tj= .Ilowever, an auiziliary set of *eights has beonderived to drive the dstetor width. 20p1 1 (t), making it a 4ata dependent procvs&or. Theweighting patterns for too mean and variance equations are derived in Figures IS and 16.Figure IS is the extended detector characteristic, vhih %arvides vk* feedback siynal toconstantly null the error e,(t) - x,{t), xlt). igure 1.. s inte. . retab Csk a hi It_(ts hould p,, oduce hi•h correlation with codes S(t - 1 (t) for ' 0110- t hen t.-(Ct) -Is driven' i6wer in order to product a tight.r m.ean d____ tor ve • P,• 1• e• a forhigher accuracy trackingi if 9(t) Orl- with S(t-i1 (t) - U~ for"i .~jE tien



P iul is increased to guard against losing lock. This data dependewcy helps guard
ailinst modeling e"tors and the inaccuracies of the Gaussian assumption.

Figuxa 15. Weighting Pattern in Figure 16. Weighting Pattern in
Mean Equation CovAriance Equation

A useful quality of this prooessor is that it is easily extensible to higher-
dimension state variables. The two weighting-patterns derived are the only two necessary
r•e•rdlOss of tile dynamics order. This is seen from Eq. (97) and (98).-T-e ith component
of the second term of Eq. (97) equals'

fVi 4V (0,(1)} S(t - - )dV a(t) (103)

Eliminating all integrat•ons except thoiv with respiect to V and V and factorina t•h
Jointly-normal density of V1 and Vi into a conditional tiza• mriinal denditv,
Lq. (103) beeoaeo z

LfN1  (, 1  (tS - x - -2 fj ,-. •;-. iv3  I •(:t

I f~ NL (P M) S (t (t) 'VPI (4)

The b&.Acketod oxpr•'•ion equals the o itinal mean of Vi give, VV which is PilVl/P II
hncne. Eq. (104) becomes.,

P (Pi 1 /Vi 1 ) V1 "k, k P1 1 (t* S (t - x1 1t) -V 1) av1 2(t) (lS)

This tells us th-t x (tl is to be driven by the outpu't of tho coresponditg expr**Xion Al
the X (t) equation, scaled by Pt [(t)/P 1 I (t).

Likewise, the oeo•nd toer of (96) is coputiabla ast

P, , t,] ,0. P) (t I (t] -v ( P ()t) S

which specifies a scaling factor of P IF to be arppiod to Lhe P 1 (t) equation's

Ouxtput to 4riv* the CarrespmOldin to A ol t.ei Mjt equation.

2.6 Discreto-Time Point-Mams Kpproximation Mthod for P(O! MSeproesntation

a) The Point-XMss A• roxkmati".o b, ui11 -. .trn oNN. l'is with an a•hjroxi-
"ato g ho~t '1 t r r6babf 1. t~nixty functioni (Pv) ol' discrete-
tims Sy~tafts. Here, a useful i•t&rt:4ue i to prop.,.e.- the POP onAly at a sat of pointa



(grid) which support most of the PDF. To begin with, we specify the system and its

exact recursive solution. The system is:

x(t+l) = i•x(t),t) + g(x(t),t)n(t) (107,

z(t) = h(x(t),t) + v(t) (108)

X(0) = _ (109)

where:

x(t) is an n-dimensional state-vector;

&(t) is a p-dimensional observation vector;

n(t' is a zero-mean m-dimensional WGN sequence of covariance matrix Q(t);

v(t) is a zero-mean p-dimensional WGN sequence of covariance matrix R(t);

g is a function which is matrix-valued (n x m.

f and h are nonlinear functions;

i is a zero-mean Gaussian random vector of covariance matrix P(01-1) and mean
2(01-1) which provide the initial PDF for the filter

Letting Pt/V (y) denote the probability density of x(t) given the obser-ations

Z 0 {Z(0), z(1) ..... Z(T) , (110)

it is necessary for the filter to produce two functions:

(1) The filtered PDF Pt/t(_) of the state x(t);

(2) The predicted PDF Pt+l/t () of the state x(t+l).

Once the PDF has been constructed, any type of estimate R(t/t) or 2(t+l/t) can be
generated, such as:

(1) _(t/t) =J xPt/t ()dj conditional mean, for a minimum-variance approach;

(2) S_(t/t) = y where Pt/t(X) ý_ Pt/t(B) for I # for a maximum likelihood estimate

The filtering equation is simply an application of Bayes' law. Assuming that

Pt/t-l(y) is available, and that z(t) has just been obsorved, then

PrIz(t) [_?(t) (.1t/1(x)
Pt/t(X)=I (111)

But by the given normal distribution of v(t), which we will abbreviate as
N(O,R(t)), we can deduce that

Pr _Is t) J!_It) - 1i Nlz~lt) - h~!,tl,Rltl) , 1'2)

thus the filtered update is recursively given by:

N(z(t) - h(X,t), R(t))pt,,ti_ (y)
p t / t ( 1 ) . . . •-( 1 1 3 )

f N(Z(t) -h(lX,t), R(t))

To derive the predicted PDF, Pt+l/t(x1), in terms of Pt/t(1), one must weigh qnd sum all
the possible ways that x(,+1) can equal I. If we let Tt+l/t(.I0) denote the transition
probability, i.e., the probability that x(t+l) - I given that xTt) - 8, then

Pt+/tTt+/t( )pt/t(8)d (114)
T- ) )



The function T is easily ascertained by knowledge of the distribution of n(t). Then we
have:

Tt Q/jjl•) = N(y - f(a_,t) S, gt) (t)T(,t)) (115)

Hence the predicted density is recursively given by:

S=/• (• _(B~)T (8_,)c)(8,)P/C)0B. (116)Pt+l/t(Y) f

Equations (113) and (116) allow recursive propagation of the conditional PDF. However,
for general f, 1, and h, it is rare that closed-forn, solutions will be available. Hence,
Buoy [161 and Bucy and Senne [111 developed the point-mass PDF representation.

The point-mass representation approximates pt/t and pt+I/t by a set of impulses:

2N+1Pt/. (3) pt/. (_•... n•)6y-b(,...••
-,Pn=1

where b(t,,.._..n) is a grid, taking values in )tn. The simpler scheme is to keep the
grid fTxed in tim*-. A more advanced scheme, developed by Buoy [10], is to translate the
grid to maintain its center on the conditional mean and rotate the grid to align its
axes with the principle axes of the error ellipsoid. The simpler version turns the
filtering and prediction equations of (113) and (116) into respectively:

. • ~(3t)- - (_• ... n,) t) ,ttl~_• .... t/)

(117)

and

2N+ 1
Pt+l/t #(,...n)) u N(b(i 1 ,....Ln)- f(b(m... ,2).t g (118)

) QmT,. . .,mn,.Pt/tu((mlImn))

Equation (M18) may, however, require a slight normalization to compensate for numerical
innafouraco5s which cause the total probability mass to deviate from 1. Alternatively,
equations (117) and (118) may be combined and a single renormaliaation parformed to
account for the denominator of (117) and numerical innaccuracies.

This basic point-mans solution is not immediately usef-il to the problem of spread-
apectrum ranging because that problem is naturally contintous-time. However, a close
variant of the Bucy poJnt-mals technique can be used to solve this system by approxi-
mating tiie exact continuous-time solution (Kushner's Equation) by point masses. Further-
more, the ;oint-mass solution is very natural for P9-code tracking because of the
disorete-ti.e nature of the code.

Tracking the conditional mea, x(t) requires computing the *df of x(t), p. This
further roqvires an on-line computation of Kushner's Equation, from whioh squitions (81)
and (82) sten. The full PO'-propagation equation ist

. W "j LI~ + 1 Px(E-'tlz t) - t) ZM ( 119)

Sr h o0p1 o - E li o t I
where L is the I'ok~ir-Planck operator for our dynamics equation, (78), which is given byt

a
PxI , 3P 1 +I B-



Fors

Fi it row of P;
Fij = (,j)th element of F; and

.ii=(jth
gi = element of g.

Implementing this equation directly is impossible because of the continuous-valued domain
over which px is defined, thus requiring infinite computer memory. This problem can be
treated by Bucy's method of sampling Px at a convenient spacing, and propagating Px only
at the chosen grid values of X. Furthurmore, this is natural for our system in paYticu-
lar because of the code waveforms, wherein a good spacing for the X1 -grid is 1 (chip).

Due to computational overhead of implementing higher-order dynamics-processes, I
shall limit the discussion to the first-order process specified by *1 (t) = &(t). Then
the discretized PDF is supported only by the natural unit-spaced grid selected for the
x1-axis. The following development is extensible to any n-dimensional process with its
respective n-dimensional grid support. However, two important considerations inust be
borne in mind:

(1) For the derivative of xx(t), e.g., x2 = xl = velocity (chips/sec.), there is
no natural grid-spacing as for x1 .

(2) Implementing an order-n process estimator will generally result in a different
detector weighting-pattern for each component of the state-variable update.
This results from the fact that the marginal and conditional densities of an
arbitrary joint density are not necessarily of the same family, as was with
the jointly Gaussian density.

Kushner's Equation exhibits the same dynamics/predictor, measurement/update type of
structure, as evinced by the first and second terms of Equation (119). Equation (119)
for our first-order case becomes:

2

(x 31t2 + pX Ih(X11t - t) ) - (121)

Discretization of the dynamics term is best treated by approximating the second deriva-
tive by a three-point method. Letting r, denote the integer-separated values of X, that
will support the sampled PDF, we may substitute

Q (r + I, t Z)0 2px(r, tIz0  4 (rI -1, tizo0 ) (122)

for the second derivative of px, at rP.

The observation term of Eq. (121) is best handled by deriving an equivalent term
that is directly obtained from discrete-time and discrete PDF-space (F1 ) probabilistic
considerations. Handling this term dire-ctly in discrete time is justified by practical
considerations. Given the continuous-time formulation of Eq. (121), a receiver would
normally only approximate that calculation by discretizing all functions and derivatives
in time. (This is simply because analog processing of the signals would be technically
too difficult.) Hence, the associated approximations would be possible sources of
inaccuracy. A rederivation of the observation term of Eq. (121) proved to be simpler
and more robust to point-mass approximations than direct discretization of the same,
under computer simulation.

Letting At denote the sampling period of the receiver, the correlations, s(t-rl)z(t),
will be discretized in time and indexed by the integer n, for n-l, 2, 3,... Hence, our
observed information is a sequence of (2NO 4 l)-dimensional random vectors parameterized
by discrete-time index nm

(V-N (n)1
e

v(m) vi(n) for n 1,2,3,... (123)

I V+Ne(n)j

wheres

(At

vi(n) (n 1)At Z(T)S(T (:Unl)At) + (dT (124)



N is the number of local-code phases ahead and behind the on-time code that are
cArrelated with z(t). The estimate is also a discrete-time sequence; At is assumed
to be small enough so that quantization error is acceptable. Notice that we will let
the Fi-grid move rigidly as the estimate P, (nAt) moves, so that the center ,:alue of r,
equals St (nAt):

r,= 1 (nAt) + i i -Ne,-Ne+,...,+Ne . (125)

This vector sequence of observations allows us to propagate the samnled PDF through
Bayes' Law. Specifically, assume we have generated px(Fi, (n-l JtlZ 0 " •) for
rF Ri((n-l)At) - N to Rl((n-l)At) + N in unit steps, and that:

e e
S1 ((n-1)At) = Zripx(Fl,(n-l)AtlZ~n-l)t)A (126a)

Then we must generate pxi(F:, nAtlZn't) for the same rl, and compute the new estimate__ 0

Ri(nAt) rip x(r'nhtnZnAtO (126b)

Lastly, the set of points, px (r 1 ,nAt, Zo ), for the current ri-grid (which is centered
on St ((n-l)At)) must be inteYolated to correspond to the values on the new fl-grid
centered on the new estimate xi(nAt).

To begin this task, we must first apply the Fokker-Planck operator of Eq. (122) to
get the predicted PDF values:

px(rl, nAtIZ(n-l)At)o= P (F i,(n-l)AtlZ n-l)At) + 1 QAt l(nl)At

(ri~,(n~)AtZ~nlAt~(127)

2px (r i, (n-l)Atlz~n-l )A t) 4t. n-p)xiO 0(127)

for all r, in the current grid. The incoming vector v(n) then allows us to update these
values to px (rL, nAt ZnAt) by Bayes Law:

[_ z~(n-1)At] (r~~ (n-l)At)
Pr v(n) lxi (nAt) ri,z p (PinAtZo

x (ri,nAtiZnt) - (128)o ) = •~[numerator](1)

Because xi(t) and n(t) are Markov processes and z(t) depends in a memoryless fashion upon
them, we have:

Pr[v(n) l%.(nAt) = ri, z~n-l)At] Pr[v(n)jxi(nAt)= ri] (129)

This likelihood function is easily computed by noting that the components of v(n) are
distributed as such:

vi(n)lxi = P1 v N(CAt, rAt) for i = r, - RU((n-l)At)
(130)

vi(n) lxi = 'l N(O, rAt) for all other i

All vi(n) are independent since the correlations of white noise with the orthogonal
local-code phases produce independent random variables. The single-chip grid-spacing
is very important in this respect for computational simplicity. Thus, the likelihood
function is given by:



Pr v(n) lx:(nAt) exp [I r~n I ~
- '1 2atr

(131)
J-N ( V - ( W~ )

) ( e 2Atr
i=-N 2/ trtr

where R, means Rj((n-l)At). Eq. (131) equals:

S[ 1 2Ne~ e -vi(n exp 2t (132)
\• / exp[9-2e r2Atr
727rA tr I=-jetrJ(12

eL

Using Eq. (132) in Eq. (128) yields the measurement-update formula:

ep[• vI -(n)]Px(rlnAtiz(n-l)At)

(r1,n~tznAt ) = P7 (133)

exp[• vi (n)] Px (9i + i, nAtIZo(n-l)At)

e

where •x means • 1 ((n-i)At) and r, = 91 + i. A simple way to implement Eq. (133) is to

scale the predicted probabilities px ('r, nAtIZ~n-l)At) by the factors exp (Vr _g (n)/r)

for each rl. The scaled samples shokld then be normalized for unit sum, and Eq. 1126b)
employed to generate the new estimate. Lastly, the grid should be shifted to the new
values,

i = R I:(nAt), i = -Ne, -Ne+l ., +Ne , (131)

An initial PDF assumption starts this recursive estimator/tracker.

caeFormulas Eq. (127) and (133), which specify the receiver for the Brownian-motion

case, are comparable in computer overhead to the DDAG detector. These equations dictate
the minimum-variance estimator for our state-space system with only the approximations of
finite PDF grid and discrete time. Notice, however, that the grid-spacing was crucial
to getting the measurement update formula for the Bayesian Detector, whereas in the DDAG
detector, smaller spacing only implies sampling the weighting-patterns at more points.

CONCLUSION

The point-mass approximation is probably most useful where computing power is
available and where the extended Kalman Filter is known to fail due to poor linearizabil-
ity of f or h. Other global approximations are available which require less computation
but which are not quite as general as point-mass and have their own associated problems.
The most popular are:

(1) Gaussian Sums: derived by Alspach and Sorenson [12], tlis method is good for
multinodal PDF's. It consists of representing the PDF as a sum of weighted
Gaussian distributions (a non-orthogonal series) and propagating the
weights essentially as a Kalman filter would.

(2) Other orthogonal series expansions: these include Edgeworth expansion [13],
Gram Chalier series (14], Gauss-Hermite Polynomials (15], and Least-Squares
Polynomial Approximations (161. Generally two problems occur with these
methods: (1) truncation of the series may result in some points of the PDF
being negative, (2) truncation may result in an unnormalized PDF.

Due to the nature of the code-tracking problem (unimodality and the discrete-time
nature of codes), the point-mass approximatlon was a natural choice for global nonlinear
estimation.

Jj
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APPENDIXI

First, the computation of

-• -= V1W R(V 1-W1 ) NV1 (OP 1 1 (t)) NW1 (OP 1 1 (t)) dV1 dW1  (I.1)

will be detailed. Inserting the multivariate Gaussian density function, this becomes:

SVlWR(VI-W ) exp /_(Vi_+t)' dVdW1 (1.2)2yrP 1 Wt 1~ V1 1R( 1-2PW1 1

Consider a rotation of the (VI, WI) axes by 450, specified by:

[g=%F 1l"1 [Vlj or [] l[ -1[f (1.3)

Then, we can write:

v+ w 2 + g2 and R(V1 -W1 ) R( ,r2 f) (1.4)
1 11

and V1W ½ (g + f) (g- f).

The function R( 42f) is given by I - %2jfJ for Ilf< I/ TI2 , and 0 otherwise. Hence the
full region of integration is a vertical strip -,2 wide in the fg-plane (Fig. 1.1). Since
our three functions in Eqn. (1.4) are even, we may limit the integration to the shaded
area indicated in Fig. (1.1), and multiply by 4. Thus, Eqn. (1.2) becomes:

1 ' 2
"-4• fr ',plf) exp • (9 + f){(" f){- fdg, (.)

0 0

which becomes

12 2
(-2) j . xp- . f2 + 2 )g- (9 2 fg2  f 2 + f2 f3) dfdq (1.6)21P1 (T) f 2

a sum of four integrals over rectangular supports, and separable. Computation of the
integrals and addition of the results yields the final value oft

11  exp -l (I.1

as the value of (1.1).

Next, the value of

- f f~ (V2 -p 1 (t)) R (V _W I A (0, P M() N to, P1 1 (t))dV dN1  (1.8)

will be shown to exactly cancel (1.1). This insures that a receiver with a ore-dimensional
state vector can safely drop the middle term in the varianoe equation. Expression
(1.8) equals:

2 2

fi f - 1 (t) R (V1-W) exp Z,~M(19

Again, we shail aligh our new coordinte system with (I.1) and integrate over the region
indicated in rig. (1.1). Using



V2 - P1 (t) = (g + f) 2 _P (t) ;R(VI W 1) = -f2 f; (I.10)

2 2 2 2and V1 + W2 f +g

yields separable integrals, which all sum out to:

- exp 4 pt)- i,(I.11)

which is the desired result.

th
To generalize this computation to the (i, j) component of the covariance matrix

requires first dealing with the term:

-Ijj VW R(V 7Wl) N-V (0, P(t)) NW (0, P(t)) dvdw (1.12)

Eliminating all variables of integration except for VI, Vi, WI, and Wj allows us to write
this as:

40 f LfO JO J VW R(Vi-.Wl) N V1V i([ 1 [Pli p~ X (1.13)

N "w1*wJ Lp" P'J.)Vdi/Wd
0 1

Re-arranging the remaining integrations:

SR (VI-W 1) ViNVI'Vi o [P01 P i X1
oi 0 P11 P

IL Wi NWlW J([ I [P11 :'J)dWlj dVl1dWl

The bracketed integrals are computed using the properties of Jointly Gaussian density
function and recognizing conditional means and covariances. The two integrals are
respectively computed to bet

ii V 1 (0, P11 ) NW (0, Pll(t)), (1.15)

which turns (1. 1) into:

-• 2I J. VaW 1 R(V-WiN (01 P ll(t)W (0, P11 (t)) dV dW1  (1.16)
V\ 11 1 ;- 1 11 W1 1

This is the same as expression (1.1) scaled by P 1P1 1/P 12

A similar computation shows that

- (VVj-Pij) R (Vg-W1 ) Nv (0,P(t)) Nw (O,P(t)) ddW 1.17)

equaas (1.8) scaler, by the Pame factor. Thus as 1.1 and 1.
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SYSTEM IDENTIFICATION OF NONLINEAR AERODYNAMIC MODELS

T.L. Trankle, J.H. Vincent, S.N. Franklin

Systems Control Technology, Inc.

1801 Page Mill Road
Palo Alto, California 94304

SUMMARY

System identification is a technology for determining a mathematical model of a dynamic system from

observations of its response to inputs. The effective application of system identification requires the

integration of test planning (choice of sensors and of input test signals), monitoring of test execu-

tion, and data processingo

Identification technology is particularly useful for the determination of nonlinear aerodynamic

models for aircraft maneuvering at high angles of attack. The methods outlined here (equation error,

output error, and ms*iuum likelihood altorithms) can directly estimate nonlinear aerodynamic coeffici-

ents in table look-up or multivariable spline formats. For application to nonlinear problems, the basic

algorithms are enhanced by recent techniques for evaluation of partial derivatives of the likelihood

function, ealculation of parameter estimation uncertainties, and by the use of multidimensional splints

as a generic model structure. An example application of these methods to the identification of F-4S

fighter aircraft high angle of attack aerodynamics illustrates the technology.

NOMENCLATURE

SSymbol Definition Units

A.A Axial acceleration 
ftisec2

SLateral acceleration 
ft/sec

2

As Vertical acceleration ft/sec
2

bV wins span ft

wins mean aerodjtnaic ft

CD Drag Coefficient --

CL Lift ;oeffici.at "

SC1; IRoiling Vo ent Coeff,

c,,!( )
Ca Pitching uantt ceff.

C, Yawing eowet cosft.

C() •C,cIa)( 3 '

Cy Sid* force coeff.

I( ) tapecead value of ( ) --

MH Met thrust Ibu

f State dynamics function --

a Gravity (32.2) 
ft/s04 2

hp Fressur• altitude ft

Smatrtix of partial derivatives of -"

oeasaute•s o with respect to
paramet er$

Parameter etimatiou parforenae

•1 NFisher information mstri•

H Mach oberar

wifunber of date points -"

am A""/,



Symbol Symbol Definition Units

P RCll rate deg/sec

p N~umber of Parsamters to be idantified

P (PbV)/(2VT)

Q Pitch raete deg/sec

-( rd/sec)

q Dynamic pressure IWO/f

R Yav rate deslaec
(rodi'sec)

R (itbV)/(2VT)

t Time

u Syst~em input

Vert Cvi artance of ()-

VrTrue airspeed /e

Wf uel flow lb/hr

System state

Y system wt put (.easur~mawt)

CA ~ Angle of att.A do

AKIAmbient prtovure ratio

Ailer-ot defectioa deg

RMrdatlectioa *

65 .~ofli*toatl tail defloction e

Set ot P~oiIarea~trs

Ambient ttemprotuta ratio

ftaeaurmient error of 004,"ygent t -

t~sutecto t * -orr*i*tio11-

Voot mtwtn square accrutofat eor --

of asmfewuassn X

W. Aasular w -a 4ondimanuio0.isod by

auper SO s'it tuerot

( ~ggg Fll;1ht test "tatutesagn of(

( ) astimatf of o ) ..&roesnt

( ~ ioseboom

I . WOZVAUCM

Systwx identification it a technology tot determinintg a mathematical model of a dyn~mic aysc** from
oboarvations of itis response to its inputs. This Cochoology has found *pplicatiou I'a a number. of fields
of ongincerinS.: aircraft anrodynexics111 I, process coatrol (21, electric powsr production &ad diotrib.m-
tion (31, propulsion 141, medicine, IS) ecoomewtvics (GI. add structural dy:..smics 17).

The use of system identifica-tiew "etiwd can mavti unique coutributioui, to thti somatbamcsei modeiiug
of a dynamic *yet**:



e beterminatioo of parameters which model the dynamic, as opposed to the static, characteristics
of the system. Examples of such parameters are those which model mechanical damping in a
structure or the angular rate aerodynamic coefficients for an aircraft.

a Model vah~dstion. The use of input/output data from the operational system may be the only

ay.to ensu-re validity of the mathematical system model.

Although system Mdentificoti-on is often regarded &a a set of techniques for data procetesing, the
overall technology hase &-broader scope which includes test planning, instrumentation specification, ý%nd
choice of uatht:-:tic: model structure, as well as the numerical metheds of paraester estimation and the

statistical techniques of interpreting results. The overall scope of the problem can be illustrated
with the aircraft aerodynazic msodeling example. In planning the effort, the following questions shou Id

first be addressed.

0 Wat utlque contributions can system identification make to the particular modeling objectives?

0 What is the purpose of the model? It might be used for aotive control design or for investi-
patioa of the physics underlying the aerodynamic phenomena. The ultimate purpose of the model
will Affect the choice of the stucture of the model to be identified and the estimaLion accu-
racy required.

. What teat inputs are acceptable from the point of view of safety of operation while the data
are being coslected? Small control surface excursion* may not excite the dynuamic modes of in-
terest while large excursions may cause spins or other dangerous maneuvers.

* What aspects of the input and output of the system must be measured? Possible measurements on
the aircraft include

- ecatrol surface position,

"- engine INt and fuel flow,

"- attitude (roll, pitch, yaw),

- gulatm rate,.-

- aspular aCeleration,

- a0alational 4tcelratioO,

Swel"It with reapott to the air,

- o1l of attack aod slideslip.,

- aynamit pre-ssute, and

- position.

.e ow accurately 00.at tb##s quoatitire be asasured?

a Uttat duration of experiment is most coot-affective? Loag cit, Worda may b e= opeive to. ob-
tal", pot short time raCorde may not yield acurete estirates. Nov high oust the sampling

how von.p*st must tho "botb tical model be? Rom maty parasmetier need to be #atioat.rd? ort
ei ale. are *er~ed i.ctftoes and ~omeat* linear functions of vecle states o- do Signiti-
camt nomlateriris 4ist? The attimetici of a much lat er neuber of paraeters way We rwe
quit,"din t*e leAter case.

0 Con th. quality of th. date be teated as the Aeperiftnt to being run? Cao the system model t's
determaiod tn eetlrimeor oust it be 4etermioed by batch protosiln itethods run Off-lito
sitet .thtf, date haulbe tot )#Cteo1

0 t.kbth dat.e h1-0s ta0 e-eri."t 60s80 be Prt•cesed of f-line fe llowiax ON aetporltent. what will
be t.* e4xr'mso of Ow~ iaraoassng? Givwqn t-he Oatur, of the choess model, "hat type of proces-

0 Mgo ,an we aQeges Vhe tatidixy of Ohe model datemi' ed i~y profetsitn the tust data?

The tect-zholotg of iyrttc. ldtatifwtstio is psrirhularly voll-stuittf to the preoessing of date from
eilt-trattl Mlht tea*s- Identification aetkoos C44 maa t ftfofroatloe on mathematical seradymstic

The develop•e.t of lit 'Jtotagreted ftilht testalt procedure depends on the ability to identify non-
xtnset ier•edYaik charaeci ii,- cs and propulsion sorww •-rformance from flight test data. The identi-
fiea W.iely t.el to iefi•t performane,. stability snd control, ted unaugmeated airframe dynamic char-
.aeerl.ttics ci the aircraft bilng evaluated. ly idontifying thd nonlinear aerodynamic models in a mou-
tivoriable, tab'e-1ook-up fotsat, direct correlations cam be *&*e with pteflighe aerodyamic predictions
(e.g., wind tutn'el Jdt.) and simulation models.

"by using a da4t processing technique that can Wdentify aerodynamic and installed propulsion model&
from muny large-amplituds, dynamic test conditions., It is- poosible to enhance the test productivity



through a reduction in required tost time. for the dyn~amic maneuvers, the test time is defined in terms
of second&. Other motivatiar, factors that support the development of. this technology inceude: improve-
ments in safety of flight, and * general expansion of requiremenits for higher fidelity aerodynamic
models of the airc-aft.

Safety of flight can be, enhanted during & flight envelope expansion test program by using system
identification techniques to validate the aircrart simulation model for flight regimes already tested.
The updated mathematical model car. then be uted to make preflight predictions for flight envel' ope expan-
sion test conditions. In addition, when nonlinear identification models and identification techttiques
are used. the pilot's task is greatly simplified since he is not required to maintain small perturbation
flight about a trimmed operating pointi>

The need for improved modeling, of aircraft aerodynamic characteristics hog been, and continues to
be apparent in numerous areas of technical and operational importance. Four such areal are: 1) flying
quality milititry specification compliance testing. 2) trsining simulations, 3) design methods for spe-
cificationt of aircraft characteristics, and 4) the development of mission profiles that make optimuma uste
of the airplane's capabilities. In. general, there is a need for an improved understanding of an air-
plants's aerodynemic chairacteristict wihich support* design improvements for increased cost offective-
neasa, expanded mission flexibility and enhanced operational safety.

The objectives, of this paper are to (1) outline, the aa,)*cts of system identification which are
relevant to 0t~i aircraft nou!,ntear aerodynamic identification :problvm. (2) introduce three new useful
data processing techbelques, vo6 (3) demonstrate the application of the system identificationk technology

*to the ý*#Isies of f~l~ght test data from the Xtavl Air Ttat Center P-46 aircraft.

2.ovaiflhl.o OFs'tTSm iDNTuriGAIow mrmITIoD Gy

2.1 The Integrated System Identification Process-

2.1.1' Iterative Naturg -if the Procqes

Figure I indicates an integrated identificetic-n protedura which appligli to a 440e '.Uriety of dyý_.a-
sic systom types (eg.structural dynamics, vehicle dynamics. etc.). ftis syste~m identification pro-
caes consists of an iterative loop of test planning, actual tesotios, and data prtocessing. TVo feedbw~k
loops can 4e vital to the overall success of the program. An inner loop is closed during the ditto cbl-

*lectioif iphast. This ifnner loop checks the, quality of the data produced by the tests. The che~ckiog is
done in reel-time or nearly in real-time. If the quality of the data is determined to be poor, then
Corrective action can be takten whiles the test crew "n facilities ar, still available. for oxample, th*
test can be rnpeated with modified inputs or sensor configuration*, ftoo data quality way be due to-

0 failed sensor chenn to.

a excessively noisy sensor channl., or

a failurv, to excite dyvamic W)4*4 of lotervot.

Data quality evaluation may be performed by a variety of resltim tehiqe Mecldln

* vitasl inspeetigo of date record*soe displayed by strip chart rwtorder or (IT.

(ofait detecttoe fillnre W8, or

4 actual Pat ter eatisatiom using algorithmas configured fot high computstion speed (9).

An outtr loop of toat Plalwing day Also ftsed to bfi Closed skhout the anti"e identification pofetses. T'he
tost pleaniP4 is a 'boot-strap' proctas. A model of the system it 0*eded Inl oydee to cheese teot In-it
signals and to specify s""or raquireimants. The characteristics of the veadel which~ result froM the
idswtlficaeioa data procosaing may indicate that additional input itigoale or tosensors are required for
complt model idaotslicatiou. If thsis it the case, tMen another set of data 'toileatioo toot* Vill be
2.l.u ?A.Prtt lnl fe,

"Thu pretest pla~mnia 0.000 islulides the oepcificasios of dh iftatrow'.nt system and test Inputs. The
overall tachoolagy of systemt ideetificstlom ma" exrends to include analytic metthods of specifying toot
Input signals to siasiaie th utamertsalty of estimates of peramietara (101 sad of spcifying eamel *u-.
raty requirewrnts (Ill.

2.1.3 nt Dotr~s tl

Vthe actual, processing of the data requires ftwr "ajor ate". Thes ore

41 flightt date Pr~acesein sWW analysis.

* swat ornactutt determinaitiaon

0 moel Wali~datlou.



2.1.3.1 Flight Data Preprocessing and Analysis

.'he preprocessing and analysis of flight test data i" a -major element of the integrated system
identilication procedure. The 'overall objectives of this task are to review measurement excitation,
remove vildpoints, reconstruct unmeasured quantities (i.e., acceleration of the aircraft at the center
of gravity), andtdevelop a Aet of kinematically consistent measurements. Where measurement consistency
cannao- be established, requirements for instrumentation system error source modeling are defined. Meas-
"urement consistency has a significant impact on parameter identification accuracy since unaccounted-for
errors will bias parameter eswimates.

2.1.3.2 Nodel Structure Determination

The model structure determination phase 112) consists of processing the input/.Ltnput data to deter-
mine the significant linear and nonlinear equations and associated parameters that are necessary to rep-
resenc an observed system response. Questions addressed here include the dt.Ermination of the order of
the model (e.g., number of degrees of freedom) and a mathematical form (e.g., polynomiul) to represent
any nonlinear character in the dynamic equations. For linear dynamic systems, the dreriaination of
order. is of primary importance. For nonlinear systemas the determination of forte to represent nonline-
arities has equal importar -c.

2.1.3.3 Parameter Eetication

f. The estimation of unknown paramter wes.-er r.tlows the determination of a suitable model struc-
ture. Numerical values of un•notki par~aeters are determined by choosing then to optimize s4me perfor-
mance index which measures how veti thq athomsticp. -m-odel represents the observed data. 4asible per-
formance criteria include:

a, minisizatien of aweý rt %knihto4i squared fit errors, and

a ma~ni t; itrtie autocorrelationo of the fit error*.

* Fit error zs the difference between t.h obeq.r•cd response of the dynamic system and the simulated re-

sponse of the system model to the ! .2eilted inputs.

The deter.Miati• •u f t-ndol structures and the estimation of parimeter values are often done in
pa•-•a1l. .odol stiuctures are detemrined by fittina several competivq candida•t mdels (specified by
the user) to the observed system response. The fodel stuture which gives the "best" fit of the data
is the etructure chosce.

Several criteria may be used up evalut4t* the closeness of the fit. $imple an quar f it
is not a ouitable cri.erion for Owr cvmprio•* of all candid4te models. The use of this crittrion will
alwaya lead to the choice of highly coeplvx m,41es, witn, adding degreer of freodom to the model slw.?a
leads to teducVd mean square fit err.t. K.?re useful critoria, whon evaluating candidate Aed4ls having
dittewr t numtbrs of Pran~ra* are the *ann square predictionrkirror sad the V statistic 113). These
criteria vwight fit error atsinst the esma-er of feree paaaekera in the modl.

A two-atage prkoess has been fouand to 'te offective for detert-itiiu the att rtoce of the sodel oaci
* estimates of the parameters. First. candidate 4odels are evaluat'd by Choosing tsir paremeterA to

mitlietial fit error or m#an squire predoctio, error. This evaluat Ion1 is I "ts a nU*etecal sc•hemeI
0hich accurately eval•stcr the perform•ac (Index bt which -sy not oorltelw evaluate thn Pormsmtet
estimates themselves. Once the *a4eI strurture he established in, this Vwy, the pcrameter estir-te are
Tefined4 usin a scheMe which gives SOre atera~t* parameter estimates. For dyfV#mic s4tes acompte-
ticitally efficient method Ai;:h is effective for maodl structvre eonialr is the euto ro
sinimisation method, Paramet"r estimAtes may s•asquefntly be relined uoing •utput error ai"'vsation or
combined Astate 4o$ peramete, esti•,tioa methods. All three of theoa estimstioa methods ar" treated in

.reater detail in Section 2.3.

j 2.l.).4 M odlVlidation

A Xgod criterion fet the validati*n of a emodl is tho uC of t Oe se•l to r.redict nov gata. A
typical prtocK*d1U ight be to use, say. S0! of the seeolable dAta to detormine the mvol structure end

"parameer v,2lues. Then the resulting model would be Used to Predlict the foemaining 11 4f the dota. 11,.
degree of validation achiped can them be interpreted hem theaccracy of *I pr*dictioa.

1Statistical performnce criteria iclude:

O, eoan squaref fit error.

S me# square pirediction error, ndd

"1 Viiteee s (statistical imdepemdPenl) of rosiduils.

fUhtsses. can often be evaluated effctcively by visual inspectiom of plots of the observed data super-
imfpoos on plots of th" predicted date. Plots of the residuals themselves any also be used.

Finally. validation should io|l-de comparison of the model detertined fre, system iie .eiiks"sIo
with models available a priori. Aerodyeamic modela, Is 4atsrainsd by ideot-ifictcon, ae-l be comar
to Chose determineS from theoretical pra•-dictions or visd tumnl tests.

2.2 Test Planniag

The first step in the integrated system identificatioo procedure is .he planning ok the test., A
rcwet, system identification test plan should include specifications tor both the i.npt siltfals 1101



2.1.1.1 Flight Data Preprocessirg and Analysis

The preprocessing and analysis of flight test data is a major element of the integrated system
identification procedure. The overall objectives of this task are to review measurement excitation,
remoie wildpoints, reconstruct unmeasured quantities (i.e., acceleration of the aircraft at the center
of gravity), and develop a set of kinematically consistent measurements. Where measurement consistency
cannot he established, requirements for instrumentation system error source modeling are defined. Meas-
urement consistency has a significant impact on parameter identification accuracy since unaccounted-for
errors will bias parameter estiwates.

2.1.3.2 Model Structure Determination

The model structure determination phase [121 consists of processing the input/output data to deter-
mine the significant linear and nonlinear equations and associated parameters that are necessary to rep-
resent an observed system response. Questions addressed here include the determination of the order of
the model (e.g., number of degrees cf freedom) and a mathematical form (e.g., polynomial) to represent
any nonlinear character in the dynamic equations. For linear dynamic systems, the determination of
order is of primary importance. For nonlinear systems the determination of forms to represent nonline-
arities has equal importance.

2.1.3.3 Parameter Estimation

The estimation of unknown parameter values follows the determination of a suitable model struc-
ture. Numerical values of unknown parameters are determined by choosing them to optimize some perfor-
Mance index which measuies ho-i well the matheiLstical model represents the observed data. Possible per-
formatice criteria include-

• minimization of sum of weighted squ.re" fit errors, and

• -inimiaetior. of the autocorretation of the. fit error-.

Pit error is the difference between the observed reeponse of the dynamic system and the simulated re-
sponse of the system model tv the oeserved inputs.

The determination of model structures and the estimation of parameter values are often done iti
parallel. Mlodel structures are determined by fitting several c ompeting candidate models, (specified by
the ostr) to the observed eyatent responset. The model structure vihith `Ie h beat" fit of the dsta
is the st,-uctvr chosen.

Sev•ral criteria my be .ased to evalutate the closeness of the fit. Simple mean square fit error
is not a suitable criterion for tte comparison of all candidate mcwels. The use of this criterion will
always lead to the choice ot highly complex models, since adding egrees o: freedom to the model always
lead. to reduced mean square fit error. For. useful criteria, %ten ov.luating ca:didatdc model heving
different numbers of parametter, arv the mean square prediction rot at,d the r scastjtic (131. These
eviteris wight fit error tgainst the number of free parameters , the model,

A two-stage process has been found to be effective for determining the structuro of the model and
estimates of thei parameters. First, candidate models are evaluated by choosing their parameters to
minimise fit error or ean *qutare pred~criot- error. This evaluation Is done using a numerical sche•am
which accurately evaluate,. the performance index but which may not accurately evaluate the parameter

tstimstes themselves. •nce the modeo atreuctre is tot-bls*hed in this vwy, the parameter estmtstes are
refined using a scheme which gives more accurate parameter estimates. For dynamic systems, a compute-
tionll'y efftritnt method which iL effoctive for model structure d4vtrmination is the equttion error
minititation method. Parameter estimates may subsequeotly be rtfined using output error mlnisitation or
combined state and parameter estimation oethods. All three of thet* estimation mathods ore treated in
&reater detail in Section 2.3.

2.1.2.4 Model Val14tcion

A go-d criterion for the validation of a model is the use of the model to predict new data. A
typical procedure might be to use, say, 801 of the available data to determine the wodel structure and
parameter volues, Tbhein the resulting model would be used to predict the remsining 202 of the data. The
degree oi validation achieved can then be interpreted froa the accuracy of the prediction.

Statistical pvtfomnance criterie ivcludev

4 mean *quart !4t error.

a mean square prediction error, and

a whiteness (statistical independence) of reiduals.

uhiten etac often be evaluated effectively by visual inspection of plots of the observed data super-
imposed on plots of the prtdicted daot. Plats of the residuals themselves may &lso be used.

Finally, validation should include comparison of the model 4etermined froim syst*m identlfication
with models aevaleble a priori. Aerodynamic models, as determined by identilicatlio, should be Competed
to those determined from theoretical prediction* or vind tunnel tests.

2.2 teot plawing

The first step in the integrated system identification procedure is the planning of the tests. A
4t.gntifi# tio test plan should include kpecifications for both the input signals I!OI



7-6

and the instrument system (11). Analytic methods exist for specifying these two critical items as func-
tions of system identification accuracy requirements.

Design of the system excitation requires some a priori knowledge of the system characteristics as
weil as data collection constraints such as sampling rate and data length limits. It is also necessary
to specify the objectives of the identification. For example, some parameters may be knowrn accurately a
priori. The objective, then, may be to identify only those parameters that are poorly known.

Figures 2 and 3 (11 illustrate the importance of test signal design in reducing the uncertainty inIthe estimates of parameters. Figure 2 shows an elevator input signal for identifying five parameters
which model the longitudinal dynamics of the C-8 transport aircraft. The input time history is chosen
to minimize the sun of the covariances of the five parameters. Figure 3 compares the standard deviation
in parameter estimates for the optimal input and for a doublet input which has the same total. energy as

is not as effective as the optimal input. In executing the test, the suboptimal input shown on Figureth 2pia nu.A a eseadulteeao nucnol sdfrarrf lgttsig
results in performance nearly exactly that of the optimal, but is much easier to implement by the pilot.'I.The other important factor in the initial test plan is specification of the instrumentation. Un-
fortunately, the instrument systems employed to record data for system identification processing are

*often not designed with such ends in mind. For example, aircraft autopilot instruments, which are often.1 used to record data during test flights, may not have sufficient accuracy to allow consictent aerodyna-
mic parameter estimation. This is becoming less of a problem due to the use of navigation grade sensors
in modern digital flight control system designs. The ring-laser gyro-based strapdown inertial referencE
unit is a good example of this change.

Sensors are subject to a variety of errors that degrade both state and parameter estimation accura-
cies. Weerence 11 prtsefits an analytical technique to determine the effect of sensor errors on estima-
tion accuracies. Both random (e.g., additive uncorrelated noise in meassurements) and systematic (e.g.,
instrumeon bias or scale factor ~rrors) are treatedI. One important conclusaion is thut systeinaý'ic crrors
of reilutively small maltnitude in cciuparisor with random error* can cause siguificant parameter estima-
tion bias. It such syst~amait er-or* are unavoidable, then parameters modeling them can be added to Lhe
met of total parameters to be estimated. This technique can .e*duce overall parameter estimation uncer-
'ainty.

2." Data Proceesing Algorithms

A largo number of methods exist for performing system identification data processinp, The best
algorithm for any, &Iven applicatitn depends strongly on the type of model &nd op the nature of the
evailable date. No one tyipe of processing altnrithu can handle all possible applications.

'this section outlines three procesbing method# (Table 1) which have been found to be efftect~ve in a
variety of applitat~ons. Theae methods are:

40 equation error minimisation methods,

~ I output error minimi sAtion. methods, and

. simultafesous state aod parameter esetimation oethos

Itro
Th eqaio rror minimitatiovi method* estlebsto unknown parameters by choosing them to minimise a

din/dt -fMt, ii, t' * V.rpeene s

whe'r 10 ý a eel of p unknown parameters and v is a time-varying unobservable disturbance. An
analogous toorulatios- exist# for a discrete dyntaic system. The performance indx Vo4(O) to be mini-j mixed it,

The equation error siftimaistioa method is often celled the least square# method because of rhe form of
the rformaco ionde

The effective use of the equation error Kinimaitation requires the a priori determination of system
etates 1. controls U. and $tat* derivatives daldt over Che times interval of the test. A priori
here mean. thot these quantities must be deterMind before the unknown system parameters are estimasted.
The determinatice may be done using direct meessureamots or using system charetacristice which act In-
depsedint of the paramters. for exompe, an uaeasoured state derivative may be detervinoad by (very
carefully) numerically 4ifforiestiatiag a &eas*ee state time history.

The fare v is a stochastic quatity which represents urameesurable orceess disturbances ill the
ssteme. V include$ wind susts &ad unamdeled. high-ordoer aeroynamic effects.

Th. spatial advantage of the equation error minmizastion method l1*e In the toot that many non-
limear dynamic sysetm tuattions f(s. U. t. *) are linear in the teromoers 0 * In other words,
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Pf(x, U, t, e) E 0 Of.(r, U, t) + fp U.XUu t) (2)

i i p+l

The functions fj, j-l,2,...p+1 are independent of the p unknown parameters 8j. The parameter
values which minimize .9(O) can be found explicitly using linear algebraic operations [14). The dis-
advantages of the equation error minimization method arise primarily from the requirement for very accu-
rate measurements of states and controls. States will inevitably be measured with some error. No meas-
urement at all may be available for other states.

2.3.2 Output Error

Output error minimization methods, like equation error minimization methods, estimate unknown
parameters by choosing them to minimize a performance index. The dynamic system must be represented as

dx/dt - f(x, u, t, 0), x(to) g(O) (3)

y = h(x, u, t, 6) + V (4)

where 6 is . set of p unknown parameters and v is a time-varying, unobservable, additive measure-
ment error. The performance index Yo(0) to be minimized is

m
g mo(O) [Yi- Y(t 0)] 2 (5)

yi is the observed system output at time ti. y(ti, R) is the system output y predicted

foic time ti by solving the system state equations and measuiement equations using the measured sys-
tem inputs u(ti) and the a priori parameter values 0.

The effective use of the output error minimization requires the very accurate measurement of system
inputs u and the measurement of system outputs y. The method will tolerate errors in the measurement
of y

The term v is a stochastic quantity which represents instrument measurement errors, e.g., analog-
to-digital quantization noise.

The special advantage of the output error minimization method, with respect to the equation error
method, is that the measurement requirements are greatly relaxed. The method does not require the accu-
rate measurement of all state and state derivatives. Rather, it is effective asing noisy measurements
of the limited number of outputs that are available.

The actual determination of the parameter values 0 which minimize the performance index Y0(O)
is computationally more nomplex than the minimization Ye(0 ). This is because .9'O(0) is a non-
linear function of the parameter set 0. Finding the minimizing parameter set requires an iterative
numerical scheme [15, 16]. The application of such numerical methods is often not straightforward.

The principal disadvantage of the output error minimization scheme is that it does not explicitly
allow for the presence of unmodeled disturbances in the state dynamics. Such disturbances are represen-
ted in the equation error method by the term w. "Process noise" is the term often used to describe
these unmodeled effects.

It should be noted that the output error method can account for system dynamics disturbances of
unknown magnitude if the form of these disturbances is accurately represented. The disturbance w must
be explicitly represented as

w - w(t, 8) (6)

The unknown elements of the disturbance are represented using part of the unknown parameter vector 0.
One might estimate the horizontal plane components of a steady wind present during a flight test, for ex-
ample.

2.3.3 Combined State and Parameter Estimation

Methods which combine state and parameter estimation are required if significant levels of both un-
known, unmodeled disturbances and measurement errors are present in the system under study. The perfor-
mance index used here is very similar to the output error index 20o( ). However, the estimated
outputs y are now direct functions of the observed outputs y. The performance index is

M

( [y1 -" Y(ti, 0, y)] 2  (7)
i1l

The estimated outputs are determined using both the system dynamic equations and the observed values of
the outputs themselves.

Methods for the determination of 9 given measurements y and an assumed form of the system dyna-
mics have beon widely studied under the topics of state estimation 117] and linear system observation
(IS). The use of the Kalman filter to estimate y in the modified output error performance index
A leads to "maximum likelihood" parameter estimates (191. The procedure requires that Yg be
evaluated as a function of 0 using the Kalman filter to estimate j. The parameter values are



estimated by choosing them to minimize Ys( (0) using a Gauss-Newton method (20]. The use of this
maximum likelihood estimation procedure often allows the estimation of system noise levels as well as of
parameters describing the physical plant.

2.4 Some Practical Considerations

This section briefly discusses a number of practical considerations which should be taken into
account in an effective system identification data processing scheme.

2.4.1 Assumptions Regarding Measurement Noise Statistics

A common problem is to assume that the measurement error should be modeled as a Gaussian white
process when in fact systematic errors such as bias and scale factor exist. Systematic measurement
errors will usually cause larger parameter estimation errors than random noise errors of the same root-
mean-square level. A very common scale factor found when dealing with any instrument using electronic
pickoffs is -1.0. This is due to simple polarity errors made when installing the instrument. Reference
ii covers methods of assessing the relative significance of systematic measuiement errors and random
measurement errors.

2.4.2 Number of Independent Parameters In The Model

Problems can arise from an attempt to fit too complex a model to the available data. The chief
symptom of this is that a large scatter of estimated parameter values will be seen if several datj acts
are used independently to estimate values for the same parameter set.

2.4.3 Extrapolation of Results

An xdemtified model should not be used to predict system behavior for operating regimes far beyond
those encountered during data collection. Operating regime predictions should be limited in both input
bandwidth and amplitude to those tested.

2.4.4 Excitation of All System Modes

This problem can be avoided by careful choice of inputs during the test planning stage. A second
solution is to process multiple maneuvers simultaneously which contain different control inputs. By
doing this, the required modal information is extracted from a set of simpler maneuvers, rather than one
complicated maneuver.

2.4.5 Effective Use of Sequential Data Processing Schemes

System identification data processing requires the computational steps of model structure deteruin-
ation, parameter estimation, and model validation. An additional preliminary step of prefiltering seas-
urements may also be required for effective use of an equation error parameter estimation method. An
effective overall computational scheme may require that the operations of prefiltering, model structure
determination, and parameter estimation be carried out in a sequential rather than in a more nearly
simultaneous manner. Care must be taken to ensure that the algorithms employed at any given state do
not remove critical information from the data. As a simple example, the bandpass of a noise prefilter
should be higher than that of the modes of the system to be identified.

2.4.6 Process Noise

The term "process noise" refers to unmodeled factors in the state dynamics of the system being

identified. Sources of process noise include;

(1) unmeasured environmental disturbances - wind gusts acting on an aircraft, for example.

(2) unmodeled nonlinearities or degrees of freedom in the state dynamics, and

(3) errors in measuring input signals.

The effect of process noise is usually, but not always, to degrade estimation accuracies. If measure-
ments of system states are highly accurate, then the process noise becomes the major source of astima-
tion error. Under some circumstances, process noise in the form of unmeasured environmental disturban-
ces can improve estimation accuracy. The environmental disturbances might excite modes of the system
which are not excited by the known input test signal.

The relative significance of process noise in an identification effort 4epends roughly upon the
ratio

r RMS(process noise)/314S(known inputs) (8)

where .MS( ) refers to the root-mean-square state excursion due to the indicated source of excitation.
If r is large, then the process noise is significant. If r is small, then the process noise is not
significant. It is difficult, however, to specify a value of r indicating the boundary between signi-
fithint or insignificant process noise levels which will be valid for all systes.

Effective system identification methods exist for use when available data contain process noise.
The equation error formulation is preferred if all system states can be measured or estimated accur-
ately, otherwise the formulation combining state and parameter estimation will be required.



2.4.7 Initialization

Many parameter estimation formulations require the iterative, numerical solution of nonlinear equa-
tions. The output error and the combined state and parameter estimation formulations fall into this
category. Iterative numerical algorithms require initial estimates of parameter values in order to
begin execution of the first iteration. Inaccurate initial estimates may cause

(1) convergence of the estimation method (which usually employs some form of performance criterion
minimization algorithm) to a local minimum, or

(2) divergence of the estimated parameter values as iterations proceed. Divergence may occur, for
example, if the values of the initial parameter estimates cause an instability in the dynamic
system model.

An effective way to obtain initial parameter estimates for starting iterative algorithms is often
to employ the equation error estimation formulation. As noted in Section 2.3.1, the equation error
formulation usually requires only the solution of a linear set of algebraic equations in order to obtain
parameter estimates. Such equations may be solved without a priori parameter estimates. An effective
tvo-step parameter estimation procedure is

(1) estimate initial parameter values using the equation error formulation, then

(2) refine these estimates using eihher the output error or the combined stAte and parameter esti-
mation formulations.

The values of parameters estimated using the equation error formulation are sensitive to errors in meas-
uring states (measurement noise). However, the parameter estimates calculated using an equation error
criterion even with data corrupted by measurement noise are often sufficiently accurate for use as
start-up values for iterative algorithms.

2.4.8 Numerical Methods

System identification algorithms engender a variety of numerical mathematical requirements. Table
2 lists four ,r these:

0 solution of differential equations,

* solution of linear algebraic systems of equations,

* solution of least squares problems, and

* minimization of general nonlinear multivariable functions.

Effective methods to handle these problems range from the classical systematic elimination method of
Causs 1251 for the solution of systems of linear algebraic equations to more recent developments in the
solution of linear least squares problems [26).

An important consideration in using any of the methods of Table 2 is that of numerical condition-
ing. Numerical conditioning refers to the sensitivity of the output of a numerical algorithm to small
than&es in the input to the algorithm. For example, assume that in solving a system of n linear equa-
t tlone

Axn b.

the matrix A is known exactly, but the vector b is subject to uncertainty 6b. The norm of the re-
sultinS uncertainty in 6x,
x. is bounded by 1251.

I•616 11l [• i (9)

71XT -T .hi11bi

"whefr u is the largest eigenvalue of and iin is the

smallest eigeovalue of AAT. The quantity

CoMd(A) WU (10)

is called the condition number of A and is always greater than 1.0. Similar bounds for solution son-
sitivities exist for least squares parameter estimation problems (261.

The condition number of a numetical problem can give insight into the precision required to obtain
acceptable adcuracy of solution. The uncertainty 6b, for example, might be due to rounding due to
finite precision in computer tword length. If the condition number of a problem is 106, then eight
significant figures of accuracy would be required to maintain 11 accuracy in the solution.
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3. RECENT TECHNIQUES FOR THE NONLINEAR AERODYNAMICS PROBLEM

Methods for the maximum likelihood identification of linear state dynamic models are well estab-
lished [29]. Such methods have been applied to problems of linear modeling of aircraft aerodynamics
using flight test [22] data. These methods are sometimes applied in a piecewise manner to fundamentally
nonlinear systems.

The intrinsic nonlinear nature of aircraft aerodynamic models may inhibit the effective use of
linear identification methods. For example, if a limited amount of data is available, it may not be
possible to identify many linear perturbation models. A single nonlinear model may have fewer total
free parameters. Also, excursions through the nonlinear portion of the model's dynamic range may be so

rapid that no single linearized model can represent a significant portion of the trajectory.

The use of a nonlinear model may be required if the goal of the analysis is to determine which one
of several competitive phenomenological mathematical models best fits available data. A "phenomenologi-
cal" model is one that is constructed from fundamental physical principles. Such a model may have a
very complex form mathematically but may have a minimum number of unknown coefficients.

There are certain computational difficulties associated with the use of a nonlinear dynamic model
in a -maximum likelihood parameter estimation algorithm.

(1) Calculation of Sensitivities. The estimation of parameters through the use of the maximum
likelihood criterion requires the maximization of the likelihood of the data with respect to the unknown
parameters. The determination of the maximizing parameter values requires numerical optimization tech-
niques. The most efficient of these [27] are descendents of the Levenberg-Marquardt nonlinear least
squares method [16,30]. These algorithms require the evaluation of the partial derivative of modeling
residuals with respect to parameter values. This partial derivative is often called a "sensitivity".
The calculation of these sensitivities is not difficult in principle. They satisfy differential equa-
tions which are closely related to the system dynamic equations, but which contain terms based on the
algebraic partial derivatives of the dynamic equations (see Section 3.1). The difficulty is one of
practice. Any time that the structure of the nonlinear model is changed, then the sensitxvity differen-
tial equations must be changed also. This requires tedious algebraic differentiation of the modified
dynamic equations.

(2) Evaluation of Covariance of Parameter Estimates. A parameter covariance matrix can be esti-
mated using the Cramer-Rao bound [31]. The most common use of this bound assumes that the errors in
predicting the response of the system are due to an additive, white (negligible autocorrelation) random
process. If the analyst also desires confidence intervals for parameter estimates, then the additional
assumption that the errors have a normal distribution must also be made. These assumptions are commonly
violated when a nonlinear system is modeled. In particular, the whiteness assumption is typically vio-
lated.

(3) Generic Model Structure. There is a need to represent nonlinear functions of several vari-
ables in the model used in the identification algorithm. Ideally, a single generic form should repre-
sent multidimensional surfaces of arbitrary shape. These functions represent total aerodynamic force or
moment coefficients as functions of angle of attack, angle of sideslip, and angular rates.

3.1 Problem Definition

The dynamic system is modeled as nx first order nonlinear differential equations.

ý . f(x, U, W, t, 0) (11)

having an output measured at discrete times tk

y(tk h (x, u, tk )+v() (12)

Here

x nx component state

u - nu component inputs measured without error

Sa nth component unknown parameter vector

v is a nv component random Input (process noise source) having statistics

E ( 0) = O (13)

E [ (t) V T(tj) Q (t) 1 (14)

The scalar v (tk) u vk is a random measurement error having the statistics

I (vk) 0 (15)

2
5 (va) * r (16)

Note that the assumption of scalar measurements does not cause a great loos of generality. This formu-
latioix can accomodate multiple sensors simply by assuming that Lhe interval between measurements is



sometimes very small. The only loss of generality regards the representation of correlation of measure-
ment error between sensors.

If we assume that the stochastic quantities have normal distributions then the joint density or
likelihood function of a sample of nt measurements Y (tk) ' Yk is

•(YI' Y2)"... Ynt ;-P)

e n - ) ( /k -
k n 

(17)
k-l (2n)1/2 (k()

An extended Kalman filter [17] can generate both the measurement estimates yK and the measurement
uncertainties OK. The estimate of 6 having the smallest variance is the one which maximizes Y(Y;
0) with respect to 0. The maximization of .Y is equivalent to the minimization of the negative log
likelihood function given by

-log W(Y ; ) (18)

I nt 2 2
2 El[yk y(0 /a 0 2 log

Note that if the Ok are known, then the minimization of -logYcan be treated as a nonlinear least
square problem.

Aspects of this problem addressed here are the following.

(1) The minimization of Eq. (18) with respect to 6 requires the use of an iterative numerical
procedure similar to a Newton or quasi-Newton method. If the ok are known, then the most effective
procedure is that of Levenberg and Marquardt (16,30]. A drawback to the Levenbets-Marquardt method is
the requirement for the evaluation of ay/he. Direct analog finite difference methods 1321 avoid this
problen by approximating the partial derivative by a finite difference. Section 3.2 extends the finite
difference analog of the Levenberg-Marquardt procedure to the more general form of Eq. (18).

(2) Validation of an identified model should include the determination of confidence intervals or
variances for estimated parameters. These may be estimated using the Cramer-Rso bound, which states that

E(6 - 6") 6 - e*)TI > M-1 (19)

where M is the Information matrix, given by

lij - -[32 (og W(z ; 0)/•00 30] (20)

and 1. is the true parameter value.

Experienced analysts in the system identification field are aware that the Cramer-leo bound is usu-
ally optimistic (33). That Is, it tends to predict parameter variances which are very Mall in compari-
son to variances observed among estimates derived free multiple data sets. The moot easily impltemttd
expressions for the information matrix assume that the measurweent errors are not eutocorrelat*e. If
sutocorrelatlon is accounted for, then the Cramer-Rao bound more realistically approximate$ the true
parameter variance. Section 3.3 outlines methods based on principles of gentralited least squares which
automatically account for first order autocorreletion of messurements. This method produces parameter
estimates which have a lower variance than those which do not account for autocorretation.

(3) Nodeling nonlinear serodynamics requires the representation of nonlinear fuctions of several
variables. Por example, pitch moment of an aircraft is a noalineat function of angle of attack m.
angle of sideslip B, pitch rate Q, and elevator angle 61.

C C R(e,8Q,6 ) (.1)

Much work in the identification of these functions has been based on their representation at maltidimen-
sionel polynomials (341. This approach is effective for local models. A local model is one that is
valid over a restricted region of the flight envelope, say for an a interval of 100. Such models
often use expansions for functions like Cm in the states of degree no higher than two. The repre-
sentation of a global model using polynomial expansions may require very high order polynomials. The
representation of a pitch moent curve for one particular aircraft through a 400 angle of attack
region requires a ninth degree polynomial (351. Section 3.4 indicates how the use of local, low degre
polynomial models leads very naturally to a apline formulation for a global model.

3.2 Derivative Iree Ninimisatioa of tha Negative Lo Likelihood function

Finding the parameter values 6 which mitimite tq. (18) requires the use of a nwmerical opttime-

tion echtse. Typically, each iteration of the algorith umaeaeo 0 as
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where 40 satisfies

me_- -IL (23)

g- logy(y, t_) /he (24)

and H is defined in Eq. (20).

Differentiating Eq. (18) gives (351

itI 2 2 2
g EEk O~v(3k bet - V k(3a k /38.)/oak-11

1 2 heo 2/• (25)
O2k i

ntnj . - [ (3 3/a0))((3•/2 (26)
f1 kPO i)(3 vk )/Ok (a3k k /26)

kal

-()V k3e )(302 / 30i) Vk(3O /36 (30 /aej)

"*ok(a h/e ieJ) -vk (a a k/2 0 4j) vk/ok

-I(30 2 /30k )(30 2 /06 )/,j4  (a 1(2 a2/3 30j)o k
kc i k~~ k Ij

where Y 4 -yk (0). (27)

Following the spirit of the Levenberg-Harquardt method, we simplify the expression for the Hessian by
dropping the terse proportional to vk. If the model fits the data well, vk should approach uero
near convergence. With the exception of the last term of Eq. (26), it is now possible to evaluate both

gradient and Hessian if only the first-order sensitivities v and OZ to changes in 0 are known.
kc k

It to possible to derive analytically ordinary differential equations for ýv /30 and 3o20e,

When the plant dynamic equations are linesr, these differentia| sensitivity equations (also celled "sen-
sitivity oqtetiono") have a particularly tiempletom l36m. When the plant dyniaf e re nonlineart hon-
ever, a auch wee priacticel method is to abproxiteac the partal derivativta ith finite difftm cea.

+k

partial deritvativee of a (0) art approximatQ4 similarly.

Th 'direct ,nsloa" 1321 type of oftioitstioo algorithas use the finite difference approximation•s
to the pa~rtial derivatives iso dirt tubstitutoo for the partial derivatives. Those algorithms haer

been stAuiod esretully for the solution of the nonlinear least aquare prowlem and have been found to
have Convergence proqirtiet nearly identical to algorithms which use analytic expreesions for the aenci-

Altmerte methods for stiimitatioa of the n•gative lot likelihood function without evaluating de-

rivetiwvel ue allosth"S wbicA at* not direct of derivative methods. We have teted one of
these ethodt (37) in a Moelincar system idestificetioe elCoritbs and found it to be nat as effective as
the direct aralog method.

to practicel isl4e.ntations of the finite difference method for the solutimo of system Identiftica-
tion problems, Ve typically simsltaencusly solve a set of rim minel state equations together with ath
sets of am perturbed parvmeter state equations. ?%it to required ti order to implement the one-sided
sepproaemtion to the seatriivity givean to q. (26).

The lost term of Eq. (26) c4aot be eliminated by assuming that vk is mall near the miniwma.
Th teem cesert be coematnicted ftrm first order partial derivatives of v and o2. It can be
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estimated, however, using methods similar to those employed in solving large residual nonlinear least
square problems (38]. This topic will not be treated in further detail here.

3.3 Autocorrelated Measurement Errors

It is desireable to determine the expected accuracy of the parameters estimated from flight data.
The usual method for doing this is to compute a parameter covariance matrix as the inverse of the Fisher
information matrix M.

K Methods of generalized least squares (39] indicate expressions for parameter estimation covariance
using the assumption that measurement errors are autocorrelated. This autocorrelated process is the
output of a first order difference equation driven by white noise. Not only parameter covariances but
also parameter estimates themselves are altered by the sutocorrelation assumption. An estimation aIgo-
rithm which does not explicitly account for the measurement error autocorrelation will still produce un-
biased parameter estimates. However the actual variance of such estimates, as opposed to the Cramer-Rao
predicted variance, will be higher than those produced by an algorithm which does explicitly account for
autocorrelation.

We consider here only the output error case (no process noise) of the maximum likelihood estimator
for dynamic systems. The estimated measurements y are functions of the unknown parameter set 8. The
information matrix H is given by

M= I jT (30)o2

where J is the matrix of sensitivities

J "y(e,tk)/Me (31)

for the case of white measurement noise. Iterations of the identification algorithm solve

MA O -• (32)

where

ljT (33)

Vk y(tk) - ;(tk)

The covariance of the measurement error is a diagonal matrix

T 2 (34)

where vk- v(t k , the measurement error at tk. (35)

Mow suppose that the measurement errors have a nondiagonal covariance matrix of

T 2 (36)

For a purely linear estimation problem. (i.e. y - JO + v), the "generalized least squares" estimate
of 0 satisfies D391

T -1 T -1Ijiv J) ] J (vvJ) (37)

The covariance of the parameter estimates is

E ((0 - •)(0 a VeT • 2 J~v )"- Vat(O) (38)

Any other linear, unbiased estimator has a covarionce matrix which exceeds that given in Eq. (38).

If the noise vector v is generated by a first order autoregressive process

V(tk) P ov(tk) * k (39)kt k-i kt

where Ck is a sers smen. constant variance process, then V has the form

pn-I
9 n-I

v- I pn-2

V P 2 0 . n-3 (40)

0nl 0a2 0n-3 .1
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The inverse of V is V p P where

_P• 0

P 0 -P 0 (41)

1 0 -p2

0 . . -p 1

The generalized least square estimator for Q can be easily implemented by writing Eq. (37) sa

((p J)T(p J)] 6 - (p j)T p (42)

The multiplications P J and P y are simple because P is sparce.

For application to the o~itput error system identification problem, a nonlinear least square prob-
lem, Eq. (42) is applied to parameter variations A. on each iteration of a successive approximation al-
gorithm.

(p j) T (pJ)te _ (P J) T { -A(e) I (43)

If P is unknown, then it can be estimated using

nt - 1
Z (tk) (tk+l)

_• _ k=_nt - I (44)
nt 2 nt - nth
E v (tk)

Each iter.•tion calculates a a6 value using P evaluated by Eq. (44), with v (tk) calculated
from 6 at the end of the previous Iteration.

If the measurement noise, 02, is unknown, it can be estimatod using

I (P)-•(PV) (45)

nt- nth

The covariance of the parameter estimates is

Var(O) - - ( Pv) (Pv)[(PJ)T(PJ) 46)
nt- nth

where

iw I - p

3.4 Spline Nodel Structure

The determination of a nonlinear, quasistottc aerodynamic (or hydrodynmsic) model raqufte. defini-
tion of a coefficient function havirg a gsneral form

C " C(u. 5, _', _, It, F N) (43)

'I



where a and 6 arc -elative flow angles, wl is a ditzensionless angular rate vector, 6 is & con-

therodl vetoru, an R,. Pr , and M are th~e dimensionless numbers of Reynolds, Froude-, and Ksch.
pre obele of utu determination problem for identification of aerodynamic models usually refers to the

prbe fdetermining a mathematical form for this multivariable function.

Splinte functions are effective ways to represent these coefficient functions. A one dimensional
spline function is a riecewise polynomial function having certain continuity conditions between pieces.
FgSure 4 illustrates a one dimensional cubic spline. C(Q) might represent pitch moment as a function
of angle of attack. C(Q) here is a cubic polynomial on each of the three regions indicated. The func-
tion is everywhere continuous and has vontinuous first and second derivatives. The points Cý, Q2,
(13, 04 are called the knots of the spline.

The spline function has several properties which make it an effective interpolating function 1401.

(1) The spline in figure 4, for example, is uniquely determined once the values of Che function at
the four knots are known and certain end conditions are specified.

(2) The shape of the interpolating fenction is not overly sensitive to the furtction values at the
knots. Small changes int these values do not cause overly large changes in interpolated function values
between knots.

(3) The interpolating function COn) has an optimal smoothness property. it is the unique fune-
tion which interpolates the specific values at the knots. has the continuity conditions listed above,
and has the minimum mean square curvature.

Spline function representation of nonlinear aerodynamic or hydrodywiamic coefficient functions may
be readily identified using either maximum likelihood, equation error or output error techniques. The
analyst mujst specify the number of knot* and their locations. The parameters to be identified are then
the function values at the knots. The identification of the do) curve in Figure 4 would require the
estimation of four parameters.

In Figure a, the coefficients Cj - C4, are the function values at the knAot locations l
04. These coefficients art the parametervi which will be ectivated by the identification algorithm.
The piecewise cubic polynomioal i(Al KA4 provide cubic intorpolastion of C1  - C4  for ai in

terange I~l. v)4 and linear extrapolation for ai outside this range.

E~ach of the piecewise cubic polynomials is defined over the entire range of t--14' 6- 1. The
fucin C(4) is a lit~tor combination of the KMi baste functions. The deinitionts of KMi ar

Ai~

This makesj the coefficients in the linear combintwion *quil to zho Cj values, Twe afrry in figure 4
Weines the KAI functio"s over the five -3 regtions.

The identification of splint function* is isost effective VhQn "ottl with atriv~tivo free method. to
mlnuisiiae the negative log liktelihood futwtioit. Such mehods do not rvqaire the explitit taltulation of
the sonstiii.ity of the spline fwnctigm to chfingea in the parseators which define the splint. 'Me only
requireaent is for the tvaluatieA of the splint coefficiento givoin ftloctin VAlNe. at the knoots. and for
the evaluation of the funCtiOn at int#etqsdiste points tiven the spline coeffitciorts. fach iteration 6f
the "direct sans-ng method requires the evaluation of 040e iaoovotioas (thl got nominal end for per-
turb*d parameter values,

Kethods *mist for the use of moltidiesssiattal spline functions to tepresont *tooth sturfaces t41).
Intermediat, methods at* *lt* useful. Azi i oooe4ist meth"l represents variation- of -,unctiont in one
dimeotio" with a splint function &ad r'epeeeeMtotioa in otwer dimension.i with 9t40r types of functions.
such as low ardor polynomials.

4. UXAYW1. APPLICATIONI

The result* presen~ted in [his Paper demonstrate. the o¶petiatlO status of noalinear systeo idonti-
fIcatIOn% data processivg techn~iques. Agrody*6mic, mestalled thrust, a" flight test iermnais
Calibration models are iWeatifi*d for the P'4S from 6> mtateWonre wic~h onocoWWaased a largeo tst'*e in,
angle of attack, aldeslip. airrpoed. control inputs, and booy rototion rates. The caspabilitV for Wdant-
tifyito nonlinear aerodynamic models Iis a foeust cma~tible with prefllight Prellctiong is demOstrated.
A methodology for determifting the accuracy of the Parameters eseimetos is Pre,.eoted.

4.1 1-4& Flight: Tat Iprorams O"Tvervi

The* 1demtificatiom results presented iWI this section Art based on a flight teot program planned
specifically for the Vollectiom of data f'31 i-A.Itificsitioei. Te soet objective of the flight toot pro-C
&tam v-4a to ge%*rate tesl. data which cou:5 be used to develap *ad validate nonlinear systemi ideatifice-
tion analysia techniques. The laval Me 'fast Cmttev CKATC) -43 aircraft (IRono 2"4). so V-Q wicb eao
b"4~ modified to include a uamvoriveln flap/osat system. Vas the test sirt~raft.I TIe airborne data acquisition systems used fot the flight titne program iscludod a 3-sasi rate WyO.
a vertical gyro, a directional gyro, engine ONP and fuIl flow wessurtamsts, a )-axis liswar acceleirom-
ster. control surface .)efl9ttiocte iasureafeta 'h a West airdta system. The mirdata syatem uses a
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noaeboom which has a pitot-static head for the measurement of impact pressure, static pressure and temr-
perature. The noseboom also has vane: for measurements of angle-uf-attack and sideslip.

The flight test program was conducted in a clean configuration vith the throttles fixed for each
maneuver and with flight near and beyond stall. Test conditions were generally initiated from wing-
level, constant altitude flight with a 100 and H '1 .6. For some test conditions, the pilot ap-
plied variable oft stick to maneuver the aircraft through the desired angle-of-attack test range. For
some of the stall entry conditions lateral stick and/or pedal doublets were combined with the longitudi-
nal stick command. Other maneuvers included single axis and multi-axis sequenced doublet *nputs. These
inputs were made by the pilot and were not intended to be repeatable nor precise with regard to their
spectral characteristics, but were generally effective in creating large-amplitude motions. The overall
test goal was to force the aircraft through a broad range of test conditions. The level of excitation
of primary test variables achieved during the F-4S flight test program is suiarized as follows:

* Angle of attack: -10 < a z 400

* Sideslip: 161 < 18°

* Mach No: M :. 6

0 Rotational sates: JP1 9<°'/S. IQI 20'/S. JRI 25°/S

* Full amplitude control inputs

4.2 Kodeling Approach

The approach selected for modeling nonlinear aerodynamic characteristics produces system identifi-
cation results that can be used to validate preflight estimated aerodynamic mudels. The models are used
for flight simlatort and for making predictions of aircraft performance, stability and control charac-
teristics. These aerodynamic xodels must account for thr effect of a nuwaber of flight coneition and air-
craft configuration variables. The "art" kn formulating the models is to represent the total aerodyna-
mic coefficient by an incremental buildup. vith each increment described by one or two independent vari-
ables. This process is illustrated by the folloio4 e•xalt for the relliUng mosnt coe.fficivat equation,

(1) Select the independent variabl*sz

i.e., tolling mont ce-effiejeet is a function of W4l1 of attack. sideVlip, roll sad yeV rate,

ru4der ead ailoron position.

(2) Portitioa Indepondeit variables into reasonable groupa,

C .ci 4CSIM0 C'm sc 4 *U

()) Selett battl0l rtlatiouasipo for eath Lit•op:

"C l (a) •

4C f((i, I) 1 (( U)

- ctp(1l(•( /l V-) * Ct (4)(1b /l VT)

i " ¢t (a6).l

IAI•IM

"" C A
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For this model formulation, each of the stability derivatives, (i.e., C8 ) is modeled as a non-
linear function of angle of attack. By using a cubir interpolation spline, as escribed in Section 3.4,
the parameter identification algorithm solves for Ck at specific values of angle of attack (i.e., the
knots of the spline). This procedure is illustrated 'n Figure 5 which shows the identified variation of
C with angle of attack. For the F-4S parameter identification study, C• was identified for a -
50, 150, 250, and 350. The lower four parts of Figure 4 illustrate th variation of the inter-
polation splines with angle of attack.

Because these interpolation splines are scaled by the appropriate value of C (i.e., the a - 50
spline is scaled by the value of C, for a = 50), the summation of the four interpolation splines de-
fines the value of C% for any value of angle of attack. It should also be noted that each interpola-
tion spline has the value of C9. when a equals its knot value, and it is zero for other knot values.

The spline formulation is suitable also for representing installed propulsion system performance
models and test instrumentation calibration factors. As demonstrated in the next section, more compli-
cated models can be represented by a bicubic spline formulation.

4.3 System Identification Results

The results presented in this section demonstrate the capability for identifying flight test in-
strumentation calibration factors, performance data including a model for net thrust, and stability and
control characteristics from a comeon set of flight test data.

The aerodynamic models are generally represented by a cubic spline. The aerodynamic parameters are
identified at four specific vtlues of angle of attack (i.e., a - 50, 150, 250, 350). The aerody-
namic estimates are expected to be most accurate in the 100 < c < 300 range due to the density of
test data in this range (see Figure 6 which crossplota a vs a for every quarter of a second for the
six maneuvers analyzed).

A common format is used to present the identified models. The estimates are defined as a solid
line. Wfhen cubic splines arc used to represent the parameter, the solid line represents the cubic
spline interpolation between each of the four knots. The identified parameters are noted with a solid
circle symbol. The parameter estimation uncertainty is shown by dashed lines on either side of the es-
timate. The distance between the solid line and the dashed lines represents the 20 uncertainty of the
estimate. Preflight predictions are illustrated by a solid triangle symbol.

The validity of the parameter estimates can be established from three different considerations.

(1) Engineering judgement: are the estimates reasonable from the point of view of general agreement
with preflight predictions?

(2) Estimation uncertainty: what is the magnitude of the + 20 bands about the estimate?

(3) Prediction accuracy: How well does the identified model predict flight test measurements for many
test maneuvers? Does the identified model predict these measurements better than a model based on
preflight parameters?

4.3.1 Flight Test Sensor Calibration

Figure 7 summarizes the types of error terms considered for the accelerometers, rate gyros, verti-
cal gyros, a/B vanes, and the pitot-static impact pressure measurements. These errors represent system
lev.,l errors in that the contributions from separate sourceu (i.e., PCM calibration, sensor installation

Sand sensor performance) generally cannot be identified. For example an identified scale factor error
fo: an alpha vane could be due to upwash and/or PCM calibration errors. On the other hand, initial
errors for the vertical gyro, which vary with test condition, are probably due to verticality errors
resulting from the erection circuit. Thi identified instrumentation calibration models for the NATC
F-4S are presented in Figure 8. All instruments required some correction and the roll rate gyro signal
was found to be unusable. As a result, a roll rate signal had to be reconstructed frCom vertical and
directional gyro aeasurements.

4.3.2 A.erodynamic and Thrust Models

igures 9 through 12 present F-4S parameter identification results that illustrate the extraction
of patameters for both thrust and aerodynamic models from a common set of flight teat data.

Figure 9 illuoteate. the identified model for net thrust and the drag polar which has been recon-
structed from models of CD and CL as a function of angle of attack. The model for net thrust was
def-ned in aerms of A linear relationship betweeen corrected net thrust and corrected fuel flow. The
difference between the identified and preflight models for corrected net thrust is a bias in fuel flow
of 58 lbs/bra based on a pressure altitude of hp a 30,000 ft. The accuracy of the flight teat fuel
flow sensor is 150 lbs/hr. The identified drag polar matches the preflight polar shape In terms of
CD~lt;- (CL/CD)MA 1 and CtL..

Figure 10 presenPe stabliser, rudder and lateral control power estimates as functions of angle of
attack. The flight derived .ontrol power estimates show good agreement with preflight data in terms of
trends with angli of attack with slight dIfferences in the actual value of the derivative. The uncer-
tainty of the lateral con~krol derivatives (0CZ and Cn ) as shown by the fanning of the +20 curves is

a aA
due to the lack of iatgal oo'trtl excitatLon at low and high a. In general, when the uncertaitty
boundaries are large fot or•e rarte of the flight reglme, this infortation can be used for planning
additioaal f'ight test aoarvttoaa.
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Figure 11 presents the identified variation of 'pawing meo.entcoLeffic:.ent (en) with angle of
attack and sideslip. Values for C1, and Cn atýe obtained trom the C,, model at 9 , 00. Cn
was modeled by a bicubic spline with specifig values, identified for .1 - 0, 150 250, 350 and B
60, 120 and 180 (C1, - 0 for - 0). A bicubic spline was selwected for the C1, model due to the
expected nonlinear variation with angle of attack and sideslip.

Identified values for roll rate and yaw rate stability derivatives fr-r the F-4S are presented in
Figure 12. Good agreement is evident between preflight pred4ictiot- ay.d ic~eutified values for Cn and

(for ai < 30 ). The identified value for C1, is much greater thers the preflight predic tion,
alpthoug'h both are independent of angle of attack. significant difftrrences exist between identified and
predicted values of Cie for CL > 200.

4.3.3 Flight Measurement Predictions

The ability of the identified aerodynamic and net thrust mcodels to reproduce flight test measure-
ments for the six test maneuvers is tabulated in Figure 13. Figure 13 summarizes the root mean square
residuals between the flight test measurements and estimates of the measurements. The predicted meas-
urements are generated from a simulation of the F-4S based on the identified aerodynamic, thrust, and
instrumentation models. The simulation is run with actual flight test time histories of the control
comands.

To gain some feeling for the relative worth of the identified model, the F-4S simulation was con-
figured with the preflight servolynamic data and rut, with the flight test control inputs. The resulting
measurement residuals are also Presented in Figure 13. In all cases, the identified model provides a
better explanation of the flight test measurements. Figure 14 compares the time histories of the flight
test measurements, predictions base-d on the identified model and predictions based on the preflight
model for one of the flight conditions .,nalyzted,

S. SUMMARY

(1) The integ~rated system ioentification technology encomp~asses teat planning and on-line data consis-
tency testing, as well as data processing.

(2) Effective systeem identification ditto processing often requires independent model structure deter-
mination. parameter -tim-2tion, and mhodel v~lidta~iott steps.

(3) When working 11 .llnrear systoes, t~.e sensitivity functions needed in order to apply iterative
estimation algorithms can most effectively be ýýalculated using finite difference approximations.

(4) Autocorrelatlon of measuremtent errors significatntly affects parameter estiutation covgriance.

(5) Spline functions are useful for the represena-etion of nonlinear functions a.ur~ing tha identificati-an
process.

(6) Nonlinear system identification data processing techniques can be used to identify aarodynasxic,
propulsion system and instrumentation calibration models from 4 common set of flight test conditions.

(7) A single aerodynamic/net thrust math model is identified far the r-45 from six differenti flight
conditions. The identified mathematical model predicts the ser.por maaaouenento fof the six flight con-
ditions which encompass a large rang* in angle of attatk, sid~slip. &lral'ed.d cootrol inpfuts and body
rotation rates. Aircraft response predictions are improved with the identified model relative to pro-
diction based! on a preflight model.

(8) Extraction of performance, stability and control, and high angle of attack- charac teisatice froe at
single model has been illustrated.

(9) The capability for identifying nonlintiar' aerodynamic modal# in a, forest compatible with preflight
predictions has been demonstrated.

(10) Dynamic test techniques, which require nonlinear tystem identi fication date processing tehniques,
car. imprtvt test productivity. The results presented in this paper atte based on lass than 300 *econds
of flight test time.

1. Holl,Jr.., il.., "Sysotm Idw-tt ifClat ion-An Overview," Naval Research Reyte-was, Vol. 30, No. 4 April
1977. pp -.

2. Oostevsono I.. 'Surv~ey of Applications of Identification in Chtmital and Phyaical processes," Po
ceedings of tbe 3E! IEASL Sysmasiu The *Hague/Deift, The Netherlands, 12-15 June, 1973, pp 67-85.

3. osceyses, A., Jacqdot, A., "Applications of Identification Nethodo in Power Generationt and Distribo-
Lont," Piogistdings of S'e 3rd 1IAC SIuosiva, The UstsuelDelift. The Netherlands, 12-15 Ju%* .973. pp

.1107-1121,

4. Do ltotf, RL., el~eatification of a SM li ropuloken Plant Model," J, of, Cuidoan 'and Co~t t, Vol.
2. -No. 3, Nay-Junt 1979.

5. lehlty, G.A., flenktn, J.Z.V., "Tdootific-atbou of Biological Systems: A Survey," Aut~qeica, Vol.
- 14, ti.1, Jan. 1978. pp 41-47.



7-09

6. Chow, G.C., "Identification and Estimation in Econometric Systems: A Survey," IEEE Trans. on Auto-
matic Control, Vol. AC-19, No. 6, Dec. 1974, pp 855-861.

7. Gersch, W. , and Foutch, D.A., "Least Squares Estimates of Structural System Parameters Using Covar-
iance Function Data," IEEE Trans. on Automatic Control, Vol. AC-IS, No. 6, Dec. 1974, pp 898-903.

8. Willsky, A.A., "A Survey of D*asign Methods for Failure Detection in Dynamic Systems," Automatica,
Vol. 12, 1976, pp 601-610.

9. Gupta, N.K., and Hall, Jr., W.E., "Methods for the Real Time Identification of Vehicle Parameters,"
Technical Report No. 4 under Office of Naval Research Contract NOOOI4-72-C-0328, Feb. 1976.

10. Gupta, N.K., Hall, Jr., W.F., "Input Design for Identification of Aircraf. Stability and Control

Derivatives," NASA Contractor Report CR-2493, Feb. 1975.
11. Gupta, N.K. , Hal 1, Jr. , W.E. , "Design and Evaluation of Sensor Systems for State and Parameter Es-

timation," J. Guidance and Control, Vol. 1, No. 6, Nov. - Dec., 1978, pp 397-403.

12. Gupta, N.K., Hall, Jr., W.E., TrAnkle, T.L., "Advetnced Methods of Model Structure Determination
from Teat Data," J. Guidance and Control, Vol. 1, No. 3 May-June 1978, pp 197, 204.

12. Allen, D.M., "Mean Square Errcr of Prediction as a Criterion for Selecting Variables," Technomet-
rice, Vol. 13, No. 3, Aug. 1971, pp 469, 475.

14: Lavw'on. C.L., at%# Pon-inn, F.J., SelIv*ng Least Square Problema, Pren;;ice-Hall, l',74.

15. Gupta, N.K. and Mehra, R.E., "Computational Aspects of Maximum Likelihood Estimation and Reduction
in Sensitivity function Calculations," IEEE Trans. on Automatic Control, Vol. AC-lO, No. 6, Dcc.
1974, pp 774, 783.

16. Marquardt, D.W., "An Algorithm for Least Squares Estimation of Nonlinear Parameters," J. Soc.
IndusL. Appl. Math., Vol. 11, No. 2, 1963, pp 431-441.

17. Ialman, R.E.. Bucy, R., "NMew Results in Linear Filtering and Prediction," Trans. ASME, Vol. 83D,
1961, p. 95.

18. Luenberger, D.G., "Observing the State of a Linear System," IEEE Trans. Military Electronics, Vol.
MIL-8, 1964, pp 74-80.

19. Eyktnoff, P., §Xtt tdentification-Parameter and State Estimation. Wiley, 1974.

20. Roult, A., "Identification Applications to Aeronautics," Identification and System Parameter Esti-
mation, American Elsevier Publishing Company, New York, 1973, pp 49-65.

21. lroersen, P.M.?., "Estimation of Multiveriable Railway Vehicle Dynamics frome Normal Operating Re-
cords," Identificatiop and 611too Parapeter Estimation, American Elseview Publishing Company, Nov
York, 1973, pp 42%, 414.

22. 111ff, K.W., Idtification and Stochastic Control of an Aircr'aft Flying in Turbulence." J3. Guid-
onceapd optro1 Vol. 1. No. 2, March-April 1978, pp 101-108.

23. Ward. lt.C. . "Numerical Comput.ation of the Matrix Exponential with Accuracy Estimate," SIAM J.
Niwuia Anl ysi~is, Vol. 14. pp 600-610, 1977,

24. lienrici. P., Discrete Variable Methods in Oruinary Ditferentiml Equation'., Wiley, 1962.

2ý. Forsythe, G.. Molar, C.A., c,~t~ Solution ofLinear A~ebrtlcSyjs~tems, Prenticet-Hall, 190~.

26. sterman, (3.3., Factoritation Methods for Discrete Stqu~ntislI__Etimqt19,n, Academic Press. Nev York,
1977.

27. lard, Y., "Comparison of Gradient Methods for the Solution of Nonlinear Parameter leris'ation Prob-
Wsas," SIAN J. Numegrical Analysis, Vol. 7, Mo. 1, March 1970.

29. Dennis, Jr., J.R.., More, J.J., OQuaai-Nevton Itathods, Motivation and Theory," S"AM keview, Vol. 15.
No. 1. Jan. 1977. pp 46-8).

29. 111ff, I.W., andi Taylor, L.W. Jr., "Determination of Stability Darivatives from Flight Date L'eiag a
Kovton-ltsphton Kinteirstion Te~hrnique.' WL'SA TV D0-45.9 1912.

30. L~evenberg, Ki.. "A Method for the Solution of Certtan Voolinsar Problems in Least Squares." 9!rt.
ADpp. MaSth., Vol. 2, 1944, pp 164.-149.

31. Creamer, K.. Marhemetical *Mathod#, of $ atistic., Princeton University Press, Princeton, NJ. 1946, pp
473-$2A.

12. brown., K.M.j behais, 3-1. Jr., "Deri'.etiv* fro* Analo.-uea of the Ltvenbterj-Kerquordt and Gauss
Allorihhma for Nonlinear Least Squares Approxiftsaion," Nuas.: Math. Vol. 18, pp 289-297.

33. Majine. R49,, aM 7liff, K.W., "th, of Cramar-loo Moundt on Flight Data with Colored aaesidual"," J.
umntlc alnd control, Vol. 4. No. 2, Malrch April 1981. pp 207 -213.



7-20

34, Rall, W.:. Jr., and Gupta, N.K., "System Identification for Nonlinear Aerodynamic Flight Regimee,"• J..Spacecraft and Rocket*, Val. 14, No. 2, Feb. 1977, pp 73-80.

",5. Heil WE. Jr., Gupta, N.K., Smith, R.G., "Identification of Aircraft Stability and Control Coef-
fiiients for the High Angle of Attack Regime," Engineering Technical Report under Contract 1100014-
72-C-0328 to Office of Naval Research, March 1974.

36. Gupta, N.K. and Mehra, R.I., "Computational Aspects of Maximuis Likelihood Estimation and Reduction
in Sensitivity Function Calculations," IEEE Transactions on Automatic Control, Vol AC-i9, No. 6,
Dlc 1974, pp 774-783.

37. Powell, M.J.D., "A Method for Minimizing A Sum of Squares of Nonlinear Functions without Calcula-
ting Derivatives," Computer Journal, Vol 7, 1965, pp 303-307.

38. Dennis, J.E. Jr., and Welsch, R.E., "Techniques for Nonlinear Least Squares and Robust Regression,"
Coamun. Statist. - Sisula. Computa., Vol 37, No. 4, 1978, pp 345-359.

39. Theil, H. "Generalized Least Squares and Linear Constraints: Correlated Disturbances and Autore-
greasive Transformations," Principles of Econometrics, John Wiley 4 Sons, New York, 1971.

40. de Soor, C., A Practical Guide to Splines, Springer-Verlag, New York, 1q78.

41. H..yes, J.G., Halliday, J., "The Least Squares Fitting of Cubic Spline Surfaces to General Data
Sets," J. Inst. Maths. Applics., Vol. 14, 1974, pp 89-103.

I

•-b



7-21

Table 1: System Identification Data Processing Methods

METHD ADVANTAGES SMINIMIZATION ALGORITIH EXAMPLES OFTAATEDISADVANTAGES PERFO E INDEX TYPICALLY USED APPLICATIONS

Equation Error * Effective In presence Sensitive to Jax . f(x.O.t)•2  linear least squares aeronautics (20]
of process noise measurewent errors - 1 [14)

a Computational
simplicity

Output Error * Effective in presence Sensitive to rail vehicles (21]
of measureent errors process noise I (y9tM.) I Gauss-Newton (16] rai turbines [4]

Combined State and * Effective In presence Computational zIy-y(t.e.y)]2 Gauss-Newton (16)
Parameter Estimation of both measirement complexity Kalman filter (17) aeronautics (22]

and process noise

NIUERICAL MATHEMATICAL REQUIREMENT EFFECTIVE METItO0 OF APPROACH

LINEAR TRANSITION MATRIX ( 231

SOLUTION OF DIFFERENTIAL EQUATIONS !ONLINEAR INLTISTEP METHOOS (ADAMS-
SASIFORTH) (24 1

POSITIVE DEFINITE. Table 2: Numerical Methods
SOLUTION OF LINEAR ALGEBRAIC SYSTEMS SYINfETRIC ClOLESKY ( 25 1 Used in System Identifica-
OF EQtIATIONS tion

GENERAL GAUSSIAN ELIMINATION[ 251

FACTOR•IZATION, OR• SQUARE ROOT
.INAR HE TIHOS, C 26 ]

SOLUTION OF LEAST SQUARES PROSLEMS . .... ..IOLIEAR GAUSS-NEWTON ( 27 ]

MINIMIZATION OF GENERAL NOLINEAR
MULTIVARIAILE rUNCTIONS QUASI-NEWTON (28 1

A PRIORI INSTRUMENT ENVIRONMENTAL 10

SYSTEM MODELS NODELS

ISTENT AND INPUT

TEST INPUTS INSTRUENT SPECIFICATION [ APPROXIMATED

I o,•z l • IK (SE'C!
SYSTEM

DIFY CALIBRATE
INPUTS A INSTRUMENT$

NOT OX -' T 8FAL0 C- AIRCRAFT
CONSISTEY ALTITUE SEA LEVEL

CHECK VLCT 12M~A/E
OK CONDUCT TESTS INPUT ENEWG - 100 (DtG)ZISECI

Figure 2: Optimal and Approximated Elevator Input$

FLIITY DATA
P1RENOCIESSING
AND ANALYSIS 40

ELECT NOCAL
STRIJC1URE PROXES$ DTA

TIMAI
Sl•Fiurel 31 Co~artgon Of Standlard ev~iatiOn

-llSlEN NeODA, i Patramater Ketiateu for Olptimal Input
,--• ,.,d Doublet (5am InPut Enerlgy)

I•Vt•-are ii The Integtated Syatem Identification Procedure
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R.,S RESIDUAL FOR COPINED SIX MANEUVERS

MEASUREMENT UNITS iDENT. AERD/PROP PREFLIGHT AERO/PROP
CALIBRATED INS. CALIBRATED INS.

P deglsac 6.15 13.81

Q dag/sec 2.85 11.61

R deg/sec 1.78 11.04

SIN/B Oeg 1.07 2.82

aM/B deg .98 2.35

q psf 2.22 6.56

b ft 94.00 215.00

Ax q', .009 .028

ny g s .012 .016

nz 9 s .036 .073

Note: Measure Residual * Actual NMesuremnt - Estimate of Ve4suremmnt

Figure 13: Effect of Model Parameters ou Heasuremnt Residuals
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TECHNIQUES AND METHODOLOGIES FOR THE ESTIMATION OF COVARIANCES, POWER SPECTRA
AND FILTER-STATE AUGMENTATION

by

Volkmar Held
Elektronik-System-Gesellschaft mbH

Vogelweideplatz 9
8000 MUnchen 80
West Germany

SUMMARY

For the realization of an optimal filter in practice quantitative knowledge of the
system and measurement noise is necessary. The required stochastic parameters, covariances
power spectra and in the case of coloured noise the dynamic model of the shaping filter
usually has to be determined from measurements which precede the filter design.

This paper describes a technique for the estimation of stationary stochastic noise
data from real measurements which contain the noise as well as non-observable determini-
stic values. The separation is accomplished by a specific smoothing procedure. The sto-
chastic behaviour of the data is proven by a Gaussian probability distribution test.
Then, based on conventional stochastic relations the covariarce and the spectral density
are evaluated.

In the next step shaping filters are determined from the power spectral density to
model coloured noise. The filter structure is selected and the filter parameters are
optimally identified by a least squares procedure.

Finally the filter state is augmented by the degree of the shaping filter. As further
evidence examples for the individual steps are given.

1. INTRODUCTION

For the design of optimal filters the dynamic model of the system and information
about the expected stochastic system disturbances and measurement errors are required [I].

The dynamic system-model is generally derived without major problems from knowledge
of the physical background of the system or from measurement of the system transfer-func-
tion.

Much more difficult is the determination of the system disturbances and measurement
errors, here called system- and measurement noise. They have to be provided for the fil-
ter algorithms in the form of stochastic parameters: covariances and power spectral densi-
ty. The estimation of these parameters requires theoretically an infinite number of
measurements of a stationary stochastic noise-process. In reality only time-limited
measurements exist which are not exactly stationary and contain additional deterministic
variables.

The results of the parameter estimation are approximations which are usually suffi-
cient if some limiting conditions [controllability and observability of the system and
stability of the designed filter ) are guaranteed.

Another problem is the requirement of Gaussian distributed and uncorrelated (white)
noise for the Kalman filter formulation. In roality white noise does not exist. Real
noise (for example gyro drift or wind speed) is correlated, has a limited frequency band
and is called coloured noise. A solution of this problem is possible by the so-called
state vector augmentation (31 . Coloured Gaussian noise can be generated by a linear
shaping-filter from Gaussian white noise (Fig. 1). The shaping filter,usually a first
or second order linear filter, is added to the system model and the state vector of the

ELINEAR COLOURED NOISEWHITE NOISE .. SHAPING
- FILTER

Fig. I Shaping Filter

system is augmented by the order of the shaping-filter. While this procedure is applic-
able to the system-noise without problems the treatment of the measurement-noise is, at
least in theory, difficult. If the measurement-noise is integrated in the system by a
shaping filter the measurements are error-free which would result in a lose of stochastic
observability and filter stability.

Exact but relatively difficult solutions for the coloured noise are given in [4] ,[21.
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In reality this is no problem. Coloured measurement-noise usually contains an addi-
tional part of high bandwidth which is approximately white and can be separated from the
coloured part. While the coloured part is modelled by a shaping filter the approximately
white part serves in the filter algorithm as the required measurement-noise. So the
application of coloured system and measurement noise in a Kalman filter is possible.

In the following sections techniques for the estimation of the noise-parameters
from real measurement for the application in a Kalman filter are described. In particular
the evaluation of the covariance, power spectrum (for continuous filters) and of shaping
filters are treated. These methods art •ased on the conventional mathematical relations
for linear stochastic processes L2 , 5S.

2. DETERMINATION OF STATIONARY MEASUREMENTS

The large number of measurements which is required for the determination of stochastic
parameters (e.g. variance or power spectral density) generally is not derived from an
ensemble of measurements at a fixed time. Usually the time-variable measurements of one
ensemble member is applied. This is correct, if the ergodic hypothesis 13 valid which means
that this member is representative for the desired stationary stochastic noise process.
Unfortunately, such representatives measurements are rarely available in practice. In most
cases non-observable deterministic signals or measurement errors (trends) are superimposed
to the stochastic noise. For example the Signal of a doppler-radar contains the determinis-
tic aircraft velocity as well as the stochastic measurement error noise. If no redundant
measurements are available a separation of the two variables is only possible by their
different frequency behaviour. The resonance frequencies or the bandwidth of the observed
system is approximately known from its physical background (e.g. phygoide of an aircraft).
Usually this frequency lies below the frequency band of the measurement noise so that a
separation by a filter or smoothing procedure is possible. Below a smoothing procedure is
described which gives an excellent frequency separation.

Smoothing procedures have the property to provide off line a smoothed value at time
ti from measurements before and after ti. If the procedure is repeated for varying ti
the result is a smoothed variable which consists of the lower frequency-parts of the
measurements. The smoothing procedure is characterized by the following steps:

- From the measurements y (t + V) the data within a data-window of the length
2V (Fig. 2) are selected.max

- The measurements are approximated by a second order polynomial

jy (ti+47) a a0 (ti) + a 1 (tl)V + a 2 (ti v2 /2 (1)

- The differences:

+)- y(t +V) Ay(ti' )

are weighted with a weighting-function g(j 1l) which it symmetrical to ti(Fig. 2)

Fig. 2

Measurements y (.4-
N Approximation p4-- . )Weighting function g(I ) ii

- The constants a o(ti)# a3, (ti and a2(t are estimated by the method of
least square#.

- As shown later, the out-off frequency of the smoothing procedure is defined by
the length of the data window 2 ma and its transfer function by the weight-
ing-function g9 V ).

- If the data window Is shifted along the time scale, the smoothed data &te given
by ao(t 1 ) with variable i.

In detail, the evaluation of the polynomial coeffioients and of the transfer fuse-
tion runs as follows:

The differences, Eq.(1) are weighted, squared and integrated from - to V t

7 ~ 1 91 v)2 (P(t 1 .iD) - i~tope) 2

With Eq. (1), differentiation ofland setting the differential to 0 for the mLnniam of;
results in:

i . a ( V)2(9(t,+V) - y-(t +V) dV w 0 (2)
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k=O, 1,2.

With Eq. (1) this yields:
.'0, 2 ni ( . tdk & + a ( 12+k i

fVIP) Vy(t +V)dIP f g{(I))+a (t i) ) a 2 (ti) (3)
* -A., e•e

SUneven powers of V disappear on the right side of Eq. (3) during the integration
and the following relation remains:

* he e-* Fr

Y(t i+V) Z a (~t
j9A{L y(t +V)j dID 1 g M 0 V 0i dV - a (t 1  (

The matrix on the right hand cide is non-singular and can be inverted for the estimation
of ak(ti). Usually only ao(ti) is of interest, sometimes the first (al) or second (a 2 )
derivative is required too.

For the determination of the cut-off frequency • and transfer function 1'(iJ) of the
smoothing procedure, Eq (4), is Fourier-transformed. The convolution of the left hand
sind of Eq. (4) changes into the product of two Fourier-transformed integrals, The mat-
rix of the right hand side consists of constants which remain unchanged during the
Fourier-transformation. The result is equation (5);

-7v)21 0 8 0a(t)
L900) v2_ ý' 0 L. a,(t,

z Fourier transformation

with% [ (&rC0tJ)w~t~hzqlp~lCos W 0 -q ( V)}

co~it• os• t (U } V , 9 (6)

"Th "* reled transfer functions t"•"

4 0 (ti) 41t-(i

at* dotemoned by soluttio of Eq. (5).

The tanfetr functions dapend exclusively on the w.ighting i fuAtioN1.9. V) ) has to be
chosen such that the simoothiag procedure approxia-atee an idea low paso as closely as
possible. Therefore in the foliwing, section differtnt wt• hiLtng functions are esalnted.

3. vcxIOWING piNCtIONS

The sisplest Voightina functi•n is a reotangular function .4o(V) - 1 The
M easurseets within a data-vilrow are weighted equally (Fig. 3).

to Fig. 3 Veighirtg fuinctionII~4 g %I V') and '92 L)

-W-S 0 05 W~
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The amount of the corresponding transfer-function o(ic )ao Eq. (7) is shown in
Fig. (4). The function decreases down to a frequency of 0.5/9 max very rapidly which
results in a sharp frequency cut-off. For increasing frequencies the function oscillates
which means that the smoothed signal still contains parts of higher frequencies. To elimi-
nate thi@ isadvantage two different weighting-functions are tested. These functions are
used in 161 for the smoothing of power spectral densities.

g 1 (v)2 - (8)

92( V)2 - 0.54 + 0.46 cos •-a9

The amount of the corresponding transfer-functions 'Y (iQ)a% ,*F 2 (i.)ao

Eq. (a), (9)

is shown in Fig. (4):

Lt. -.-... Fig. 4 Amount of transfer functions
for different weighting
functions

,...................... 1

"• .... deal low pass

.2 1
U- - U ffv f~;o

1 1 displayed dependent or the relative frequency f -' vhere I s) s the
width of tho saoothing-tur.ction, ThMe decreas of f and I# s 1ighte~ha of 'T

but the osllations are such bAllor4 epecially for t henveiqh q-function Q * )

In the logarithaic diagrams of rig. (S) these properties are shown more dls•i•ctivo.

lowi pa" lo pass
(let. order 2d .o"der d pass

Z,4. order

Fig. 5 Amount of transfer functio•$
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For comparison, also low-pass filters of first and second order are displayed. Only
with the weighting function g,)( V ) the smoothing procedure yields a much better frequency
separation than a second orde- " '.ndpass-fiJter. In this case it is a good approximation of
an ideal low-pass. Therefore cne weighting funct" :n g 2 ( V) is recommended for application
in the described smoothing procedure. The cut-off frequency is / = 1 / mx (Fig. (5)). The
smoothing procedure now separýates deterministic oi stochastic signals (} = ao(t)
from stochastic noise (Ay (ti)) which tI. approximately -tationary.

4. TEST OF GAUSSIAN DISTRIBUTION

Prior to the estimation of stochastic parameters from the stochastic noise a Gaussian

probability distribution test is performed to prove the stochastic behaviour of the noise.

Fig. 6 shows an example of this test, (probability distribution of stochastic gyro-
drift data which result from in-flight measurements). The criterion is axt-test and a
straight line in the Gaussian probability-distribution paper.

.AFUrIGKEiTSV tRTC(U4gS y3I 133 PES3I.ERTE: S.. :_ - "-;
X L A t S E NAUI•&'j GKEIT S T R I C H L I S T C• ....

R. VON S MI MK-- -- --- --- --- --- --- --- --- --- --- - ----- -- -- -- -- -- -- --- 1 7---
0 -UNEt4VLIC" -1.17416731":. .1 0 C I
i "1.i7'8673?2.2 *1 -8.6l1I•4961,5. .0 9 9 II///Xl//I i-::•+• - :

2 -6.8l1M49615. *3 -5.1743366402. *0 1.4 25 I//////////./
3 -5.67433S6409. .0 -2.-Z71693204. .0 17 42 I///IX///////Ig//.
4 -2.9371683204. .0 1.1641532183.-10 2C 7.1 I/,I/X1/1/*,//, /K//i#//IK//
5 1.1641532!03.-10 2.937!-683216. -C 19 at 1 1XII/. IX IIII/X////----/-
6 2.9371663206. .0 S.174336641. .0 19 %of i//*X///,,/x////X//// 4 .s 1.
7 ,.6744366412. .0 #.61.1504961?.. C 15 123 W/,.X///x////-X

6.8115349617. -0 1..174I6? I32S ._ 1 9 13 4I//It;// / - .

9 1,1748613292. *1 *omEXIOi.CH 1 133 1/ "71

..............................-..-..................................................
-rr.EREPZEN ZVISCHEN NESSL•"I UND NORMAL VERTEILU1 ,".

-2.6-6.3 "
.,*6 * , . .. . ..3 +

CH10UAp•'ATTESi '- ".
CkIQUA•RAT 7.6816

FiJ. 6 Probability distribution of 133
"gyro-drift measurements. X" 2. '-''1-.

and Gaussian probability iistribu-
tion paper-test.

The result of the X2-test (7.68 <9.24) as well as the approximately straight line shows

that the gyro drift is Gauss-distributed.

5. ESTIMATION OF COVARIANCES AND POWER SPELTRA

In the preceding three sections a technique has been derived to extract stationary
stochastic system- or measurement noise data from measurements which contain system sig-

nalo, deterministic errors or trends. -low the stochastic parameters, covariances and
power spectra] densitites, which are required for the Kalman filter can be estimated. As
thA smoothiig procadure runs in a digital computer the noise output is a discrete time
series. Therefore the following equations are given in discrete formulation too.

I
I
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Correlation functions
For two discrete stochactic series y (t ) andy (t +m aT) with J = , .1

1-k, m * 0,1...K, mean value o and constantAJT, the gorielation function is:

d vy,1 Y.2 (aAT) - • y1 ; (tj) • y2 (tj +mAT) (10)

-Y2 : autocorrelation

Y, Y2 crosscorrslation

For negative m:
4yly 2 (-maT) (a a y 2 ,yl(mT)

The CovAi-iance is given by d, yl, y2 (o).

Power Spectral Dens ity

In the frequency domain the stochastic functions y , y2 are described by the power spec-
tral density (signal power per Hertz at a frequenc of n,&f . The power spectracl den-
sity is determined by the discrete Fourier-transformation of the correlation function.

"S')y,'Y2(naf) - { YsY2 Y(m a-T)

I ~~~A 7*[1iY2 O R+ 'Y (~1 yMAT) + 'qy2 Y1 (MAT),.o1LA

+ A (-i' (k2 ) +• & ik, T))con ffnk.• af

- T * (i0Y 2 (M&T) - y 2,yi (2T)).sin f
+ '2 1 .Y,2 lk'a~T) - •Y 2 Yll*kaT))-sin '[

(11)
With n = 0, 1, 2 ... K , Af= 1/2kAT:frequency resolution, fg = /21/hcut off frequency
(Shannon), i - P

For y1 j y2 S has an imaginary part which disappears for y1  y2 "

For the enhancement of the statistic certainty of the power spectral density, Eq. (11),
the correlation function, Eq. (10) can be multiplied by a weighting-function, g(m.-r)-

dyt,y 2 (m, 4T) - g(mT) • A. yy 2 (m T) (12)

The weighting function has a length of 2k&T. Multiplication in the time domain yields
a convolution in the frequency domain:•'t,,,,,•o., fig,=oa}liq[ 4

t"A •Y[ly ,Y2 (mWaT)

It has been shown [6] that the weighting function <. (vnAT) a 0.54 + 0.46 coe (T,/K
smoothes the spectral density and enhances the statsti, certainty by 2.3. The convolution
is very simple because g {g 2 (mAT)) consists only of 3 values.

The result is given byt

Yj,,y 2 (o) - 0.54 . ,,,(o) + 0.46 *',,#,y2 (60

-0.23 . y2 ((U-j) At) + 0.54 )
fy,#Y2{(k Af) 49 0.46 fY f2 k A + 0. 54 5'V1u 2(k (13
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For the gyro drift data of Fig. 6 the correlation function, the power spectral den-
sity and the weighted spectral density are evaluated and displayed in Fig. 7 as an example.
The frequency steps are 0.0159/sec and the validity of the relation fC df - o)is
checked.

X 6 34.248374 *1' 6 94.1v;4174 474596? I .31 :;-9493 X S74.4I 7X6 1 52O.354i,6
1 2 27 .A395 : - 4.634379 1 a 2 127.627:7'9
* 3 23.V1"5, 1 3 3 34.7.-6748 1 3

I S 4 2C.3'43F,73 1 4 7.71.1'&C56 I3 41
5 * 1$.333795 1 5 26.2095796 5 1 931h53
6 9.64^607 1 & -4.3141245 6 5.b48114
I4485010 1 s 7 8.C.•0S592 1 • 7 2.249;61

I a S C.13SG31 6 1 3 -4.09302C9 & * 8 o.99s9 i
1 9 -3.8499 21 1 9 7.0996667 I * 9 2.C17075
1 10 -7.471387 I V 10 -3.0919597 I 10 . d.5

II R SOF * 34S

Fig. 7 Evaluation of correlation function, power spectral
density and convoluted power spectral density.

The table shows a much smoother weighted spectral density than the unweightedg*.

6. ESTIMATION OF LINEAR SHAPING FILTERS
One goal of the analysis of correlated stochastic noise data is the determination of

linear shaping filters which generate coloured noise from vhite noise. If the spectral
density,Eq. (13) is known, the following relation is valid[2J1

Yyy -?Ti c)! 2aw
S•o Power spectral density of white noise (const.)

S Yj #Yl,(W) Power spectral density of coloured noise
UW (iv.) Transfer function of the shaping filter.

From this the amount of the shaping filter transfer-function follows:

kyuwl W (Wt - ,+(15)

From the empiric spectral density X'YY'i' ) only the amount of the shaping filter
transfer-function can be determined but not the phase. Therefore, all shaping filters
theoretically can be used for the generation of the coloured noise which fulfil Eq. (15)
approximately. In reality always the simplest of all possible shaping filters is used
because the phase is of no interest for the noise.

A linear shaping filter is defined by its structure (differential equation) and its
parameters (time constants, resonance frequencies and damping ratios). The selection of
the structure and the estimation of the parameters is feasible by the following method:
The amount of the transfer function, Eq. (15) is drawn in double-logarithmic scale. Two
examples: gyro drift and velocity measurement error are shown in Fig. 8.

vA "in Fig. 8 Sqqare-root of power
IA •" spectral dens,ýty o

gyro drift, _2) velocity
Ufmeasurement-eyror

im am(uJ
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For a skilled person it is relatively easy to determine the structure of a linear filter
which is a good approximation of the empiric value. For the examples of Fig. 8 the appro-
priate shaping-filter structures are given by the transfer functions (16) and (17) in the
frequency domain (( resonance frequencies, I damping constants, T time constaits)

Tu 2 1 (16)

+il T,, 4
~ TV'1Cji +1 (17)

C.)J
Now the parameters cc of the shaping filter (for the examples Tv, i , 'i and F'o
have to be identified so that the empiric value-4fljj is optimally approximated.
This is obtained by minimizing the equation:

This equation is non-linear •,n reference to . One possible solution is the development
of Dec) in a Taylor series n7 . The Taylor series is developed for cC = o (first
approximation) and has three terms. For the scalar case(I parameter) this yields:

+1- _ ~((~J (19)

The minimum of oc is given by:

+ 0 (20)

For several parameters a vector sc- ( •I' 2 ..... T) is introduced. Instead of Eq. (20)
the following equation is valid:1

~ i + .- o(1

d,,t •. ,

The first step is the determination of the differentials _ and H. This is not diffi-
cult but tedious and is therefore omitted here. Then roughly estimated parameters Ocare
introduced in Eq. (21) and, as H is usually non-singular, improved parameters d can be
determined by:

_ _ u , .. .• (22)

These parameters are inserted as° 0 in Eq. (22) in a second step and an iteration
can be started, provided that the evaluated parameters converge towards the optimal para-
meters. In this case Itec(Eq. (19)) is reduced from one iteration step to the next itera-
tion step.

Unfortunately practical applications have shown that this method very often does not
converge, because of too large steps of d; which overshoot the optimal parameters. This
difficulty can be removed by a combination of Eq. (22) with a direct search method. After
the determination of c. -V (Eq. (22)) ( O + n /.o( ac - C )),.n w 1,2,...10 is evaluated.
The paraster increment ml40(6 - ocj which gives the smallest value of 7 is used for the
next iteration step. With this combined technique fast convergence can be obtained in
most cases.

The example, Table 1, shows the iteration zdMults of the velocity measurement-errors,
Fig. 8 and 8q. (17). The four parameters, TvA, W , ý are identified in four itera-
tion steps. Remarkable is the reduction ;Adognt6 2 %-of the initial value.



8-9

_Parameter TV, -C) -

Ausgangswerte O.O60 16 0.35 -0. 0.0732
1. Iteration 0.054 10.516 0.317 0.518 0.0103
2. Iteration 0.051 9.839 0.301 0.555 0.0019
3. Iteration 0.052 9.767 0.596 I.0015
34 Iteration 0.052 9.767 0.295 0.596 0.0015

Table 1 Evaluation of the shaping filter-parameters
for the velocity measuremcnt errors.

In Fig. 9 the transfer functions of the models with the optimal identified parameters are
compared with the empiric values of Fig. 8. The fitting of the shaping

AV.Wrr Fig. 9 Amount of transfer function of
to real coloured noise (empiric
LIT]L' values) (-) and its model with

optimally identified parameters
gyro drift velocityQ..... velocit

measurement errors.

I I

filter is relative good in the lower frequency range. A refinement of the model for higher
frequencies is not worthwhile because of the small amounts in that region.

If the curve fitting does not improve by an increasing number of iterations the structure
of the shaping filter should be altered.

The determination of the shaping filter-structure and-parameters concludes the analysis of
the stochastic system and measurement noise. Now the transformation of the shaping filter
from the frequency- into the time-domain by Laplace or Fourier-tables is required. The
resulting differential equation is included in the Kalman filter model and the filter state
vector is augmented by the order of the shaping filter.

6. CONCLUSION

In the preceding sections methods and techniques for the estimation of stochastic para-
meters, which are necessary for the design of optimal filters were described. These
methods have been derived from conventional stocha t)c operations and have proven
remarkable effectiveness in a lot of applications 181 . The parameters are evaluated off
line with a digital computer from measurements which should be stationary in respect to
the system- and measurement noise. If considerable changes of the noise-parameters in
dependance of deterministic parameters (e.g. aircraft velocity or weather conditions)
exist, this effect can be modelled too by introduction of time-variable noise- and
shaping-filter parameters.
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SUM•ARY

The design of an effective operational Kalman filter entails an iterative process of proposing 7lter-
native designs of different levels of complexity, "tuning" each for best attainable precision, and trading
off performance capabilities and computer loading. The crux of such a design effort is establishing an
adequate model upon which to base the filter - a model describing system dynamics, measurement device
characteristics, and statistical properties of uncertainties associated with this structure, all of which
becomes embodied in the filter algorithm. Using physical insights, order reduction and model simplifi-cation techniques, numerous prospective filters are proposed for a given application. Once this is accom-
plished, it is critical to be able to assess the true estimation performance of any given filter configu-
ration when subjected to the real world environment. A systematic design procedure is described that
exploits these stochastic modeling and performance analysis capabilities, and an example is used to empha-
size some important aspects of the design approach.

1. INTRODUCTION

A Kalman filter is an optimal recursive data processing algorithm that accepts incomplete noise-
corrupted measurements from sensors to provide an estimate of the state variables that describe the be-
havior of a dynamic system. It combines this real-time data with the results of stochastic modeling
efforts, namely, (1) mathematical models of system dynamics and measurement device characteristics, !2)
the statistical description of the system noises and disturbances, measurement errors, and uncertainties
and/or inadequacies in the mathematical models themselves, and (3) any available a priori statistical
information about the system states, to generate the desired state estimate. Under the assumptions that an
adequate system model can be expressed in the form of a linear system driven by white Gaussian noise, its
estimate can be shown to be optimal with respect to esseinj-ialTy any useful criteri-o-n-o-ptimality: it is
the minimum mean square error estimate, the generalized least squares estimate, the minimizer of any
symmetric cost criterion, the maximum a posteriori estimate, the orthogonal projection of the true state
onto the span of the measurements, the maximum likelihood estimate if there is no a priori state informa-
tion (and superior to the maximum likelihood estimate if a priori statistics are availablel), and, perhaps
most importantly, its output ttll defines the entire Gaussian conditional density function for the
system state vector conditioned on the entire history of measurements that have been processed (13.

These optimality claims are impressive, but they are totally dependent upon the modeling assumptions.
Mathematical models of both the system structure (state dynamics and measurement relations) and uncertain-
ties are inherently enmodied in the Kalman filter structure, and the fidelity of these models dictates the
performance of the filter in actual application. Attaining an adequate mathematical model upon which to
base the filter is the crux of the design problem. Thus, despite the math tical formalism of the Kalman
filter approach, a substantial amount of engineering insight, fundamental modeling capability, and experi-
ence is required to develop an effective operational filter algorithm.

Moreover, the designer typically does not have the luxury of implementing the filter based upon the
best descriptive and most complete and complex model, often termed the "truth model." The final filter
algorithm must meet the canstraints of online computer time, memory, and wordlength, and these considera-
tions dictate using as simple a filter as possible that meets performance specifications. Consequently,
the designer must be able to exploit basic modeling alternatives to achieve a simple but adequate filter,
adding or deleting model complexity as the performance needs and practical constraints require. The result
is that he often generates not one, but several proposed filters of various degrees of sophistication and
performance potential, and a tradeoff analysis is conducted.

Evaluation of the true performance capabilities of simplified, reduced order filters Is thus of critical
importance in the design-procedure. Although a Kalman filter computes an error covariance matrix internally.
this is c valid depiction of the true errors committed by the filter only to the extent that the filter's
own system model adequately portrays true system behavior. It is very possible for the filter not to per-
form as well as it "thinks" it does. If the computed error covarlance is inappropriately "small" (in norm,
magnitude of individual elgenvalues, etc.), so is the computed filter gain: the filter discounts the data
from the "real world" too much and weights its internal system model too heavily. Such a condition leads
to filter state estimates not corresponding to true system behavior, with a simultaneous indication by the
filter-computed covariance that the estimates are precise: filter divergence is exhibited. One significant
task in the overall design process is the tuning of each proposed filter, Iteratively choosing the design
parameters (covariance matrix entries describing the statistics of uncertainties associated with the
filter's dynamics and measurement models) that yield the best true estimation performance possible from
that particular filter structure. This, in fact, is accomplished by choosing the design parameters so
that the filter-computed error covariance is a good representation of the true error covariance.

The design of an effective operational Kalman filter entails an iterative process of proposing alterna-
tive designs through physical insights, tuning each, and trading off performance capabilities and computer
loading, Section 2discusses the development of numerous proposed filters for a given application.
Section 3 then develops the ability to analyze the performance capability of any Kalman filter configuration
operating in the real world environment. With such performance analysis available, Section 4 presents a
systematic design procedure and Section 5 provides an example of exploiting these results.
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2. PROSPECTIVE FILTER DESIGNS

Any prospective Kalman filter is based upon a design model of state dynamics and measurement character-
istics. The design model dynamics equation is a 1 ner stochastic differential equation for the n-
dimensional state vector x(t):

Lx(t) -f(t)x(t)dt + B(t)u!(t)dt + G t)d(t()

where u(t) is an r-vector of deterministic control inputs and t(t) is s-dimens tonal Brownian motion of
diffusTon Q(t) for all time t of interest, with statistical description given by

E {.(t)} 0 (2a)

E{[k(t) - (t-i1[#(t) - f(t')] ft Jg(t)dTr (2b)

where E{ } denotes expectation. The a priori information about the initial state x(t )is provided
in the form of a Gaussian density specified by mean and covariance P:0

E{Ex(t 0) - )L(to) - _X) &T -p (3b)
0 ~ -

Often Eq. (1) is written less rigorously as

ý(t = f(t)2x't) + B(t)u!(t) + G(t)wt(t) (4)

by heuristically dividing through by dt, where w(t) is zero-mean white Gaussian noise (the hypothetical
derivative of Brownian motion L(t)) of strength q(t):

E~w(t)I 0 (5a)

E~w(t)wt(t+y)I a (tWaOr (5b)

where 6(T) is the Dirac delta function.

At each sample time t an m-dimensional vector of measurements L(t1 ) becomes available. modeled
as a linear combination oIWthe states plus additive noise:

1(t1) * (t1) 4~t1 ) + v(ti) (6)

where 1(ti) is zero-won white Gaussiarn discrete-time noise with covariance Rgt 1)

E(I(t1)) a 0 (7a)

where o is the Kronecker delts (ad * I if I J i~ 0 if I V~) The measurement corruption
noise v(t1 is usually assumed independent of the dynamics driving noise tt(t) for all times t andt
(althouigh this is readily generalized Cl]).

Once the system model has been defined by the. structural parinters, i.e., the time histories of
IF,,GIi, nd the statistics of unicertainties, i.e., the (x ,P ) values and (Q,R) tite histories, the
On 1iuai I rih can be specified. Narely. the state esi~mate and error Zovariance are propagated

vroSA-41et met 0t the next simple time t1 by mans of Integrating

where the notation A(t/t ) corretponds to the estimate (conditional uaeon) of x at tint t, conditioned
on wasurements take~n th6A~gh sample ti ma t~ and P(t/t ) it the correspoodtng conditional state
4.nd error) covariance. These are prop ia limafr~ tFe initial conditions

using the results of the inasurernt update at tin t ,where the superscript + denotes *Aftor rasure-
ant fitcorporation.0 Integration of (8) and (9) yiela the best prediction of x(t1) before the measurement

at t.f Is Incorporated, denoted as i(t~i and the Associated error covariance B(t,'i:

in f~E5,i U-t t , ( ; /tj; as

f-l

In team of the State transition matrix ±associtted with L(t) Ini Eq. (1) or (4), I.e., the solution to
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"_(t,t ) = F(t)!(t,t ) and *(t ,t ) I. This form of propagation relation is especially useful for filter
appliiations involving time-iRva~iant system models, stationary noises, and fixed sampling period, as a
replacement for direct numerical integration of (8) and (9). At sample time ti, the measurement z(ti) is
incorporated into the estimate according to the update relations

K~I)= _tI)HTt)Ht )Pl)HT(tI ) + R(tl)]"I (14)

(ti) = xt Kt(t ( tLt) - i(ti)(ti-)] (15)

P(ti+) = Pi(ts) - K(ti)H(ti)P(ti1 ) (16)

Starting from the initial conditions of x and P given by Eq. (3), this algorithm recursively pro-
cesses time propagations and measurement updaes. T&e propagations between measurement sample times
inherently use the system dynamics model, Eqs (1) - (5), to provide the predicted state and error covariance.
Through use of the measurement model, Eqs. (6) and (7), it also generates the best estimate of what the
next measurement will be before it actually arrives. Then the measuring devices are sampled, the residual
is computed as the difference between these measurements and their predicted values, and finally the filter
gain (itself dependent on the structural and statistical models of (1) to (7)) optimally weights this
residual to produce the updated state estimate. Because these models are embedded in the structure of the
filter algorithm, the performance potential of any Kalman filter is directly a function of the adequacy
of its assumed models.

A systematic design procedure will encompass the generation of alternative filter designs, each based
on a particular set of models, and an evaluation of realistic performance capabilities and computer loading
for each one. It is possible to devise filters based on very extensive models, and in fact it is useful to
investigate the performance of the filter based on the most complete model, known as a "truth model", to
establish a baseline of performance to which to compare others. However, such a filter is typically more
sophisticated than required to meet perfomance specifications, and it is prohibitive computationally.
The designer must seek simplified filter design models that retain the dominant features of the original
system characteristics and provide adequate estimate precision. This is probably the most difficult aspect
of designing a filter, and it requires substantial understanding of the real world system and of stochastic
modeling, as well as competence in filtering theory.

Suppose a large-dimensioned, complex system model existed upon which a filter could be based that far
exceeded performance requirements. Since the number of multiplications (time-constming on a computer) and
additions required by the filter algorithm is proportional to n3 and the number of storage locations is
proportional to n2 , where n is the state dimension, one significant means of decreasing the computer burden
is to reduce the order by deletinq and/or combninng (or "aggregating,) states [l-10). There is often
considerable p. ma'ical-ihsi• lnto Lhd-al- igificance of'varousstates upon overall estimation
precision, that suggests which states might be removed. States with consistently small nus value, such as
"those corresponding to higher order and/or higher frequency system modes which typically have lower energy

associated with them, especially warrant inspection for possible removal. Other noncritical system modes
might also be discarded, especially if they are only weakly observable or controllable (11,12). An error
budget performance analytis of the most complete filter, to be discussed in the next section, is an invalu-
able aid to this state dimension reduction.

In many applications, system models are in the form of the fundamental descriptive equations of some
physical system, driven by time-correlated stochastic processes whose characteristics match those of
physical phenomena such as noises, disturbances, and sn forth. These, in turn, are modelled as the outputs
of linear "shaping filters* (1] driven by white Gaussian noise, with dimension and defining parameters
chosen so that these model outputs have statistical properties that replicate or closely approximate empiri-
cally observed wans, autocorrelation functions, power spectral densities, etc. of the actual physical
phenomena. Particularly in these shaping filters are substantial order reduction efforts usually made.
Often a high dimensioned shaping filter in the overall 'truth model" is replaced by a very low order
shaping filter, Such as a first order lag driven by zero-wean white Gaussian noise:

kit) , I/Tix(t) + wit) (7

where the strength 0 of the white noise W is WI'/T . so that the x process in steady state has mean of
zero, mean squared value and variance of 0(, autocorrelation function of E(x(t~x(tft)) - aexp(-Jt1/T) so
that T Is the correlation time. And power spectral density function (2-e'T]/[w• # (T/T)1 so that the band-
width of x Is (I/T). The values of o2 and T are treated as design parameters to match the empirically
observed mean squared value with oa (or lOw-frequency power Spectral density value with 2oWT) and bandwidth
with (lI/T), ignoring less predominant characteristics. In fact, if the bandkidth is wide compared to the
ban4pass of the system driven by this noise, a zero-state trivial shaping filter might be proposed: white
Gaussian noise of strength to Patch the lo-frequency power spectral density characteristics.

It At be emphasized that deleting states and combining ,mny states Into fewer "equivalent" states
miust be evaluated in terms of resulting filter perfotmince, as described in the next section. Experience
has shc•w that reductions aotivated even by the best of physical insight can smetimes degrade estimation
accuracy unacceptably. Furthermre, an Inappropriately reduced filter of state dimension n can often be
outperformed by a filter involving fewer than n, differently chosen, states. The eitree case of this would
be an unstable higher.-dimensioned filter being based upon an unobservable system model in which, for in-
stance, two states correspond to different physihal variables but am indistinguishable in their effect on
the model outputs, while the lowr-dimensioned filter model co~lned states to achieve observability.

Simplification of system audt atrices for a given dimension state wodel is also possible. Dominated
ter19"VIn 1-ngTe trix element can eUihil ted. as in replacing the state transition matrix 0 b-
trrv at) In a tim,-invariant or slowly varyngmodel,. ignoring higher order tenm In each eie;nt. lbre-
over, entire weak TOna term canberemovea, producing matrix elemnts of zero and thus fewer required
IMOlttplIcatioSi 5011tMIuS S renvali a1-owse .deq1nj the filter: a decentralized design achieved
throuo 00asingular perturbations (13). In numrousipPlfcations, the ters that can be ig0ored cod rie
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the time-varying nature of the model description, or at least the most rapid variations, so that a time-
invariant model (or at least one that admits quasi-static coefficients) can be used for the basis o-a-
coiputationallT advantageous filter. Furthermore, a given problem can often be decomposed via singular
perturbations [13-19] into a number of simpler nested problem, with "inner loops" operating at fast sample
rates to estimate (and control) "high frequency" dynamics states (assuming slower states are randomconstants) and "outer loops" operating with longer sample periods to estimate (and control ) slower dynamics

(designed assuming that "faster" states have reached steady state conditions).

The number of multiplications and additions required by a filter algorithm can be minimized by trans-
forming into a canonical state space reoresentation, since the resulting system matrices embody a hTlg
density of zeroes. Obviously, one might also atterrpt to reduce the computational burden by increasing the
sample period of the filter, if performance allows this option.

The methods discussed up to this point have involved the generation of a simplified model, with subse-
quent filter construction. It is also advantageous to consider approximating the filter structure itself.
Because of the separability of the conditional mean and covariance equations in the filter, it is possible
to precompute and store the filter gains rather than calculate them online. This precomputed filter gain
histoa~ can often be aeproximated closely by curve-fitted sinple functions, such as pewi constant
745-RtT-ons, piecewise linear functions, and weighted iAxponentialS. Thus, the filIter covariance and gain
calculations, which comprise the majority of the computer burden, are replaced by a minimal amount of
required computation and storage. Online practicality can be enhanced still further in the case of a
filter based on a time-invariant system model driven by stationary noises. In many such applications, a
short initial transient Is followed by a long period of essentially steady state constant gain, and the
approximation of using these constant gains for all time may be entirely adequate for desired performance.
Of course, there are some drawbacks to using stored gain profiles. Future gains do not change appropriately
when scheduled measurements are not made, due to data gaps or measurement rejection by reasonableness tests
on the residuals (1]. Nor can the prestored gains adapt online to compensate for filter divergence or a
system environment that is different than anticipated during the design phase [203. Finally, lengthy
simulations are usually required to determine a single gain history that will perform adequately under all
possible conditions for an actual application.

3. PERFOR64ANCE ANALYSIS

Throughout the prvious section, the critical significance of an "adequate* system model within the
filter structure was stressed. To assess the capabilities of various filter designs relative to each other
and to a set of perfoawnce specifications, one must have at his disposal a means of producing an accuratestat istical portrayal of estimation errors omitdbeach filter in the Oreal world" environment

out actual y bul ding and testing-eiach-In the -reaI worl V. A performance analysis as depctec i n Fig. I

- ------ ----------------- I

, Fig. I Performance Evaluation of a Kall~u Filter Custga

i | i .
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fulfills this objective by replacing the "real world" measurement generation with the output of the best,
most complete mathematical model that can be developed, called a "truth model" or reference model [1,21-24].
Extensive data analysis, and shaping filter design and validation are expended to ensure that this provides
a very accurate representation of the "real world", since the ensuing performance evaluations and systematic
design procedure are totally dependent upon this fidelity. For example, a very good generic model of the
errors in an inertial navigation system (INS) has been constructed in the form of a linear model of about
70 states driven by white Gaussian noise [1,6,21,25-29]; thorough laboratory and flight testing of a
particular INS allows complete specification of the model parameters to yield the "truth model" for that
particular system. On the other hand, the design models used for the basis of operational aided-INS Kalman
filters often represent these same characteristics with 15 or fewer states, with less but acceptable
fidelity.

The truth model is composed of a stochastic differential equation for the n -dimensional state process

%(t), where the subscript t denotes 'truth model", and an associated output eq~ation to generate the "true"
S pled-data measurements z (t ) in Fig 1. If the truth model itself is a linear model, then it can be
expressed by equations of Ei Ioof() -(7), but with subscript t added to all variables:

"t(t) =F(t)xt(t) + B.t(t)u(t) + .t(t)wt(t) (18)
•'•(: t(ti) =H~t(ti).xt(ti) + _vt(ti) (19)

where w (t) is zero-mean white Gaussian noise of strength Q+(t) and v (t ) is discrete-time zero-mean white
Gauss-a-f noise of covariance _t(t ) and independent of w (t )Is ;scribed as Gaussian, of mean
. and covariance P These relations do not yet accoAnt for thR feedback from the Kalman filter as
•dicted in Fig. l; i16e required modifications will be described to simulate such feedback of filter out-
puts to the "real world" for control purposes. It is also possible to consider a nonlinear truth model, as

= fj[x(t), u(t),tj + Gt(t)!(t) (20)

)i, t(ti) t h[2ý(ti) 'ti] + A t(ti (21)

with the statistical description of uncertainties given by (x{ , p , QP , R as before. In fact, even
more general Ito state stochastic differential equations canW A : u atlowing G to be a function of

as well as t, to produce useful Markov state processes [1,20,30,31].

It is desired to achieve a meaningful comparison of filters that may differ substantially in state
dimension and internal model specification, when each is subjected to the realistic measurement environment
generated by the truth model. However, for any given application, there are certain variables of critical
interest no matter which filter is under consideration, and every proposed filter must be able to provide
esTimaes of these quantities or variables functionally related to them. For instance, in aided-INS appli-
cations, position, velocity, and often attitude variables are paramount, and any additional states in a
particular design tre of secondary importance. These p critical variables, denoted here as the stochastic
process y(t), will serve as the basis of the performance analysis. They are assumed to be related to the
filter states through a linear transformation, so that

(ti t) x -~ t~) (22a)

is the estimate of y(t) for any tr(ti lti), using Eq. (8), and

S• c(ti)(t 1) (22b)

_C(ti)x(t 1 ) (22c)

are the estimates of y(t ) before and after incorporation of the measurement z_(t1 ). Often C is tim-
invariant, and if its stlucture is [I 1 0), then y is simply the first p of th n filter states.

As shown in Fig. 1, the truth model state process x (t) can also be used to generate something general-
ly unavailable from the "real world": the true value otthe quantities of interest at any time t as

Xt(t) • _Ct(t)_!t(t) (23)

again in terms of a linear transformation represented by a p-by-n matrix C (t). Of course, Eqs. (22) and
(23) can be extended to nonlinear functions instead of linear, but the lingir function case is being
emphasized here, Having access to the true values y_(t), we can represent the true error couwitted the
particular Klimn filter in atteyting to estimate Mie quantities of interest, whe subjeced to FeaIs cm•¢~rnts., as " ........

(240)tt(ti'} - i(ti') - Yt(ti) (24b)

y(tl÷) - yi(ti+1 - Xt(tl ) (240)

over the satpl, period before sample time t , and just before and after wasuremnt intorporation at tir
ti: respectively, If impulsive feedback c4i(trol from the filter into the *real world system Is admitted
16,21-23,27]. then another error, corresponding to after both masurement updating and impulsive control

application, is also of interest:
S( Yc)-(ti~c -t(ti€) (24d)

where the superscript c denotes after control is applied. The objective of a .2erformnm allacsi to

charatterize the true error pvocess, Q. (24). statistically. W7t Mnte r o affaislI LlsJ47*Y'iTSsalqs of the error stochastic protess am produced by itmulation, men the %am4 statistics am
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computed directly. If the truth model is itself totally linear as in Eqs. (18) and (19) and if strictly
linear output relations (22) and (23) and only linear feedback are used, time histories of the statistics
themselves can be computed directly in a mean and covariance analysis [1,21,23]. The relations for con-
ducting either analysis will be developed after the "feedback gains block of Fig. I is specified moreprecisely.

One type of feedback is impulsive control or discrete-time reset, in which quantities in the "real
world" can be chin- instantaneously bised upon the estimate x(t +) For example, in aided-INS Kalman
filters, estimates of the errors in position and velocity indications of the INS are fed back to the INS
for correction by resetting contents of computer memory locations., Once x(t +) is computed, the reset
control is calculated as a function (assumed linear) of it, pD_(tl)x(t•),-aný after the control is applied,
the truth model state becomes

4t(tic) - At(ti) - _Dt(ti)•_(ti÷) (25)
The filter should be "told" that this feedback to the system has occurred, so its state estimate is modi-

fied as

x(ti+c) = +(t+) - D(ti)x(ti+) = [.-D(ti)]xti+) (26)

where the n-by-n D(ti) models the effect of feedback through the actual nt-by-n gains _Dt (ti) into the

system. This x(t 4c9 replaces i(t +) as the initial condition for the next time propagation. Some true
system variables ire controlled-ovr the entire sample period rather than impulsively, which can be
expressed by modifying Eq. (18) to

it(t) -F t(t)4t(t) - XAt(t)_x(t/tl~l) + AtMt1u(t) + Gt(tOwt(t) (27)

Again, the filter should be inforned of such feedback, so (8) is changed to
4(t/ti) L .(t)2(t/ti) - (t01(t/ti-l) + R(tOuRt

-[F(t) - X(t)fl(t/ti 1 l) + B(t)u(t)

Now consider Fig. 1 again: if the truth model is linear, then the entire system enclosed by the dashed
lines is itself a linear system driven by white Gaussian noises, To characterize the output process
e (t) from such a system model, one first characterizes the Gauss-Markov state process for the overall
ssStem - the augmented state process x (t) composed of both truth model states and filter states:

t 129)
ta -

From Eqs. (27) and (28), the augmented state process time propagation relation is

*) •F4(t)•(t) + B(t)u(t) + §(t)•(t) (30)

where

(t) (t)x(t)] (t) [(t)-

fr t 
ti

. •Solved forward from tife tl. with the Iintial conditions

[(t

Vt
Pisureaent update relations are obtained by realizing tMt the truth model state is unaltered by a

m ulrelnt,

!t(ti+) .t(tj')

and that the filter update can be written as

i =[•-KtlH~t)•Iti) K(td_)t(tJ)!t(tJ) + E(tj)Y•(ti) (34)

PuttIto these into aupwnted form yields

.1(tj*) A A(t) t) + a(tt )t(tj) (3r)

! A•(tl) y-tl•tj) E-l-K(t• H(l
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Simlarly, using Eqs. (25) and (26), the impulsive control update can be represented by

at R(t ~) 31 (38)

If feedback is not employed, Da(t 1 ) is simply an (ntin)-by-(nt~n) identity matrix, so that

4 Finally, the true error committed by the filter can be expressed in terms of the augmnted state
vector as

for any time t of interest, where. from Eqs. (22) - (24).

Equations (29)-(32) and (35)-(40) are the basis of a Monte Carlo analysis, allowing -simulation of many
individual samples of the true error stochastic process. By taking approprit expectations of these
results, mean and covariance analysis relations can also be produced. For simplicity, assume all quantities
are zero mean &nd concentrate attention on thecovariance analysis results (these are readily generalized
to the case of nonzero ý,and u). The time history of the error covariance

isfrthe copted as ameanso obtaining this result. mhe app~ropriate Initial conditions are (2

P4(t0) (43)

Propagating from sample time t to t1 is accomplished by integrating

fon~ard from the initial condition P (t 4 j as seen fron Eqs. (30) -(32). The measurement update
relation derived ffts Eqs. (35) 44dt3611%

*~ ~ ~ ~ ~~1 (t(t I~t NA~t * t )9 1 )4Tt)(5

From (37) and (38), the Impulsive control upd~ate is

P 4 (t 1  ' .4-41(46)

As the time history of P is generated recusively using (44) (46), thie desired true error co'jariar~ce can
be obtained simultaneoui-ty via

as derived from (39) and (40). Because the augmnted state %ystfra" i,~u s a lineir systte dri~vn by
* white Gaussian noist, the covariance relations ar* not coý40ed to th@ actual measurownt history reali.

zations. to it Is possible to perfotw this covarianice analysis a priori. without r9esorking to explicit
0imilatian of uWasurie~nt process samples.

i 1dto.isabie arotuyncmassaste l io fwhh hacal:niAlthough a covariance analysis is comutationally mort eff~cient than a ?5Iote Carlo study andz so srtould
he exploited. especially in initial design Oases. there at advantages to using the ftnt* Carlo apiroadi

war asIt ecaesavallable In the system evolution. Moreover, sir, erivrs in the filter algorithp that
saynotbe ead lyappareit In a covariance analysis due to squaring effects bocoew evident fron HMNte

4. USE OF PERFOWACE AM~tYSIS IN DESIGN

Onice P performance analysis capability is established, a *.ysteeatic iterative desiip~ and tradtoff gf
proosed filters can ýe conducted. Firit of all, performnwc analysis allows proper filter t, In
(1.6.22-24.27,30.32-351. The basic objective of tuning is to achieve the best possib'r-e etMato!VRnm Accu.racy
from a proPosed filter by seection of filter design paramters if P and the tim histories of q and R
(see Egs. (3). (5). and (7)). Basicall1y, P is the determining facltr Ir. the initial tran~ient perfins-
&act of the fltter, Wwtvna the q and I ftislories dictate the 1 aiger tern or stlaoy state perfonvwtce and
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time duration of transients. These covariances not only account for actual noises and disturbances in the
physical system, but also are a means of declaring how adequately the filter-assumed model represents the
"real world4 system. Therefore, the simpler and less accurate the m 1del, the stronger the noise strengths
should be set (through addition of "pseudonoise" to the noises associated with true physical disturbance
phenomena). However, it Is difficult if not inmossible to declare best parameter values a priori, and the
spicification is usually the result of an iterative search.

When tuning a filter, it is useful to comare the actual estimation error statistics, as provided by

5(t), to the filter's own representation of its error statistics through Its internally computed covari-

ance matrix given by Eqs. (9), (13), (14), and (16). Superimposed plots of "true* and filter-computed
root mean square errors in estimating individual quantities of Interest, as depicted in Fig. 2, are an

r fms error •

~~Trw" flnw ef or

Computedd mi eso

"•, "• '• '' ' •Tim•

I
en.ors:4I rne biFle Lomwdrwiia It s rerr: rcioo

T.te

fig. 2 Filter Tuning 7h.-ovollrfoinace knlysiv., (a) Filter umderetttiatet Its oMa
errors divergence. Mb titter overestimates Its amn errors; trtcklaa of
wasurl Owt RGIOte. (C) well-tuned filter,
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inv..luable aid to tuning and are often provided interactively by performnance analysis software [23,24].
If, due to mistuned noise parameters such as attributing inappropriately small uncertainty to the internal
dynamics model, the filter underestimates its own errors as in Fig. 2a, the filter "believes" its model
output too touch and does not weight the measurement information heavily enough. This can cause filter
divergence [1,22,36-383 if the discrepancy is significant enough. On the other hand, if inappropriately
smalT uncertainty and noise corruption is associated with the measurements, the filter overestimates its
ow, errors and weights the measurements too heavily, expeading too much effort tracking the noisy data and
not exploiting the benefits of its internal model enough, as in Fig. 2b. By choosing the noise parameters
so hat the overall time histories of actual and filter-computed rms errors match wcll, the actual rms
errors are effectively reduced at the same time, as seen in Fig. 2c. Allowing the filter to overestimate
its own errors slightly, thereby guarding against divergence, is a commonly adopted means of generating a
'conservative" or robust filter design, able to withstand modeling inaccuracies without becoming divergent
[39]. Game theoretic minimax approaches [40] have also been used to design filters with acceptable
performance over .i entire range of uncertain parameter values. Filters are also purposely "robustified"
in control applications in order to maintain closed loop system stability despite large variations in
system parameters or operating conditions frow those assumed during the design phase [41]. Another more
formal result than iterative pseudonoiseadjustment is provided by the concept of a minimum variance
reduced order estimator [42,43], but again the performance analysis should be used to indicate the true
capabilities of such a tuning approach. Furthermore, both offline tuning and online adaptation can be
enhanced by exploiting the fact that the residuals of a well-tuned Kalman filter based on an adequate
model should be a zero-mean, white Gaussian discrete-time process with covariance of
[H(ti)P(ti')HT(ti) + R(ti)] as computed in the filter in Eq. (14)[i,20,22].

Once a particular filter has been tuned, an error budget [1,22,33-35] can be established. This is a
depiction of the contributions of individual error sources to overall estimation errors, consisting of
repeated performance analyses in which single or small groups of error sources in the truth model are
"turned on" individually. If the filter under test were based upon the full-scale truth model, such an
error budget would suggest potential choices of states to neglect in a reduced-order design (increasing
the strength of appropriate noises to account for such deletion) that would yield the least performance
degradation. On the other hand, if the filter under test were a proposed practical design and tuned
properlý, this error budget would indicate dominant sources of error, which may warrant either better
models for error compensation within the filter or better system hardware (i.e., changes in the truth
model, if better performance is sought. Sensitivity of estimation precision to parameter variations
in the filter or system hardware can be obtained in a straightforward manner by repeated cov'ariance
analyses embodying the parameter changes, or adjoint methods [44] can be used to describe local sensitivity
to small varlatlons in many parameters simultaneously.

A systematic desiq'. procedure would first entail developing a "truth model" to portray actual system
behavior very acc-- ly, as vaiadated with laboratory and operational test data; if it is nonlinear, it
should be linearized about an appropriate nominal for later covariance analyses. The Kalman filter based
upon the 'truth model" is generated as a benchmark of performance; for this filter, there is no "tuning"
to be accomplished and the filter-conr'uted covariance is the desired true error covariance. Simplified,
reduced order system models are then proposed by deleting and combining states associated with nondominant
oeffects, removing weak coupling terns, employing approximations such as constant gains, and the like -
this part of the design effort requires substantial physical insights into the problem at hone. Then a
coveriance performance analysis of each proposed Kalman filter is conducted; as an iteration within this
step, each filter is tuned to prmvide best possible performance from each. A Monte Carlo analysis of the
most promising designs is generated, as is a performance/computer loading tradeoff analysis to select a
final dezign. This chosen design is then implemented on the online computer to be used in the actual
system; for numerical stability and numerical precision of the online fi'ter at modest wordlength, this
implementation is best accomplished in square root or U-D covariance factorization form [1,43,45-47].
Finally, checkout, any required final tuning, and operational test of the filter is performed. Even in
this last phase, performance analyses can be used to investigate and extend the results observed in online
filter operation [48]. Through such a design procedure, a logical decision process based on sufficient
empirical data is incorporated into the filter implementation.

5. EXAMPLE

Currently the Air Force is developing tactical weapoi systems that will df'o-d precislon standoff
delivery of ordnance. One such system is a glide vehicle with midcourse and terminal navigation anu
guidance accomplished through use of a strapdown inertial navigation system (INS) aided by a radioretric
area correlator (RAC).

STwo different low-cost strapdown inertial systems are tompeting for implementation. Although both use
conventional accelerometers to meastre specific force, one INS employs laser gyroscopes to measure angular
rates, while the other uses conventional dry gyros. This difference will be seen to have a significant
impact on the two systems' error characteristics and on Kal-nan filter performance capabilities.

As tCe glide vehicle flies a desired trajecory, the RAC provides a nunber of accurate position fixes
by correlating a radioretric "picture" of the terrain immediately below the vehiLle with a prestored
reference map of that region. The nLiber of such fixes is limited by the amount of computer memory
allotted for th3 reference maps, five or six being a practical upper bound.

A Kalman filter was designed [49] to combine the information received from the INS and RAC, to estimate
the errors being committed by the INS, and to feed back corrective signals to remove these estimated
errors. Because of the restricted amount of computer memory allocated to the Kalman filter (less than
1000 words), the proposeo design is very simple - two decoupled three-state filters. However, the adequacy
of such a simple design to meet performance sp.cifications was subject to significant question, so a
covariance analysis has been conducted to determine estimation precision capabilities in a realistic
environment [50].

Certain aspects of this study, such as RAC performance characteristics and a detailed portrayal of the
glide vehicle trajectory (basically a nonmaneuvering glide with terminal pitchover and descent), are not
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available for public release at this time. For this reason, the analysis results are presented in the
form of percentages or unscaled graphs.

The ._oposddsig is actually composed of two decoupled, three-state Kalman filters, each maintaining
estimates of the INS position, velocity, &nd attitude angle error states along a single coordinate direction
(east and north are the chosen axes). Thus, the six state variables being estimated are 6x , 6Nx- east
and north components of the error in the INS-indicated osition; 6v 6v in INS tdicated
velocity, e' Cn -errors in INS-indicated attitude (tiflts). es n errors

The dynamics model upon whivh the filters are based is

[!X~ [0 1 0] 0x 0] 1e

Sve0 0 [9 'I +1 (48)

L nJ L[ h/Ro 0  ] LOn L 1 1

and a similar model for %xi, dVn, and 0 . In this equation, g is the magnitude of gravity and R is the
equatorial radius of the E rth. The drAving term w is a white Gaussian noise to model accelerAtion-
level errors, and w 2 is an independent Gaussian nole to model errors associated with attitude error
angular rates. Thif equation is in the form of Eq. (4) with constant F and G and B =- 0, i.e., a linear,
constant coefficient, stochastic differential equation driven by statio'nary zero-mean white Gaussian noise
with constant strength q in (5b).

The sampled-data measurements made available to the filter algorithms are generated by differencing
INS-indicated position and RAC-indicated position. For instance, INS-indicated east position would be the
true position plus the error state dxe:

Sxe-iNS Xe TRUE + &xe

whereas the RAC-indicated east position would be modeled as the true position corrupted by white Gaussian
noise v:

Xe.RAC ' Xe.TRUE - v (50)

Differencing Eqs. (49) and (50) at sample time ti yields

z(ti) -Xe-INS(ti) - XeRAC(ti)

d Xe(ti) + v(ti)

, xe(ti)1

1l 0 00 Lsve(t;)J + v(ti) (51)

This equation and the corresponding result for the difference of north position indications are of the
form of Eq (6) with constant H ano v being a scalar discrete-time zero-mean white Gaussian noise with
tiue-iarying autocorrelation is in (7).

Formulation of a viable system rcpresentation as a pair of independent three-state models depends upon
insights atid assumptions closely tied to the structure of both the full-scale INS error model and the
measurement error model. First, the generally accepted nine-state model of INS error characteristics, in
which position, velocity, and 6ttitude error about three coordinate directions (east, north, up) are
totally intercoupled [25-29], can be partitioned according to the state subsets (ox., dv6v 4n),
(6x, ,dv . o ), * , and (Ox , dv ). The 'ast set is only weakly coupled to the fifst s~ven states, and
in act is titally decouple 8 froM them if the vehicle were at rest and the Earth were nonrotating. More-
filter, so these two states are ignored.

Under the same assumption of the vehicle at rest on a nonrotating Earth, the first three sets of states
also decouple, with the first two being characterized by Schuler oscillations and depicted as in Eq. (48).
When the vehicle-centered east-north-up frame moves over a rotating Earth, response mode modification and
intercoupling occur. But the error oscillations are still Schuler dooinated since the Schuler angular rate

O is sthntficatly greater than coupling terim on the order of Earth rate a relative to inertial
space and Yohicle position angular rate relative to the Earth (i.e., velocity component divided by R%); and
Schular rate squared dominates vehicle position angular accelerations. Cross coupling occurs among the
three attitude error states pmdominantly due to nonzero Earth rate and výhicle velocity, and the rate of
change of velocity error states couple into those attitude errors through nonzero specific forc. For
instance, term to be added to the rght-hand side of Eq. (48) include

"u0 Ie e]

0 (f-g) fn #n

0~ ~u



where f and f are specific force componentsi and at and wt are components of angular rate of the east-
north-uOl franenwith respect to inertial space; addlt~'onal c4oss-coupling effects also develop among the
nine error states. The uncertainties w and w in Eq. (48) partially account for these neglected terms,
though in a rather crude manner. Were Vnot 16the severe computer memory restriction, more explicit in-
corporation of these effects and inclusion of the azimuth error state ý would warrant attention as a
means of enhancing~performance. Especially for the application envisioned here, in which flight is along
a rather benign glide trajectory, the simplistic model given in Eq. (48) might well suffice.

Decoupling into two separate filters also requires that the measurements introduce no nonnegligible
cross coupling. In fact, the ireasuremont gradient matrix H associated with the full-scale INS error model
does not intercouple the two horizontal channel4 with each other or the vertical channel. Moreover, if
v (t ) and v..(t ) are the measurement noises associated with east and north pasition djfferences, as in
Els.1(51) ani (b), then the equiprobability ellipsoids for the vector [v1(ti) v2 (t*j]' must nither have
their principal axes aligned with the reference coordinate directions or be (nearly) circular-, so that
there is no cross correlation to intercouple the two horizontal channels. This poses no difficulty for
this particular problem.

The Kalman filter based upon a model described by Eqs. (48)-(51) is given by Eqs. (8)-(16). To specify
the filter algorithm completely, the dynamic noise strength _Q in Eqs. (5), (9), and (13), the measurement
noise strength tire history R(t.) in Eqs. (7) and (14), and the initial state covariance P in Eq. (3) must
be established for both filters! Finding the best such values iteratively t~'rough a procegs of filter
tuning will be discussed subsequently.

In actual operation, the filter (the two 3-state filters can be viewed as a single decoupled 6-state
filter) is driven by measurements L(t.) from INS and RAC hardware, and provides estimates of the states,
- ~,t which are used as corrective leedback to the INS. For analysi proses, the "real world" environ-

meiis replaced by a "truth model," as in Fig. 1, and the quantitie ftinterest y are the six states
being estimated.

The truth model required In the performance analysis can be described by (18) and (19) with B = 0
it 1, and constant. Table 1 presents the 46 states of the truth model for the laser gyro sylItemli

Table 1 Truth Model State Description

I.aser gyro INS system Conventional gyro INS system
State PO0 term Qterm P&0 term Q, tcerm

Hask INS:
Position errors (3) (1 50Dft)' 0 (1500 ft) 0
Velocity errors (3) (2 ft/s~z 0 12 ft/s)2  0
Attitude errors (3) (0.5 millirad)2 7.6xi1 ' (0.5 millirad)z 0

rad' /s

Acceltrometeriý
Acceleromvtcr biase(31
(day-to-dlay nonsrepeatablllty) (250,sg)z 0 (20(0jl) 0
Accelerometer scale factor
errors (3) ISM PPMPt  0 (405.6 ppm), 0
Accelerometer Input axis
misalignmensst(6) (l0arr'S,) 0 (30 arc-s)'
Accelerometer blasts 10)
(T1 - 60MItR) (40ASg1 2P,,/ r, (64j)a' ZP,0IT,
Accelerometer biaes (3) 2W'2~, o.i

GIravity knowledge: 20)(al pOlt(wes) 2od
Gravity deflections (2) 2#l(al P 0,d 2~~)la
(d, l 1ts. mi.) (l7tpa 4(noetls) (l7,&g)(Ooethl
Gravity anomsaly (II
(d, - 60 n. mi.) osss~l. 1Pe,0tsdj (35sx(5 ZP,0V/tj

Uyrogý
Oyro drift rate blasts (3) (0,09t±S/tt)' 1.47 x 10 -I (2.OdewI/slJ~roll axis) 0

rod2 /At (t.33 deg/h)'(otha two)
Gyro scale factor error, (3) (100 stM), 0 (500 pimil 0
Gyro inpust aisk miltpagntstt (6) (6mvc-01 0 (30 arc.) 0

Gyro drift rate (3) .... , (0.2 det/hl' (06' 2PIO/Tt

IT) - IS mitt) (0.3 des/h)3 (its.)
trg~wltledhift coeflfeckrsl(6) . (1.0dig/h/till 0

* 3.sws i nl adea eeicleletst() . . 0-1oghs
1 1 0

RtAC:
RIACblgaie(2) pk(i.010ftack) 0 P,5 (alongtytack) 0

Pk(eroestrbek Pa, (crowatradli

Althmetebas(1
(d- 2n0 mlm.) OOIS00t lPPts/d (Sot5W 2P, e/d

Aliaotwseleeeo tto I) (0.01)I 0 (0.00)'1

[29,50-52) and the 61 states corresponding to the conventional gyro system (29,50]. Associated with each
state are its initial variance (appropriate P -diagonal term) and white driving noise strength ( ignal
te rm) ; bo th P and am± assumed to be dia~8ai. For states that are modeled as random bias p cesses

(theOutpts T un~n ntegrator shaping filters), the appropriate P term is given and h0temi
givn a zeo. or states ta are adeld as first order Harkov procestls (outputs of r Or

te term is described in terms of the P term and correlation ti Tnsca
swilner ast i ld sationary processes.

The frtnine states are the variables used to describe the *rror characteristics of an INS. Although
eahISunder consideration is a strapdoin system, this errmor model can be expressed conveniently with
resec toaneast-north-up coordinate frame f26,29]. The terms associated with attitude errors are

due to gyrto drift and will be discussed subs~uently.



Accelerometer errors are described by means of a day-to-day nonrepeatability bias, scale factor error,
two input axis misalignments, and two first-order Markov process states for each accelerometer. Un-
certainty in the knowledge of gravity also enters the truth model state equations at the acceleration
level. The errors between the true geoid and the assumed ellipsoid for INS navigation computations have
been described by means of first-order Markov process models [29], with mean square values and correlation
distances as described in Table 1. If a correlation distance is denoted as d and the vehicle velocity
magnitude as v, a corresponding correlation time is generated as T = d/v, thereby yielding the 2t term
expression in the table.

Gyro errors are depicted by a drift rate bias state (or Brownian motion state for the laser gyro,
i.e., the output of an integrator driven by white Gaussian noise), scale factor error, two input axis mis-
alignments, two first-order Markov process states, two g-sensitive drift coefficients (spin and input
axes), and one g2-sensitive drift coefficient (major spin-input coefficient) for each gyro. For the laser
gyros, only the first four of these nine states are included, since the others are essentially nonexistent.
Another marked difference from conventional gyros is embodied in the drift rate model. A typical gyro
drift rate model is composed of the sum of first-order Gauss-Markov components with an additive white
Gaussian noise. In conventional gyros, the time-correlated contributions dominate the very wideband
(white) component, and the latter is often neglected. However, for laser gyros, the wideband (modeled as
white) component predominates; its noise strength is given by the _Q terms driving INS attitude errors in
Table 1. A final difference of the two gyro types is the set of multiple table entries for certain con-
ventional gyro states. On the Markov process states, oav denotes output axis vertical, while iav means
input axis vertical. The roll axis gyro drift rate bias entry is higher than the others because a different
gyro design is employed to withstand and indicate the larger range of rates that can occur about this axis.
In the laser gyro INS, the gyro sensitive axes are canted off from the vehicle body axes to distribute
high roll rates among three identical gyros.

Although Table 1 shows accelerometer errors to be very similar in the two inertial systems, the gyro
characteristics are significantly worse in the conventional gyro INS. The low-frequency power spectral
density value of the Gauss-Markov drift rate components in the conventional gyro is three orders of magni-
tude worse than the laser gyro white noise component. Moreover, drift rate biases, scale factor errors,
and misalignments are considerably greater; and the g and g2 errors have no counterpart in the laser gyro
system.

The errors in the RAC data are modeled as a corruptive white Gaussian noise plus a bias. This is a
necessarily unsophisticated model of RAC error characteristics, since only sparse and incomplete perform-
ance data were available at time of truth model development. Nevertheless, these data were sufficient to
estimate appropriate noise strengths and to indicate that bias effects were not negligible. The strength
of the two-dimensiona; white noise, It in Eq. (19), was found to be well modeled as

_Rt(ti) = h(ti)] 2 (52)

where h(t ) is the vehicle altitude and e is a parameter with classified numerical value. Each bias was
modeled al a random constant with mean zero and variance as shown in Table 1, again the numerical values
being classified. Although physical reasoning could lead to altitude-dependent variances on the bias
states as well, the available data were not consistent or complete enough to warrant this formulation.
Because high statistical confidence could not be placed in this model, a study of performance sensitivity
to bias model parameter variations was deemed essential; this will be discussed further in the analysis
presentation.

Finally, the altimeter errors are described in terms of a first-order Markov process noise plus a
scale factor error. The altimeter is used to damp out the inherently unstable vertical errors in the INS,
and so its errors drive certain INS error states in the truth model.

The covariance anal sis technique was first used to tune the proposed filter for use in each of the
two INS/ system configurations L50]. The filters' P a-n-d time histories of I and R were iteratively
modified to yield minimum rmss values of the estimationlrror e components for all time of interest. For
this application, terminal position errors ire especially important, but the entite history of all errors
must be considered to preclude being outsid! the bounds of a prestored RAC map at an update time and to
insure sending proper corrective control commands during the terminal phase of flight.

Figure 3 plots the rms error (in log scale) in the east position estimate provided by the filter tuned
to the laser gyro system. To aid the tuning process, these "actual" rms errors were compared with the
filter's own representation of its errors - its own computed covariance ?_. Despite the simple filter form
and the fact that a constant Q is used for all time, the filter-computed ms errorhistory essentially
duplicates the results shown in Fig. 3. Moreover, this condition does effectively yield the best estimate
precision. The results for the other five filter states, and those for the conventional gyro system, are
very similar.

For computational simplicity, it was proposed to approximate the integral term In Eq. (13) by a
diagonal matrix [49]. The original such design was found to be severely out of tune, and even the best
tuning achievable with a diagonal matrix form yielded noticeably degraded performance. The degradation was
naturally least in the channels for which direct measurements were available, I.e.. position errors, and
these are the estimateF of primary interest for this application. However, the computation of three off-
diagonal term in a symetric 3x3 matrix is not burdensome. Moreover, a fOllowup study has indicated a
substantial increase in importance of these off-diagonal term for obtaining good performance along more
highly dynamic trajectories with optimized measurement sample times. Therefore, weapon system development
and testing was pursued with the design changed to incorporate these term.

An i was generated to depict the contributions of individual error sources to the rms errors
throughoutt vhicle flight. Once the filter was tuned, repeated covarlance analyses were conducted,
each with a single error source removed. Table 2 presents the results for im position errors at the
terminal tim. Fro this table, it is evident that the RAC errors have the greatest influence on estimate
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precision at the terminal time. This is caused by the extreme accuracy of low-altitud RAC position fixes
and the fact that the last two fixes are taken shortly before the end of flight to maximize the benefit of
the limited number of updates. Error budgets for estimation errors earlier in the flight reveal an increased
importance of INS sensor errors.

Table 2 also reveals that the laser gyro INS configuration outperforms the conventional gyro system, as
would be predictable from relative precision of instruments as described in Table 1. Also, the white noise
gyro drift rate model in the filters is appropriate for a laser gyro, whereas a first-order Markov process
model. requiring an additional state per filter, would be a significantly better model for a conventional
gyro. The table also shows that the gyro errors in the conventional INS system play a care dominant
relative role in degrading prformance than the same errors do in the laser gyro INS. These trends are
accentuated at earlier times in the flight, especially in the case of dynamic trajectories.

Because of the significance of RAC errors and the sparse amount of test data concerning bias errors
in thil'device, the sensittvivty of estimation accuracy to varying bias levels was analyzd. Table 3 demon-
strates the effect o varyringthe XC bias variance from zero to four times the value listed in Table 1,
These results and those depicted in Table 2 reveal that, if perfomance requirements are not met, seeking
a better RAg system would be more beneficial than imroving the INS precision. Similarly, if the filter
complexity could be increased, it would be most advantageous to incorporate a better model for the errors
in the RAC system position data.

Direct estimation of RAC bines by adding a fourth state to each filter is not feasible: adding the

model a wto Eq. (48), and modifying Eq. (51) to let i be (ax. * b + v), yields an unobservable system
model. Bastcally, the filter would not be able to provide vali destimates of I6e and b separately. IW-
proved estimation performance can be achieved by replacing Eq. (SE) with

L(ti) " ((e • + .



Table 2 Error Budget Table 3 Sensitivity to RAC Bias

% of terminal rms nay errors % of terminal rms nay errors
Laser Conventional RAC bias model Laser Conventional

Error source removed gyro INS INS

None (baseline) 100 100 s 95 90

(I= 1l.5•s of standard 100 1OD

laser error) 2 x standard 1 13 119
Accel errors 100 99.9 , , , ,, _,,,,,,, . .... ,
rGyro errors 100 98.2
Initial condition I00 100.0
RAC bias 95 96
All RAC errors 9 It

In the filter formulation, where R, scales with the variance of the RAC bias in the truth model. Although
bias errors are not directly compeMsated, the better model for rms measurement errors yields more proper
weighting of update information, and thus enhanced performance. However, these conclusions are based upon
the adequacy of the truth model depiction of RAC errors. Once enough performance data can be analyzed to
have statistical confidence in the RAC error model, the preceding modification and other means of enhance-
ment can be fully exploited in the operational filter.

Thus, because of severe restrictions on computer time and memory allotted, a very simple Kalman filter
was designed to update a strapdown inertial system with position fixes from a radiometric area correlator.
Nevertheless, its performance has been analyzed and found to meet specifications.

6. CONCLUSIONS

Attaining an adequate model upon which to base a Kalman filter is an essential aspect of designing an
operational online filter algorithm. Numerous methods have been presented for generating models and
filters of substantially different levels of complexity, state dimension, and performance potential.
Another integral part of a systematic design approach is the realistic evaluation of any proposed filter's
performance in estimating quantities of interest when subjected to the real world environment. Such
performance analysis capability has also been described, and once again the adequacy of modeling efforts,
here in the form of producing a "truth model" that accurately depicts the real world regardless of its
required complexity, is shown to be an issue of primary importance. The design process itself is composed
of iteratively proposing alternative filter designs, tuning each for best performance admitted by its
structure, evaluating error budgets and sensitivities to parameter variations, and trading off performance
capabilities and computer loading to yield the final algorithm for implementation.
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DESIGN AND PERFORMANCE ANALYSIS OF AN
ADAPTIVE EXTENDED KALMAN FILTER FOR TARGET IMAGE TRACKING

Peter S. Maybeck
Department of Electrical Engineering

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

SUMMARY

A simple extended Kalman filter is designed to track targets using outputs from a forward-looking in-
frared (FLIR) sensor as measurements. It exploits knowledge unused by current correlation trackers -
size, shape, and motion characteristics of the target, atmospheric jitter spectral description, and back-
ground and sensor noise characteristics - to yield enhanced performance. Monte Carlo performance analyses
ndicate that the ability of a nonadaptive four-state filter to track a realistic distant point source

target with an error standard deviation of 0.2 picture elements under expected tracking conditions sur-
passes the correlation trackers' abilities by an order of magnitude.

Although very accurate tracking performance is achieved under nominally assumed conditions, robustness
studies portray a significant degradation when the filter's internal model does not depict the target's
intensity profile or motion characteristics well. Background noise properties are shown to be of secondary
importance at expected signal-to-noise ratios. These studies emphasize the need for good models and
adaptivity within the filter structure.

In order to track air-to-air missiles at close range, an eight-state filter incorporates a modified
target dynamics model as well as online adaptation to target shape effects, changing target motion charac-
teristics, and maximum signal intensity. It is shown to possess considerable performance potential for
highly maneuverable targets despite background clutter.

1. INTRODUCTION

Current research and development efforts are examining several methods of tracking a target for the
purpose of depositing high power laser energy on that target in the presence of several disturbanjes.
These disturbances include any effect that can cause relative motion between the beam and target, such as
target motion, atmospheric jitter, vibration in optics mirrors, and sensor measurement errors.

One tracking method under investigation employs a forward-looking infrared (FLIR) sensor together with
a correlation algorithm to provide relative target position information to the laser pointing system. The
FLIR sensor generates averaged outputs of an array of infrared detectors as they are mechanically scanned
through a limited field of view. The digitized outputs can either be stored or displayed on a cathode ray
tube (CRT) in real tine, each output corresponding to the average intensity over one picturl element
(pixel). The horizontal and vertical scanning of the detectors through the FLIR field of view results in
an array of pixels called a frame of data, with normal frame rates on the order of 30Hz. Because of this
rapid measurement rate, attention can be confined to a pixel array smller than the entire frame for track-
ing purposes: an 8-by-8 array is a typical tracking window, yielding a tolerable amount of conputer
storage and loading.

The correlation algorithm (I - 4) first stores a complete set of intensity data from the FLIR outputs,
and then correlates those data with the new infotrmtion at a later time. In this manner, it estimates the
two-dimensional position offset from one set of data to the next. which can be used to generate commands
to keep the system centered on the target. This type of tracker needs no prior information about the type
of target to perform the tracking function, and so it is well suited to many general applications.

In many practical tracking problem, however, the type of target being tracked will be known, even if
it a very general sense. This Implies that certain target parameters such as shape, size, and motion
characteristics will either be known or could be estimated. Moreover, the statistical effects of atmos-
pheric disturbances on radiated wavefronts are known and could supply information to a tracker that would
aid in separating the true target motion from the apparent motion (jitter) due to these disturbances.
This separation is important since the wavefront of the high energy laser will not undergo the saw dis-
tortion in the atmosphere as the infrared wavefronts emanating from the target.

The purpose of this effort is to oxploit the knowledge about potential target characteristics and
atmospheric jitter in the design of an extended Kalman filter [5-7) to replace the current correlation
algorithm in the tracking loop. Initially, a simple extended Kalman filter algorithm is designed to track
a point source (distant) target with rather benign dynamics, based on FURR measurements assumed to be
corrupted by tepporally and spatially uncorrelated noises, and assuming all system defining parameters
have known nominal values [8,9]. Stction 2 establishes the required mathematical models and basic filter,
and Section 3 analyzes its performance capabilities In a realistic environment via Monte Carlo analysis
[8,9). It consistently ouLjcrforms the correlation tracker under nominally assumed conditions, enploying
knowledge unused by that tracker to yield the enhanced capability. Robustness studies are conducted in
Section 4 to indicate how much filter performance degrades when an accurate portrayal of the tracking
problem diffem from that assumed in the filter design [10,11]. Of specific interest are variations
in (1) the height, spread, shape, and orientation of the target intensity pattern in the FLIR image plane,
(2) target motion characteristics, and (3) background noise rms value and both spatial and temporl

. co-relations. This investigation provides insights into a prioritized list of design modifications and
online adaptation capabilities required to allow this type of filter to track highly maneuverable targets.
with spatially distributed and changing image intensity profiles, against background clutter. The sub-
sequent sections delineate specific modeling and adaptation methods to yield a filter capable of accurate
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tracking of an air-to-air missile at close range, with performance evaluations of proposed designs achieved
by Monte Carlo simulations [11,12].

2. MODELS AND FILTER FOR BENIGN TRACKING TASK

As originally conceived, the problem of interest was accurate tracking of a point source target based
on FUR measurements, to provide appropriate inputs to a pointing controller [8,9]. In essence, this
involves determining the pointing errors in two dimensions from the center of the FLIR field of view,
given measurements of average intensity level over each of 64 pixels in an 8-by-8 "tracking window" array
provided by the FLIR at a 30 Hz rate. Many applications for which this system is being considered do in
fact require the acquisition and tracking of targets at long ranges. Because of these distances, even
very large targets appear as point sources of infrared radiation and can be accurately modele6 as such.
Due to the physics of wave propagation and optics, the resulting intensity pattern on the FLIR image
plane can be modeled as a bivariate Gaussian function with circular equal intensity contours. This is a
special case of elliptical contours as depicted in Fig. 1, in which a =a2 = Letting
(xpeak(t), Ypeak(t)) locate the center of the pattern relative to theglenta; of 9 e8-by-8 pixel array,

the apparent target intensity model for circular equal intensity contours is

Itt yx~ t) -Ima exp[ I (t32)
target(xy ax ([Lx-xpeak(t)) + [ty - Ypeak~t)} (1)

where the peak intensity value I and glint dispersion a were originally assumed to be known. The
apparent location of the target Wxactually the sum of efActs due to true target dynamics, atmospheric
disturbances, and vibration (denoted, respectively, by subscripts d, a, and v):

Xpeak(t) - Xd(t) + xa(t) + xv(t) (2a)

Ypeak(t) - Yd(t) + Ya(t) + Yv(t) (2b)

The objective of the tracker is to estimate xd(L) and Yd(t) so that they can be regulated by closed-loop
contrii.

A generally applicable model for benign target dynamics is desired, one which is simple and yet
accounts for the time-correlated behavior of realistic targets. To fulfill these objectives, an inde-
pendent first-order Gauss-Markov model in each direction was chosen, as produced by

xd(t) a -[lITd] Xd(t) + wdx(t) (3)

where T is the characteristic correlation timre of the target and wdx is a zero-mean white Gaussian noise
with aufocorrelation function

E (wdx(t)wdx(t+')} - 20d2/Td 8(y) (4)

so thAt oa is the rms value of x (t), and similarly for yd(t). By suitable choice of a and T , samples
from thest processes can be madedto exhibit applitude and rate-of-change characteristicg appro~riate to a
variety of long range targets as seen in the image plane. Again, these two parameters were originally
assuied to be known.

Atmospheric disturbance causes an apparent offset of the location of the intensity pattern known as
Jitter. Through spectral analysis of this phenomenon, it has been shown [13,14) that x (t) and y,(t) can
each be adequately modeled as the output of a third-order linear shaping filter (6] witft transfer function
.o [ (•( r )*l(s"w2)"2] , driven by unit-strength white Gaussian noise. Here W : 14 rad/sec,

w2 160 rd/sec, and K can be adjusted to obtain the desirtd rms Jitter characteristic on the output and
was assuved to be known.

Vibrations of the FLIR system can also cause relative pointing errors. However, for this study, it is
assumed to be on a ground-based stable platform, so vibration effects are neglected. For airborne appli-
cations and other scenarios, vibration-induced effects may warrant considerably more attention.

Thus, the target intensity pattern given by (1) has been fully described. However, this pattern is not
directly available for observation: It is corrupted by background noise and infi rent FUR errors first.
There are various forms of background noise, ranging from night sky background to clutter, i.e., from zero
to high tim and spatial correlations. FLIR errors such as theral noise and dark curTent effects can be
modeled as temorally and spatially uncorrelated noise. Letting 1 (t4) denote the measurement available

"�* Iat tim tt of the average intensity over the pixel in the jth row Aid Ith colum of the 8-by-8 array, than

2Jk(ti) I f targt(~x4y~ti)dcxdcy +mJOYtl) b ktti)
Sff.,,. ono

jkth pixel
whel A, is the area of one pixel, n b(ti) models the FUIR noise effects, and b (t ) models the background
effectsron the Jkth pixel. Arraying!he 64 scalar equations (5) in a single mikumment vector yields a
measurement model of the form

1(ti) - h•tw )timi + !1(ti) + b.(ti) (6)

wher x Is the output of an eight-state linear dynamics system model (one state equation as given by (3)
and three coupled linear equations to generate x . and similarly for the y axis), and the other vectors are
of dimnsion 64. From (5) and (6) it can be seer that t represents the effect of the point-spread function
given in (1). Note that, in such a formulation, the spatial correlationof background noise Is readily
represented by the off-diagonal elemnts of the 64-by-64 matrix E(((t)!- (tt )1.



The model just developed accounts for time-correlated dynamics, bandwidth effects of jitter, and other
pertinent characteristics. An extended Kalman filter could be based on this model to perform the desired
tracking task.

First, to enhanw. computational feasibility, the model can be simplified to some degree. In view of
the di:crepancy between the two break frequencies of the atmospheric disturbance shaping filter and the
greater importance of the lower frequency characteristics, atmospheric disturbance effects x and Ya were
approximated as the outputs of first-order systems with break frequency w, (thus preserving Oroper
spectral shape at the significant frequencies below ). This yielded a four-state linear time-invariant
model of the form

"_r(t)- Fx(t) + wt() (7)

with diagonal F and stationary white Gaussian input w(t). Thus, the filter equations for propagating the
state estimate-x and error covariance P from sample time t1 +1 (after measurement incorporation at that
time) to tI- (bifore measurement update) become 161:

S"ti) M ti(tl+l) (8)
S¢tiT

-P(tl') " -- (tl+-I)-tT + 9d (9)

where the state transition matrix o (also diagonal) and input covariance

titl
term i!ie tlacd by ITtare(XkY't)whr :cdc) sth oato(fIh0)ne o h

are constant and readily calculated once offline. Because of the low state dimensionality, linearity,
and time invariance of the d4amics qodel. .hese filter time prot,(qations are especially simple.

Furthermore, each measurement equation, (5), was sivail if-d as i.all. rirst, the two-dimensionat
integral term is %eplaced by Itarget(XcklycJlti) where (XckYcJ) is the location of the center of the

jkth pixel. Second, the combined effects of n and b in (5) are represented by a single vector v,
assumed to have spatially and temporally uncorrelatid components of constant and equal variance:

2. tio tj

These simplifications are made to reduce complexity substantially, but are subject to reevaluation if
perforMAnce capabilities are inadequate.

The large numb~er of measurements cause a conputational loading probl•, in the normal extended Kalman
filter formulation of the measurement update:

K(ti) EP( tliH(ti) Q.(ti)P(tf)HTlti) + (ti)]' (12)

P(t+) P(tt) - Kt(ti)P(ti_)t (13)
)• •;(ti+ • A(tl' _KtlZ(tl) - h[C•(t )til)) (14)

where h is defined in (6) and approximated tomponentwlse by Ita.t evaluated at the center of each pixel,
rather-than its spatial average over the entire pixel, ard H( t)f• the partial of h with respect to x,

evaluated a (t )T). e gain calculation In (12) requires in ion of a 64-by-6r matrix. To Orciiivent
Sthis burden, T12) ind (13) ame replaced by the equivalent inverse covariance form [6,71:

P'l (t +) - pllti') + NY (t, t,)_IlIHltt)(5
Ptitt) ,E [p--(t +)r- 16

_Kit ) (t +&H(tj R'l(ti). I7

This form only requires two 4-by-4 mtrix inversions online; R'(ti) is constant and is generated once
offline (it is also diagonal if (11) Is used).

3. P(AOVANCE ANALYSIS UNDER NONINAL COONDITIONS

The performance capabilities of the extended Kalman filter were evaluated and comared to those of the
corMlator algorithm by means of a Ionte Carlo analysis [Bo]. In this analysis, the full-scale model
developed In Section 2 was used to generate sempe-by-siple simulations, differing in particular realize-
tions drmm from random noise sournes. Sample statistics of the tracking errors cmmitted by tach
algorithm won compted on the basis of 20 simulation runs (chosen by observing convergence of computed
statistics to consistent values as the number of runs wne Increased).

This analysis was directed at four areas of primary interest:

1) Performzice as a function of signal-to-noise ratio S/N defined here as

IAS mxSIt (ms value of backgremd noie)
Ratios of 20, 10, and 1 were investigated.



2) Performance as a function of intensity pattern size (spot size on image plane) relative to pixel
size: Gaussian beam dispersion a was set to both 3 and I pixel.

3) Performance as a function of the ratio of rms target motion to rms atmospheric jitter: (Od/aa)
values of 5, 1, and 0.2 were considered.

4) Performance as a function of target correlation time: targets with Td of both 1 and 5 sec. were
simulated.

All of these studies were conducted under nominally assumed conditions: as the parameters defining the
real-world environment were changed, the filter was (artificially) provided knowledge of their value.
Thus, there was no purposeful model mismatch between the filt-3r and the actual tracking environment; such
important robustness studies are described in the next section. Also, the filter was implemented in
open loop for this initial analysis: computed offsets were net fed to a pointing control system to be
nulled out.

In order to optimize its performance, the filter must be tuned by adjusting the strengths of both the
dynamic driving noises and measurement corruption noises. For the simulations coiducted, the FLIR and
backgrotnd noises in (5) and (6) were assumed independent, spatially and temporally uncorrelated, and
Gaussian, so R in (11) was set equal to the sum of the variances for n and b A"quate tuning results
when the strength of the white noise terms and correlation times for bih the Pmulation and filter target
dynamics models are set equal, and when the rms values for atmospheric jitter for both models (of different
order) are equated. Fig. 2 depicts the actual versus filter-computed error standard deviation committed
in estimating atmospheric jitter in the horizontal direction for a typical case
(S/N - 10, og = 3, Od - 0a = 1, Td = 1); in this and all other cases, the adequacy of both the !,roposed
filter tuning and the order reduction of the filter dynamics model is demonstrated by the good agreement
between the two curves. Mien the signal-to-noise ratio ib decreased to one, the filter tends to under-
estimate its own error€ (by about the same margin it overestinites them in Fig. 2) using ths. tuning
philosophy described, due to the mismatch between true and filter models becoming more apparent; this can
readily be remedied by increasing the filter q, entries if desired. In fact, for a Pconservative" or
robust filter that is able to withstand modeli Tg errors yet still provide good estimation performance
(beyond the bare minim.u of nondivergent characteristics (151), one might want to tune the filter
purposely so that it overestimates its own errors somewhat (6,71. Had biased estimates been a problem for
this application, it could have been combatted by tuning so as to match filter-com~puted error variances
and sctual mean square errors [7); incorporating the "bias correction term" from second order filtering
[7,161 or implewnting an entire second order filter (5,7,161 would be prohibitive co(mputationally.

For the typical case and tuning philosophy depicted in Fig. 2, Fig. 3 portrays the sample mean error
tla (standard deviation) coemitted by the filter in estimating the target true horizontal location. By
comparison, Fig, 4 depicts the performance of the correlator algorithm under the same conditions. In this
case, both algorithms yield rather unbiased estimates, but the filter error standard deviation is only one
fourth that of the correlator after the S sec. simulation (and the correlator performance is steadily
worsening).

The filter tuning is independent of the Gaussian glint disporsion (spot aize). Furthermore, if S/N
is adjusted by changing only I in (18), it is also independent of the signal-to-noise ratiO. This
allows portrayal of performoncA'f a singly tuned filter in different trackingenvironients. Tables I and
I1 present a comparison of the two algoriths in mean and lv trxcking error for the three Fignal-to-noise
ratios examined, Table I pertaining to the case of a, - pixels and Table It to 9 I piril.

TABLE I
EA.M ERROR MIO 1o ERROR COMPARISONS WITH ag a 3 PIXELS

C¢or!itJD Tprker !E[tended KUlam. Filter
PeaA error le( error mea error I* error

S/N (pixels) (pixels) (pixels) (pixels,

20 Os 1.5 0.0 0.2
to 3.0 3.0 0.0 0.2
1 15.0 30.0 0.0 O.s

TABLE It
WEAN ERROR AND I* ERROR COMPAISOIIS WITH. I PIXEL

I ICgrtylatton Tr ier• ExtendedK&1lm_ Fil-tet

mloa error - o error wa error Io enrro

S/9 (pixels) (pixels) (pixels) (pixels)

20 7.0 8.0 0.0 0.2
10 8.0 10.0 0.0 0.2
1 15.0 30.0 0.0 0.8



These are results at the end of the 5 sec. simulations and each represonts an average of values generated
from Monte Carlo simulations using the three different values of o /o The extended Kalman filter per-
forms well as the signal-to-noise ratio is lowered, with no noticegbli change between the ratios 20 and
10, and exhibiting only a slight degradation In performance at S/N = 1. It consistently outperforms the
correlation tracker, especially at lower signal-to-noise ratios. In fact, the correlation algorithm
repeatedly exhibited a divergent characteristic in the more difficult tracking environments. As shown
in Table II, decreasing the dispersion of the Gaus.ian intensity function seriously affected the correlator
tracking, whereas the filter is essentialy unaffected.

When the ratio of ris target motion to rms atmospheric Jitter was decreasee from 5 to 1, the mean
filter error remained close to zero, but the lo value increased from 0.2 to 0.5 pixels tfor the case of
S/N - 20 o = 3, T = 1). Decreasing it further to -/0 = 0.2 resulted in a return to a level of about
0,2 pixels. 9 This seems to imply that the filter is abit e 0o distinguish between true and apparent target
motion more easily when there is a significant amplitude difference between the two effects. In all three
corresponding cases, the correlation algorithm had a Io error of about one pixel, so that even in the
worst case, the filter surpassed the correlator's tracking ability by a wide margin.

Increasing the target correlation time from 1 to 5 sec. had no discernible effect on the performance
of either tracker. However, a larger variation in T might well demonstrate that, as the characteristics
of the true target dynamnics and atmospheric jitter bJcome more distinctly different, the filteris better
able to separate the effects and enhance tracking, whereas the correlator cannot perform this function.

4. ROBUSTNESS OF FILTER

The marked performance improvement over that attained by a correlation algorithm was achieved by a filter
based on appropriate modeling assumptions, parameter values and tuning. However, this raises the robust-
ness issue of how much filter performance degrades when an accurate portrayal of the tracking problem
differs from that assumed in the filter design. In this section, first the sensitivity of the estimation
performance to large variations in parameter values within assumed model forms is depicted. Then sensitivity
to variations in th* basic structure of the appri>riate models is presented. Finally, insights into
required design modifications and online adaptation capability are suimmarized (10.11].

4.1 Sensitivity to Model "arameter Mismatches

The extended Kalman filter was based upon nominal paermeter values of

(1) maximum intensity level, I - 10 units (arbitrary scale)
(2) glint dispersion (spread),N - 3 pixels
13! target dynamics rms value,, o , (ms jitter}. I pixel

target dyramic correlation fime, T s sec
5) signil-to-no!.e ratio. S/N a 10 (i.l, rs backgrouid noise I • 0.1 1

When the actual enviroment was well "o•k'led by thesf parameter values. the Standard deviation of the
errors in estisatirnir 4ra.rt states x,, and y wore each 0.56 pixel. tud 0,5. pifel in estimAting atftmspheric
Jitter sttes xa and ya" Since all orrors On these studies were esantially zero-mean, there are also rms
error values.

Table Ill sumarizes the effect of varying the true, valtu of these parameters In the ftnte Carlo
s$.-tl4tion (20 runs per evaluation) without alterihn the values if the fi lter, The resulti"t actual error

TABLE III

ACT'UAL ESTIVIATION EIO0R AVERAGE STANI)VA
EOWVATION WITH NO9 L PAIWTER MISfATCAES

TPr. T4rt * Jitter o

S3,7 1.710 ,.5.5

I ,.70 I'S

9 " ' 3 3.,.53

9.55 .S5
2.6 1.6

.43! .46

20 AS b .57

de-(lsignl conditions. vailus assumd by fil ter
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standard deviations (averaged over the 5-sec simulations) in estimating target position and atmospheric
jitter are presentet. as each parameter is separately varied from the design conditions.

For the first two robustness studies, the real world I and a descriptors of the target intensity
profile were allowed to vary. When I is 1, the real FLXmgegr of a target much more highly masked
by background noise than the filter a'i~mes (S/N is actually I rather than 10), with resulting severe
degradati on. Such a low S/N in fact produces poor performance even without a parameter mismatch [8.9], so
this result is expected. However, when I is increased to 20, th,_ filter again has difficulty, apparently
due to searching for the wrong shape of i~~nsity profile due to mismodeled I .When the true target
intensity is less spread out than the filter assumes (cg 1 pixel). the realmtflage can move substantially
within the large envelope beinq sought by the filter , w~t significant deterioration in performance. On
the other hand, when the real image is larger than assumed, estimation accuracy is acceptable: the intensity
peak can be located rather precisely.12The filter assumed a rather benign target trajectory, as is appropriate for distant targets. In the
next set of robustness studies, the tnms values and correlation times of th-e first order Gauss-Markov pro-
cess were allowed to vary from design vallues. When Od/u is set xo 0.2, thE real target motion amplitudes
are less than assumed by the filter, and the estimation Accuracy is acceptable (the filter overestimates
its owni errors, and smaller errort. could be achieved with correctly assumed c ) Unacceptably large errors
are produced when the filter underestimates the dynamics amrplitudes (ad/aa Correlation time vari-.
ations by a factor of five have insignificant effect, yielding sofrewhat greater errors when the true target
exhibits higher frequency motion than assumed, and smaller errors when the trajectories are more time-
correlated than anticipated.

Finally, mismatches in the background noise model were Investigated, As in the case of varying
I changing the tins value for background noise affects S/N, but the trends in performance differ for
th to cases. Again, low SIN results in poor estimation ý(even wit~hout mismatches). However, when S/N
is highl &ndi Is properly modeled, the assumed target intensity shape is. correct while the corrupting
noise is actumaly less than assumed, and the filter tracks the ta'rget well.

4.2 Sensitivity te Variations in Model Structure

The filter under investigation wa- designed to track distant point targets with low angular rate and
acceleration capabilities, against a temporally aiid spatially uncorrelated background. Now it. is desired
to establish the robustness of the Fi lter to the structure of the assumed nodels, considerinS shorter
rAnge targets such that (1) shap effects become significant ard (2) target dynamics con becom~e More
violent. and also considering scenario,ý in which background noise can be highly correlated, both spatially
and/or temporally. One dops not necessarily expect accurate tracking by the filter under these very
different corditions, rather, the goal i, a pr-ioritized list of the cftararteristics of the now scvfario

* ~that cause the severest performonce degradation.

SIts Fact. rms errors double when true tkqual 'Intensity contours aft ellip5ses with major axis dimension
* ton times that of the minor axis. instead of circular as assumed: such an intensity p4tteni would be

representative of soft air-to-air missile targets. Ummodeled or misi'ideled target motion (otpecially
involving Persistent nfnnaero mean Velocities and accelerations. or vorying degrtes of maneuvering in o
single scenario) also have a ,vry serious effect on tracking ability. Extensive peformantt analyst%
showed that to*$ of tr~ick occurs consistently ~i~nitwr unmdodlod motion allows the target to mo~ve out of
tht field of vfev in one or tw saMoe perfceft, even with a closed-loow system s~aved Wbe to null out
asty tstiout-ed errors in a single s~pplo tvrio~d: the lack of a viable target velocity estioA.to is a
critical shortcoMing In this onvironmeti. filmdeled background no'se. diismrepreSnftd in spatial and
tiaporal corre~lation a,. moll as In vms value. does not have significant offect at moderat 'e'cte'J
value-% of 5/14. ror ex&Vlo, at the nominal 5/N Qf 10, introducing vxponefttial s.patial c:orrelation
tyvmtricaliy in all diroctiw with at corivletion listanc* of 1,5 pixels nr-a the res traickinT
orror by .03 plot&., while Intrud~cin,; both this spatial correlaticA and a long tt.iývoral correlAtion (s-%ch
that the correlation cteffitient fOr a qives pixel fnft one samole time to tho next is 0.15) increases the
Ms. errOr by only 0.1 pixel. 10hon S/ft is redluckd to 1, such coriviatim'*s cause consistent lots of track.
but, as already seen. wery low SIN dagdes porfoilbaO grviatly evon in the absonce of aisuadeliag in thw
fIIto r.

C 3 In~sfo obsnsnlfu

Thin, To g"enerate a filter capable of tracking air-to-aite .iVilt.0 irt backgrownd clutter, one must
include the following aspects in the design:

1) ability to tstioate size, shaikv, and orientition of the target ImavP;.
2) onlitne estimation of target Intknsity height I since it is sncertaia, varying, and lapertiAt

to filter tiesitjual Wetsration and tracking ver?-uanco;
3) 'ability to ptedict MUtuM 0esition bi vn'ntaininig at least a velocity estimate In additi - to a

004ition estimate (accele~ration estiwat*s smy well be requiredl also);
4) adaptation to maneuVer% (deotecting a *Anteuver not predicted by the filter. via residual zwnitorinq.

and respondiog Approp'riately at throuagh gain cha~nging).

I4~rtover. spatial and tesporal correlation of bictqround r~oblo reed riot te n.AV~de8 in tto filter for
egwteted SIN valvas. The next sections establlsh tthe designq anit ca;%abilities of a filter if1th these
featurs.

S. ELLIPTICAL. EQUAL 1IRMIttTY MTNOtJS

hAmlysis of real WitR data Indicated that air-th-atr missile ismage could be %*ll approxismatd by a
bivariate Gaustigi intensity pattern, but with elliptical, rather than circular, equal intensity cootours.



The ratio of major and minor axis magnitudes, (ol/o 2 ) as in Fig. 1, typically ranges from 1 to about 10,
depending on the aspect angle of the missile. Wqreo er, the magnitude of Gg2 varies with range from
target to the tracker.

For development of the filter, it was assubed that the semimajor axis of the ellipse could be aligned
with the missile velocity vector (ignoring small angle of attack and sideslip angle). Si nce target
velocity in the FLIR image plane is to be estimated, %x and Vy are used to establish the angular orienta-
tion of the ellipse major axis. Letting Axl and Ax2 be measured from (xpeak(t),Ypeak(t)) along the princi-
pal axes, the target intensity model (1) becomes

Itarget(axl,Ax2,t) = imaxexp" Y_(Ayl/0lg )2 + (Ax2 /1o2 )2)} (19)

where I a , I ol, and 092 are treated as uncertain (slowly changing) parameters to be estimated simultane-
ously wiA thl states. Various methods of estimating these uncertain parameters where considered
[7,17-24), including treating themE as additional states, multiple model Bayesian estimation for discretized
parameters, full-scale and approximated maximum likelihood methods, and least-squares techniques.

5.2 Estimation of 0g9 and g92

Very good performance and small computational burden were achieved by generating the estimates
og 1 (ti) and ;g2(ti) that minimized the quadratic cost

C[Z(tl), a_ {z(tI) - h_[x(ti'), tl; A]DT {z(tI) - h[x(tl), t1; a)D (20)

as a function of a, where Z(t ) is the measurement history {z (t 1).... z(t 1)}, a is the v-ctor of
uncertain parametirs to be-eslimated, and h is as defined In (6) but usTn 'Itaroet as defined in (19).
This can be viewed as a least-squares appriximation to a,. estimate based on maximizing the likelihood
function Zn f[k(t 1), z(ti)IZ(t_), a] with respect to both x(t ) and a Usually, one might seek a
weighted sum of quadratics 'f m•ost recent N residuals insteld of a-cost invoving only the single
current residual as in (20) for better performance, but the 64-dimensional measurement in this problem
provides significant spatial averaging to supplant temporal averaging. In fact, use of (20) yields very
acceptable results. A recursive gradient solution to minimizing (20) was implemented as

A(tl) = A(ti .l) ý k{ acT/m_~•t- •{il) (21)

i.e., a single gradient step is taken each sample perioo, with k a scalar step-size control value
(established empirically as 0.001) and with the partial derivative evaluated u0ing the currently available
state and parameter estimdtes x[t"; a(ti 1_)] and S(ti.1), respective~y. Many terms required in the evalu-
ation of this partial derivati•e re ilreay available from the filter gain computations. Fig. 5 is
indicative of the pe.-formance of this simple algorithm; it displays the first half second of a representa-
tive single sample time history of estimates of agl and of, when true values were a 2 5 pixels, I2
pixel, while the filter was initialized with 0gl • = " pixels. With these paral•er values, the mean
and standard deviation of errors in estimating al 4A oa 2 all assumed average values (time averaged over
the 4.8 sec following the 0.2 sec transient peridd obvioas in Fig. 5) of approximately 0.15 pixel. These
results were obtained for constant true 09l and 0 2, for a trajectory at constant radius from the tracker;
similarly good results were obtained when the aspect angle of the missile varied so that "true" og9 and
092 In fact varied.

5.3 Estimation of Imax

Although I a could have been treated In like manner, what was eventually implemented was a more direct
Suseof measurenen information that orovided excellent performance with vecy small computational burden.

Simply selecting the highest observed pixel intensity at time ti as an estimate of I x was explored, but
it suffi.l due to both background noise corruption effects and a bias even in the abrence of noise. If
there wers io noise, the maximum pixel intensity is the average intensity over the pixel closest to the
centroid oi the Gaussian intensity profile, which is less than the value Imax at the 'entroid. This bias
is a functi,. of the centroid location, Oa, and ae2, and can be substantial-for small aol and vg2.
Assuming the centroid is located at the Aihter of !he pixel, on the average, a bias function b(Wol, Oa2)
can be developed; for this feasibility study, a second-order polynomial fit approximation was uskd. Thus
an estimate based on a single time sample of measuremernt data is

1I(ti) - nlxlzk(ti); I <_ k < 64) - b[ 1l(til)-, ýg2(ti-)) (22)

and this is time averaged with previous estimates to reduce the variance due to background noise:

f(ti) - c f(ti-1 ) + [ I - C]l(tl). (23)

"Performance capabilities are indicated by a set of simulations in which the missile was flown on an iner-
tially straight trajectory such that at t - 3 sec, it was at a minimum range of 10 km from the tracker.
with Y - 500 m/s and v - 300 m/s as seen in the FLIR image plane (each pixel isa 20 urad square). At
that mAnimum distance, the "true" values were oal - 3 pixels, o 2 - I pixel, and for the whole simulation
"true" 'Max - 25. Selecting the highest pixel fn'tensity yieldtg an 1Iffax with mean of 24.47 and standard
deviation of 1.12' the latter statistic is comparable to the rms background noise of 9. Just tire
averaging via (235 with c - 0.8 but with no bias correction yielded mean and o of 24.53 anid 0.33. res-
pectively. Using bias correction only via (22) yielded 24.99 and 1.16 respectively, while using (22)
and (23) together resulted in a mean of 24.99 and o of 0.30. These results were achieved with simultineous
estimation of ai1 and ag2, with precision comparable to that discussed earlier.



6. TARGET MOTION (.LOlENSATION

6.1 Simple Six-State Filter

As indicated previously, at least the target's velocity must be estimated in addition to its position,
to predict its position one sample period ahead for appropriate tracking controller command generation. A
velocity estimate was also required in the previous section to orient the elliptical intensity contours.
The simplest possible dynamics model for FLIR plane motion that includes velocity states would be

"_(t) = v(t) (24a)

"(t) = w!(t) (24b)

with w white Gaussian noise with autocorrelation E{w(t)w T(t + r)} = Q(t)6(t), and Q(t) chosen (adaptively)
to provide an adequate representation of target meaneuverability. Such a model only increases the filter
state dimension from four to six, and the dynamics model remains linear. lhough computationally simple,
the filter based on such a model does not yield very good performance for this application. For instance,
Fig. 6 presents the meanerror± Istandard deviation in estimating horizontal position for a 20-run Monte
Carlo simulation of the inertially straight trajectory described previously, with true arax = 25,
agI = 5 pixels, a.2 - I pixel, and background noise rms value of 2. In fact, this plot corresponds to
a case of estimatTng Q online after an acquisition phase, as discussed subsequently, but is representative
of results in which _Q is artifically tuned offline at a constant value (after acquisition) for good perfor-
mance on this type of trajectory. The projection of the inertially constant velocity into the FLIR image
plane changes with time as the tracker rotates to maintain the target in the center of its field of view:
an uinmodeled noninertial acceleration is thus created, manifesting itself in the positive slope of the
mean error depicted in the figure. Moreover, velocity estimates diverge significantly over the last
second, yielding eventual loss of track if the simulations were over longer periods. That the trend in
the figure is due to noninertial acceleration was corroborated by tracking a missile at a constant range,
yielding essentially zero-mean error and c Z. 0.2 pixels for all time with no divergence. The tracker
control signals which cause the noninertial acceleration could be made available for filter compensation
and improved performance. However, less. benign target trajectories further justified the need for a
better dynamics model.

6.2 Preferable Eight-State Filter

As a result, an eight-state filter was generated that estimated acceleration in the FLIR plane as well,
as

_(t) v(t) (25a)
ý_(t) - A(t) (25b)

i(t) - w(t). (25c)

Alternative models of acceleration, such as an exponentially time-correlated process model (which intro-
duces an additional uncertain parameter, the correlation time) and a constant tuni-rate model (25,26] of

a(t) - - W2 V(t) + w_(t) (26a)

11(t) x k(t)/Iv_(t)12  (26b)

(which )ields nonlintar dynamics) were considered, but (25) was explored most fully because 1f its
simplicity and performnce potential. In a duplicate traicking environment as used to generate Fig. 6,
the eight-state filter produce4 much improved tracking performnce as indicated in Fig. 7 (without being
provided control signals for compensation).

6.3 AMsi jtlof

The premeding results reflect a filter noovided with perfect initial state knowledge, so recovery
from realistic initial conditinn errors w$s Investigated. To provide acquisition capability, the filt r
initial covridange P was assmdediagqn a with large entries correspcmding to target states: 25 pixel
2000 pielsZ/1ecZ lad 100 pixels /sec , respoctively. Further, the I values were maintained at a high
valwm (600 pixelsf/secS) for 0.5 sec after i itiallzation. With 8 vWsec true initial velocity error in
each direction, performance is as depicted in Fig. 8: acquisition is accomplished in about 10alf a econd,
followed by tracking capability as portrayed previously.

- 6.4 A tiv Tonirg

Adaptive estimation of the Opamics noise covarianco matrix was investigated to al0ow self-tuning to
an uncertain and dynamically changing environmet. The ability to adjust filter bandwidth online was
considered necessary because an air-to-air mismile can exhibit a wide range of dynamic characteristics.
Various methods of covaHaince estimation were consiAhred, Including #Axioas likelihood,. multiple model
Bayesisan adaptation, and correlation and covariance matching techniques {),17-24,27-29]. Due to perfor-
mance and computational considerations, the approximation to moxitum likelihood estimation first described
In 12?] was employed: if th* filter covariance propsgation and upd&a equ~ati are as given In Eqs. (9)
and (13), then an estimate of d(tti) is provided by

I )6T. + ,, T +
idt) (-/N) J.* f1EQX)t• ) VtJ -i P(t.la) ' (27)

where

Si t...- i..)..



Equation (27) can also be derived heuristically by noting that

E(Lx(tj)LxT(tj)} - K(tj)H(tj)P_(t) (29)

and substituting this and (9) into (13), and approximating the ensemble average in (29) by a temporal
average over the most recent N sample periods. To reduce storage requirements, a fading memory approxima-
tion to the finite memory result (27) was implemented as

q Pi k qd(ti l) + [l - k) l(ti) (30)

where Q. 1 (ti) is a single term from the summation in (27). The parameter k was empirically set to 0.8 as
a trade ff: k (O.8, 1.0) provides smoother estimates while ke(O, 0.8) provides more rapid response to true
changes in dynamics. On the inertially straight trajectory and similar benign trajectories, the filter
with adaptive d estimation performed approximately the same as a filter with artifical offline tuning to
a given trajectory.

However, this adaptation was insufficient for abrupt significant maneuvers. In one set of simulations,
the missile initiated a 20 g pullup at t = 4 sec of the previously defined trajectory. With a field of
view of 160 Prad by 160 prad, such an acceleration can move the image 3 to 4 pixels laterally in two sample
periods. Moreover, virtually all of the position information for the lateral dirpction (i.e., region of
high intensity profile gradients) is within I or 2 times a02 ( I pixel here). The 0, appropriately low
for the benign portion of the trajectory, did not respond fast enough to preclude losl of track. Although
the filter residuals were of large magnitude when the maneuver was conducted, the gains were too low to
weight them enough; by the time the gains grew, there was little overlap of the actual and predicted
intensity profiles, so the residuals were insignificant.

6.5 Significant Maneuver Indication and Appropriate Filter Response

To maintain track required several matrix coefficients (filter gain and/or covariance matrix P, as well
as _qd) and some state estimates to change significantly in a single sample period: for instance, true
elevation acceleration changes from 0 to 2400 pixels/sec2 when the lateral maneuver begins. One possible
variable for reliable and rapid indication and quantification of a maneuver is the scalar

6 (ti)Tlx(ti) = tr[Lx(ti)_xT(ti)] (31)

where

Lx(tI) s _(tp)HT(ti)Rl (ti((ti) - hE.(ti),t1 ]} (32)

and the filter gain shown in (32) is used bqcause of dimansionality considerations, as discussed in
Section 2. Since inappropriately stall P(t ) values is part of the maneuver compensation problem, and
since R(t,) is assumed diagonal, an alternative indicator is the magnitude or separate compone.nts of the
available' vector

4 *~i a t(ti)(!(ti) - htx(c).ti)) (33)
W re 4x(t) * P(t +)y(t1 )IR(t ). At tho sample instant after initiation of the 20 g maneuver, at
th! 4.(0 s4 c., botA 1(1) and tae elevation position component of (33) increased by an order of magnitude,
then returned to their normal magnitudes on the following sample instant, t • 4.07 sec (because the true
and projected images had already diverged far enough laterally, aOout S pixels, to generate essentially
no overlap and thus very small residuals). Therefore, a maneuver was detected by one of these indicators
surpassing a magnitude threshold, with the components of a](ti) providing dirction information about the
wurwdeled maneuver as well.

Upon maneuver detection the appropriate response is (1) to increase the filter gain directly, rather
than tO allow slow increase via estimation. (2) to Incorporate uodated state estimates for reprocessing
the previous sample period's sta * estimate tim propagation and for future propagation, and (3) to expand
the field of view (@.g., treating averaged intensities of 2-by-2 arrays of pixels, instead of individual
pixels, as filter masuremants). Increased gain was introduced by reverting to an acquisition cycle of
very high reinitialized P and high !ad for 0.5 sec thereafter. To reprocess the state propagation, a curve-
fit functlon was astabliihed for utmodeled position displacements as a function of a1. I , and the first
two components of 6y(t ); these displacements were assumed to be the result of an untelfi acceleration
acting over toe previo&s saple period. 11 a maneuver is detected at tim t , the acceleration state
estimates of 4.Vt. amre modified by these calculated increments, and i(t') re.outod. Incorporating these
changes postponei divergence for about 15 sample period. A further ad hoc adaptation used the six target
state comonrents of Ei(t+) - x(t;)] throughout the acquisition period as an indicator of unmodeled target
dynamics, which was twen adde N d0rng the next sample period to the standard propagation equations. This
allowed non4ivergent results for the entire simulation period. Expansion of the field of view was not
evaluated, but it is a useful mans of maintaining track at the expense of some resolution.

Although these modifications allowed track to be maintained, the required artificial introduction of
nonzero acceleration estivates points cut an Important shortcoming of zero-man acceleration models as
in (25) or expo•ntially tim-correlated process descriptions. The constant turn-rate model (26) has
been shom to be more reprsentative of many airtome targets at close range [25.263, so current efforts
are considering its inconpration Into the filter structure.

7. CONCLUSION

A simple four-state e4ended Kalman filter has been developed to track a distant point-souri, taroet
with benign dynamics, using outputs fro a fOrwrd-looking Infrared (FLIR) sensor as easurmts. As
thaw in part by Figs. 3 and 4, it consistently outperform the currently used correlation tracker, with
the most substantial Improvemeat being gained In scenarios with law sigoal-to-nolse ratio and/or smaill



target spot size relative to detector (pixel) size. The filter exploits knowledge unused by the correlationy tracker - size, shape and motion characteristics of the target, atmospheric jitter spectral description,
and background and sensor noise characteristics - to yield the enhanced performance. However, robustness
studies have revealed a serious degradation in tracking performance when the filter-assumed model does not
represent the actual tracking environment well, indicating appropriate design modifications to generate
a filter capable of tracking less benign targets in a realistic and more uncertain environment.

Figs. 7 and 8 are indicative of performance capabilities of the resulting eight-state adaptive tracker
for realistic but not overly harsh trajectories of a missile viewed at short range. Good tracking per-
formance is achieved on the basis of estimating target velocity and acceleration as well as position,
assuming elliptical intensity profile contours with major axis aligned with the estimated velocity vector,
and adaptively estimating Im , a 1 , a, and !J. To address more dynamic environments, detection and
appropriate response to maneuOer fnitigtion havd been investigated with some success, but rather tenuous
ad hoc modifications were required due to assumed zero-mean acceleration models. Current research is
concentrated on better target acceleration models and on different filter forms to exploit these models,
such as the multiple model adaptive filtering algorithm that probabilistically weights the outputs of a
bank of filters, each based on one of the alternative models. Also, work is being accomplished on a
generalization in which target intensity patterns are uncertain or irregular enough to discount a bivariate
Gaussian model and instead to preprocess the measurements to provide the entire h function adaptively to
the filter, as through spatial modal decomposition.
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TECHNIQUES FOR THE DEVELOPMENT OF ERROR MODELS
FOR AIDED STRAPDOWN NAVIGATION SYSTEMS
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SUMMARY

In order to increase the accuracy levels of the inertial navigation systems (INS) ad-
ditional external measurements were used, such as those provided by radar equipment,
TACAN facilities, MLS and so on. The combination of the different data is often carried
out by using the methods of Kalman filtering, which need sufficiently exact error models
especially for the INS. As far as strapdown systems (SDS) are concerned the development
of mathematical descriptions of the error behaviour leads to high-order models, because
the dynamic environment of the SDS has to be taken into account. However, for real-time
navigational computations it is necessary to provide low-order error models. In the paper
account is given of how adaptive low order error models were developed and adaptive fil-
tering applied. The results were checked by using measured and simulated SDS data.

LIST OF SYMBOLS

SUBSCRIPTS/SUPERSUBSCRIPTS

b body-fixed axes
n navigational axet
i inertial reference coordinate frame
e earth-fixed axes
x, y, 2 long, cross, vertical directions
N, Z, D north, east, down directions
ac accelerometer
gy gyro
syMbol vector expression

matrix
A true value + error

NAVIGATXONAL SYMBOLS

nb transformation matrix
8e, T bank# pitch and azimuth angles

angular rates
a accelerations
v velocities
q geographical latitude

geographical longitude
h height
!R, Re earth radii
g gravity
20, 4v1 angular or velocity increments
I Iearth angular rate
X track angle
y flight path angle
T, sampling period
t time

81B0R KINi COMPCrnTS

toy axes misalignment
Do fixed drifts
Do mass unbalance drifts
D" anisoelasticity drifts
W Dfixed scale factor errors

quadratic nonlinearity scale factor errors
D0 asymmetrIc scale factor errors
DAU angular acceleration drifts
Dowasoitnartia drifts

axes misalignment
bias

•fixed seale factor error
ansymetric scale factor error
quadratic nonlinearity scale factor error

So$: cubis nonlinearity scale factor *tror
*rues coupling



Hy angular momentum of the rotor
Agy rotor transverse moment of inertia
Cgy rotor polar moment of inertia

6hbar bias of the barometric altimeter

SYMBOLS FOR THE FILTER ALGORITHMS

& state vector
estimated state vector
estimation error

Sstate space notation of the error model (transitions matrix)
I time-discrete transition matrix
B, 2, Q covariance matrices

S- - gain matrix
x-, Pe predicted state vector or covariance matrix
H measurement matrix

qc, vv square root of the diagonal elements of the matrix Q

MATHEMATICAL OPERkTIONS

E expectation operator
Sx • cross-product

I identity matrix
error term

A difference term
f(x) function of x
S * dx/dt
xT, PT transponse of a vector or matrix
S' mean value

1. INTRODUCTION

Inertial navigation systems (INS) are used in civil and military aviation and are
needed in all cases where autonomous navigation is essential (space flights, missiles,
navigation on land and at sea). Up to now most of the INS have had a platform mechanisa-
tion: gyros and accelerometers are mounted on a platform that is isolated cardanically
from the angular motions of the carrier. A double integration of the accelerometer sig-
nals gives the ground speed and the position of the carrier. The heading and attitude
angles are contained in the directions of the gimbals.

If the sensors are *strapped down" on the carriers directly no gimbals and servo-
motors are necessary. This type of INS mechanisation is called a atrapdown system (SDS).
The accelerometer signals measured in a body-fixed coordinate frame are transformed to a
navigational reference frame by means of the gyro signals, This results in the following
advantages in comparison with the so-called platform systems /1/:
- simple mechanical construction
- the provision of accelerations and angular rates in body-fixed axes
- easy maintenance due to the modular construction
- the economical provision of redundancy by means of skewed sensitivity axes.
However, against these advantages must be weighed certain drawbackst
- increased demands on the efficiency of the navigation computer
- extreme demands on the accuracy of the sensors, which have to measure the full

dynamic environment of the SDS. In contrast to the platform mochanisation, the gyros
do not operate as sensors for zero signals.

The accuracy levels of the inertial systems are frequently insufficient on their own,
and for this reason additional external measurements are used, such as those provided by
radar equipment, TACAN facilities, MLS and so on, The strapdown stgnals are exact in a
short time period but the navigation errors increase with the time. The combination of
this INS error behaviour with the complementary error statistics of the radio signals is
often carried out using the methods of optimal filtoring. Here it is important that the
dynamic error behaviour of the SDS should be carefully modelled, i.e. described mathe-
matically. The conformity of the error model with the real error behaviour of the SDS is
of major importance for the accuracy level of an aided SOS. In the dEvelopment of suitable
error models it is necessary to find a compromise between, on the one hand, a mathemati-
cally simple description of the error behaviour that satisfies real-time computation re-
quirements and as far as possible creates no numerical problems and, on the other hand,
a determination of the actual error behaviour, including all important sources of error,
which is as accurate as possible. In comparison with the platform systems it is far more
difficult to find such a compromise in the case of SDS, since the sensor errors, and
therefore the system errors as well, depend to a very large extent o"- the 4ynamle en-
vironment of the SOS. According to the structure of a particular flight path it is pos-
sible for a few isolated sensor errors or a large number of different sensor errors to
have an effect at system level. The structure of the flight path can change several times
during a flight, e.g. if there are sections with only a few manoeuvres or even with a

* straight flight, or sections with extreme manoeuvres like the tezrain following flights.
An error model that conforms to the real SDS error behaviour for all posstbli cases will
thus generally lead to an unacceptably sophisticated error model with regard to the real-
time computations or numerical problems involved. In this paper the attempt is made to



solve the problem by using adaptive error models and adaptive filtering, thereby avoiding
some of the drawbacks of SDS. As an example measured and simulated strapdown data were
used to demonstrate and to check the methods suggested here.

2. TECHNIQUES FOR THE DEVELOPMENT AND CHECKING OF SDS ERROR MODELS

The error model that will be developed can only be checked properly if adequate crite-
ria are available to check the conformity between the model and real world. A high-order
error model often serves as a reference for discussing a simplified low-order error mo-
del that has been derived from it. The differences between the two error models can then

* be interpreted statistically in terms of covariance matrices.

A disadvantage of these techniques lies in the assumption of a linearized high-order
model as a reference model, which leads to problems in the case of SDS. It is scarcely
possible to express nonlinear algorithm errors of the strapdown navigation equations,
for instance, in a linear state space notation. In these conditions it proved to be bet-
ter to include nonlinear effects in a SDS simulation and to interpret the results of
the simulation as a reference system corresponding to the real error behaviour. It is
then possible to compare the sensor and system errors estimated by a Kalman filter that
is to operate on the basis of simplified error models with the known errors derived from
the simulation results. It is also possible to check the covariance matrix P from the
self-diagnosis of the Kalman filter by determining the expectation values wTth reference
to the differences from the simulated and estimated errors.

In the subsequent chapters both methods are applied in a complementary manner. The

construction of the simulation of a SDS is described in detail in /2/.

2.1 GENERAL ERROR EQUATIONS OF STRAPDOWN NAVIGATION SYSTEMS

The derivation of the strapdown error model is based on the navigation equations, a
knowledge of which is assumed here /3, 4/. The equationa can be given by

ib in
S- b (9b - -b - (I)

0 0

* 0 W / (26)

SA XEl/I/o8(t) (7)
SThe individutai navigation equatloe a• o diifoerent~atcd wltil respect to the errorsm

(nb , 6, , , 6h x3• v +b (8)

and the following relation is used

(Wcot 511 aln) (9)

• Then, after carrying out numerous transformations, approximations and rearranging.,
one obtains the linearised system error model in a state space notation. The vertical
speed and the vertical .position must be aided by the signals of a barometric altimeter

/5/, The causes of sensor errors that can be identified are listed in Tab. I below. The

NCR 4633A-IPZ accelerometer, and axe interpreted as incapable of flurther compensation.
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type of egy D° Dg Dgg DW DW• I D DA D2
gyro error

magnitude 6arcs 0,01°/h 0,020 /h/g 0,03°/h/g 3.10 3-10 3-.106 4-.1 s 410 s

dependent on W - a a W j 1-1 ° W

:• ~~type of a O B ~ g ~ ~
acclerometer c ac B Bg B9 B 3g B2g

error

magnitude 6arcs 10 g 10 10 10 /g 10 /gq 10g

dependent on a - a lal a a a

Fab. 1: Sensor error coefficients

"The sensor errors listed in Tab. 1 cause misalignments or velocity errors at the
system error level corresponding to the integrals

41• t

-En = f Cnb(t) " -b(t) dt (10)
0

tdv n - of C ob(t) ad a (t) "dt (11)

Some of the sensor errors can be ignored as regards their effects at system level in
the case of realistic flight paths in which high angular rates or high accelerations only
occur in periods that are substantially shorter than the total flying time. Is regards the
unbalance drift of the gyros

9 0 0 1 a~~
-~ [,a 0 g 0 

12

a misalignment corresponding to the fixed drift of 0.01 0 /h only occurs if the horiaontal
acceleratiois a•, a1 are 0.5 g for the whole duration of the flight. In realistic flight
paths this is only possible by means of constant manoeuvring. However, this requires high
angul-r rutes which, in combination with the misalignment of the sensitivity axes of the
gyro tol r .

V gy Y(13)

contribute so Mtuch to thr' misalianment at system level that thu unbal~nce drift% can be
ignored. Thus i•n arqul•r ratv uf only I 0 /seeo produces, with a misalignment of 6 arcs, A
drift of approx. 0.1 0/hx accordiin' tv q1) The drift caused by tho vertical component
is a constant O.01 01h in f tht•, thant cn~ain fewer ttnoeuvres and can be considered as
a fixed drift. of the gyros. A corrapondipic ctosideration holds good for the a•ntotlasti-
city driftA. Mhts roquiren constant horiontat Accelerations of 0.3 9 to product a drift
of 0.01 O!,. and cavr therefore also be ignozed at system level.

Th* error mAol for the accelerometers caa 4lso be simplified consldcrabiy for rea-
llstic 2giht path on the batiu of Eq.{11). I.n .•i, 1. the individual errors are repre-
senttti a* functiona of the maximum accelerations tiat v-ýeur. For accelerations up to a
t xI.-t4 of 1 9 I g •a tufficient to zodel the blas and ihe a•os masAltgment of the ac-
celetreuttrs, since oven witb a constant acceleration of 1 4 the errors are *till ten
tim*r smaller.

Slmilar considerations for a1. important sensor errors leav 17 gyro and 6 accelaro-
meter errozo, i.o. a total of 23 tensor error*. The error model shown In Fig. 2 contains
a tVftal of 33 state variaboles whi-ch can be subdivided as followst

3 angular errors
3 v-locity errors 9 system errors
.3 position errors
1 bias of the barometric altimeter I altiseter error
3 axAa misalignments
3 fi•dt drifts
3 fixed scale factor errors . yr •rror5
3 asysetry scale factor errors
3 quO.Patic nollinearity scale factor errors
I angular acceleration drift
I anisoinertia drift
3 axes mitslignmnMts 6 dc41-Z.t..O.. error*
3 bla error.

•,!.•,, EN.



In contrast to a platform mechanisation, the sensor errors now produce the errors
at system level via the transformation matrix Cnb. nD itself is a trigonometric function
of the actual attitude and heading angles. In idditlon the sensor errors depend on the
dynamic environment of the SDS. All together this leads to a total error behaviour of a
SDS that depends to a very large extent on the actual manoeuvres flown. The number of
sensor errors having an effect at system level varies considerably according to the par-
ticilar flight path.

2.2 PROCEDURES FOR THE EXAMINATION OF ERROR MODELS FOR STRAPDOWN SYSTEMS

Fig. 3 shows the construction of the software for the examination of error models
for SDS. It consists essentially of 4 parts:
- the simulation of an unaided SDS, including the calculation of the reference flight

path,
- the design of simplified low-order models by means of the covariance analysis methods

and on the basis of simulated as well as measured sensor signals,
- the Kalman filter that contains simplified low-order error models for the SDS and at

least
- the comparison of assumed sensor errors, or of system errors determined from the stmu-

lation, with errors estimated by Kalman filtering.

The simulation of the SDS shown in the upper part of Fig. (3) begins with the selec-
tion of tracks, flight path angles and velocities. Based on this input the sensor sig-
nals are calculated for the gyros or the accelerometers in terms of angle or velocity
increments and are then fed into the sensor error model. The corresponding errors of
position, velocity and attitude and heading angles are then obtained by comparing the
results of the subsequent navigation calculation with the data of the reference flight
path. All these values are stored on a magnetic disc for further use. The software for
the simulation of a SDS has been developed at DFVLR and a detailed description is con-
tained in /2/.

For the design of simplified low-order models ,) the high-order reference error
models 4 were used and for both the discrete error and covariance propagation tNtuati'.ns
were calculated.

(' k -I) b I •k) (k) (14)

ki(k k) El(k) . * gk(k) (15)

x' (W4,) 1-(k) - x(k) (16)

e' (W~) 0(~ W (~ C 'Wk) * 9(k) (17)
The statistical interpretation of the differonc• bntween the cor,'spcnding compo-

nents of the state vectors x., and x lead; to the design of the system noise matrix •,

The •alman filter algorithms that now follow u"e the data from the slmulated SiOS
and are based on the simplified low-ordor itz.oel developed by covartinev Analysis cal-
cu*itions. The stato vector cavers ) position errors, 3 volocity orrors and 3 angular
errors. as well as a certain number of sensor trrors-, such as qeyro drifts. scale factor
errors, actceler oter bias etc. The measurnments required for the Nalmpan filter
cat% be obtained from the position signals of the simulated referen" flight path, Vhich
is known oactly. In that case the reference filght path is coneid-re4 as an external
measurement carried out by a track~nq radar system. Tol.ther with the initial .ovariatnr
matrix t, the system noise matrix 9. and the covariance matrix a•sumed for the sisulated
amasurements R, the Kalsan filter algorith-s have alk the necessary output data At their
Oisposal. The principles o. Kalman filtering for aided inertial navigation systems have
been described in detail in /6. 7. 9/. The result of the filtering Is the eatimation
vector A and the eovarianee matrix E.

At t"..he td of the prqrftwroe- syetet th, ewperiso- I made. bptwun the assugd sen-
sot errors, or system errors determined from the simul-Lted 9DS. and the estimated errors
based on siapliftied low-order models. The differvner:s determined in this way correspond
to the so-callad "true estiezation errors* and. according to the theor' of Kalman filter-
Ing, must correspond with the pr•dieted covariance natrix E. This relationship is ex-
pressed by Eq. 108)

Roughly speakinq the Eq.0C) means that the estimation errors sust lie within the
lo-listits defined by the diagonal elements of the covariance matrix E. The aim when de-
riving simplified low-order models is to use as few state variables as pousnible, while
still satisfying Eq.1S., and in so doing to obtain saccptable values for the lo-l&lttw.

2.3 TH9E SE_•t(a Or 3 TYPICAL FLIGHT PATHS

The decisive factor in the error behaviour of a SDS is the dynpsic environment of
the system, and for this reason 3 spamiles of typical flight paths will be given to
illustrate this error bebaviour. Fig. 4 contains the flight paths and the correapondinq
flight leveio, and Fig. S shows the simulatod and measured bank-rates a" cro-acle-
ration•.

A



FLIGHT PATH 1
Flight path 1 is a simulated straight flight of approx. 100 min duration, containing

4 full turns. The flight path is at a constant altitude and the ground speed is approx.
300 kts. This flight path is selected to simulate the structure of the flight path of a
civil airliner flying from a point A to a point B as directly as possible. Angular rates
and accelerations only occur during the initiation and conclusion of the turns and during
take-off and landing, and their values then are approx. + 15 °/s or + 0.3 g.

FLIGHT PATH 2
Flight path 2 was flown by a F104 combat aircraft. A SDS made by the TELEDYNE com-

pany was part of the instrumentation system /9/. The path contains several manoeuvres
carried out at a speed of approx. 700 kts. The profile of the altitudc con-ains climb
and descent phases, with descent speeds rp to approx. 100 kts. These manoeuvres produce
bank-rates of up to 80 0/s and cross-accelerations of up to 0.3 g. Noise terms whose
standard deviations can be estimated at approx. 7 I/s or 0.1 g are superimposed on the
sensor signals /10/.

FLIGHT PATH 3
Flight path 3 was the result of a sophisticated simulation /2/ and is selected to

represent a remotely piloted vehicle (RPV) flight path. This is shown clearly by the
altitude profile, which contains a simulation of "terrain fcllowing". The flight path is
based on the following parameters:
"- catapult take-off with a flight path angle of 200 and acceleration to a speed of

275 m/s,
- total flying distanrie approx. 280 km, flying time approx. 40 rain,
- altitude profile during the mission: high-low-low-high, with a total of 2 low-level

stages (schematized terrain following) having a total length of approx. 31 km,
- vertical manoeuvres of up to approx. + 2 g,
- horizontal. turns of up to approx. + 3 g.
These extreme manoeuvres produce bank-rates of up to + 50 0/s, and accelerations of up
to 5 g.

"3. THE DERIVATION OF ADAPTIVE ERROn MODELS

It is only possible to model a few sensor error coefficients in a low-order model
that is suited to real-time applications within the Kalman filter algorithms. For this
reason, if one only models the fixed gyro drift, for instance, the actual error behaviour
would only be adequately described during a section without manoeuvres. Durinq a full
turn, for example, a misalignment to che gyro sensitivity axes of 6 arcs at an angular
rate of only 360 0/3 min produces a system misalignment after one turn of

6 db = egy. wz - 6 arcs • 360 0/3 min z 0.2 0 /h + 36 arcs/turn (19)

This value is 20 times larger !han the assumed fixed gyro drift of 0.01 0 /h. However,
if only a few sensor error coefficients in a low-order error model are available for tho
whole flight, a possible solution is to switch between various simple and predefined mo-
dels. The criterion for switching depends on the dynamic environment of the SDS at a gi-
ven moment, i.e. the error model has adaptive qualities. The remaining, non-modelled part
of the error budget of the SDS can then be interpreted as system noise.

The angular rate w,, for example, can serve as a simple oriterion for switchiaig bet-
ween 2 different low-order sensor error models,

rms of w. k I °/s sensor error model 1 (20)

rms of wz > 1 0 Is sensor error model 2 (21)

The state vector x, the error model * and the covariance matrix P consist of one part
which is non-switchabTe (corresponding t8 the system errors) and another part which can
be switched (corresponding to the sensor errors). If, for example., one proceeds on the
basis of 9 SDS erroes and models the sensors by means of 3 coefficients, the result is
an order of 12 for the Kalman filter. If the vertic.l components can be calculated se-
parately /11/, a total of only 10 state variables remain.

[ N ,•N, CEI CD, D#VN, 6vE* Si, 6X, d1, d 2, d 3 ]T, (22)

non-switchable sysaem errors switcheble sensor errors

According to the nature of the dynamic environment, the coefficienti d1 to di de-
scribe variouR sensor errors for the duration of a flight. Fig. 6 Ahows the principle of
the switching procedure. For example, the procedure could start with the state vtctor xt,
the error model 11 and the covariance matrix Ej. At this moment, x,, 11 and P, take into
account the fixea gyro drift. 3 min',tes later tht angular rate ew-reaches thg rms value
of 2 O/s, i.e. the criterion for switching his been fulfilled. the elements of Xi, Li
and Pi corresponding to the sensor errors at this moment are then stored on the co'muter
buffer and the vector x, and the matrices : , are retrieved from the buffer. X1, tf
and P, might now contaTn, for example, in a diton to the system errors, 3 fixed-scale
factor errors of the gyros. The system errors, ot course, are non-switchable but trans-
ferred if a switching procedure occurs. After a further 3 minutes, for example, the rmo.



value of the angular rate w. again decreases to zero and the storage procedure is then
repeated in reverse, 1 x 2 and P2 are stored in a buffer and x1 , 11 and Pi are
used again in the Kalman fTiter algorithins. The sensor errors astimated'in the=period
when X,, 1I and P, were valid, are now used again as initial conditions.

The purpose of t!,Is switching procedure is constantly to model those sensor errors
in the error model that predominate in the error budget. Moreover, since the Kalman fil-
ter algorithms adopt the results of the last estimates as initial conditions when certain
sensor error coefficients are used again, it is sufficient to have relatively short,
though frequently recurring, periods in order to improve the covariance matrices P. The
procedure of switching is especially efficient in the case of flight paths that can be
divided up into sections where only a few but different sensor errors predominate. In
this case a number of predefined low-order sensor error models are sufficient to describe
the overall system error behavi~ur for the whole duration of a flight. In order to estab-
lish low-order sensor error models that are to describe the real system error behaviour
with sufficient precision, it is necessary first to determine the predominant sensor
error coefficients.

3.1 LOW-ORDER SENSOR ERROR MODELS FOR FLIGHT PATH 1

The flight paths of commercial airliners are characterized by their small number of
manoeuvres, which include relatively low angular rates and correspondingly low values for
the accelerations. This means for the error budget of a SDS that the fixed gyro drift
produces the main contribution. The errors proportional to w are effective only for the
duration of the manoeuvres (e.g. changes of course, holdings). Assuming, as above, that
only a few manoeuvres occur - i.e. that the duration of the manoeuvres is considerably
smaller than the total flying time - then, in principle, on account of the integral
Eq.(1O) only the sensor errors dependent on w, will produce a system error which can no
longer be ignored in comparison with the contribution of the fixed gyro drifts. For the
given flight path 1, which contains a total of 4 full turns with a duration of 3 min
each, a ratio of 12 min/100 min for the angular rate w, is obtained. The other compo-
nents of the angular rates w , w only occur for a short time during the beginning and
the end of the turns, and all the sensor errors dependent on ui,, w. can therefore be
ignored in the system error budget. The following 6th-order gyro error model is left:

aw = _C gy W + (23)x y z x

-y = gyW + DO (24)
xz y

8w u O +Do (25)dwz X DZ W z + Dz (5

As regards the accelerometer errors for flight path 1 it is sufficient to consider
only the bias values, because a commercial airliner usually flies standard turns charac-
terized by negligible accelerations.

6ab (B0 B0 B0)T (26)
-b y it

Thus for flight path I the following sensor error models are compared:

model I/it fixed gyro drift
mo4el 1/3: accelerometer bias gymodel 1/3t fixed scale factor error DT and axes misaliqnment of the gyros c,model 1/41 switch between the models 1/1 and 1/3
model 1/5: this model contains all 23 sensor errtrs and is considered as a reference.

Fig. I contains the time histories of the angular error e0 for the 0 different error
models mentioned above. It can be seen how the overall system error is pzoduced by the
individual sensor errorst the Approximate linear increase of c is caused by the fixed
gyto drift (model 1/1) and the system error contributions of t&e fixed scale factor er-
ror and the axes misalignment (model 1/3) corresponds clearly to the manoeuvres sisula-
ted. During the turns the fixed scale factor error leads to a system misalignment that
couil be calculated as follows:

S. 360 (27)
CD at D • AT to 3 • 10" T -=in 3 min 0.01°(7

This value can be read off directly from the height of the steps in the time histo-
ry of the system misalignment caused by model 1/3. During the straight lines of flight
path I model 1/3 does not produce any additional error contribution. Because the con-
tribution of the accelerometer bias (model 1/2) is rather small model 1/4, uhich is able
to switch between models 1/1 and 1/3, fits the reference erroz behaviour of model 1/5
beat.

3.2 LU--ORDER SENSOR ERROR WtOELS POR FLIGHT PAT1 2

Flight path 2 flown by a P104 combat aircraft contains a large number of extreme
manoeuvres. The discuseaon of the causes of errors by using plausibility methods, as in
flight path 1, is no longer possible in this case. For this reason, all the sensor errors
were analysed individually with reference to their effect at 2yatem levels this was done
by calculatxng the c4-respondLnq error propagation Eq.(14,16). Especially striking in
this conneetion was the large error contribution of the anisoertia term



=y
H- g w (28)

A further error contribution is provided by the sensor errors proportional to the
angular rates. As has already been shown even small angular rates lead to large system
errors. For this reason the following sensor error models were compared:
model 2/1 : fixed gyro drift u J•

Smodel 2/2t scale factor error D,w, D%
=, model 2/3z anisoertia term DAw AW

S model 2/4% switch between model 2/1 ard a model corn3isting of D'X, DIW andD
t model 2/5: reference model containing 23 sensor error coefficients.

SFig. 8 shows the time histories of the east position errors. The model 2/3 provides
a position error that is too large in comparison with the reference values (model 2/5).
The fixed gyro drift (model 2/1) and the scale factor errors (model 2/2) produce a posi-
tion error with a negative sign. The tire history of the error behaviour caused by the
model 2/4 is nearest the reference. At the end of this real flight of approx. 40 min, the
following error budget is obtained:

m odel 2/1 2/2 2/3 2/4 2/5

•:east position error -500 m -500 m 6000 m 5000 m 5000 m
• after 40 min

The effect whereby some sensor errors are cancelled out depends on the sign of the
sensor error coefficients and the type of manoeuvres flown. If the aircraft executes con-
trary manoeuvres such as the following bank angle cormands 0/300/00/-300/00, then some
errors will always cancel each other out to some extent. In this case a position error
during flight can be partly reduced by selecting appropriate manoeuvres.

5 3.3 LOW-ORDER SENSOR ERROR MODELS FOR FLIGHT PATH 3

\!: Similar considerations obtain for flight path 3, which in meant to simulate a RPV
• ~path, as for flight path 2. Hligh angular rates and accelerations were assumed in order toSsimulate the uxtreme dynamic environment of a SDS installed on a RPV. After the calcula-

tion of all the individual sensor errorc the following 5 senaor error models are left for
comparisont

moel 3/i t fixed gyro drift W W
model 3/2t fixed scale factor error D,, Da
model 3/3: anisoertia term D•"
model 3/4t switch between model 3/1 and a model consisting of Dý. of andD
model 3/5t reference model identical to the models I/5 and 2/5.

The effect of error contrilbutions on the system level with different signs is cape-
cially noticeable in the time hiatories of the east position errors of flight path 3
shown in Fig. 9. While the contribution of the anisoortia term (model 3/3) increases upli-./~i'...! t aprx.-4 km# the fixed scale factor errors (model 3/7)pruea otonroro

up to approx. 2 km. The effect of the fixedt gyro drift is negkigible in the simqlated
RP flight path 3 (model 3/1). Error model 3/4# which switches between the error moels
defined above, describes with sufficient accuracy the position error caused by all the
different sensor errors. The rat~k of the sensor error model 3/4 1* only _1.

3.4 THIE QUALITIES OF THE SELECTED ADAPTIVE SENSOR ERROR MODEL

For flight path 1, 2 and 3 sensor error models; 1/4, 214 an~d 3/4 are selected as
being suitable for use for Kalman filtering and real-time #.pplloationo, These sensor

,• error models exhibit the following qualitiest
S- The sensor error taodels contain only 3 state variables' i.e. the ,raink of the system
•" • error model is 12, or only 10 in the case of separate vertical velocity and vertical
•,,•'•position errors.

.- Switching Vtwteen these error models in accordance w-i~h different flight sections with
Smany or few isanoeuvres guarantees adequate adaptive qualities.

- The non-modelled sensor errors do not produce large system errors and can thus be In-
,as'prated as system noise modelled in the system nalse matrix 9

4. THE USE OF SENSOR ERROR MODELS FOR KALWWR FILTERING

In the preoeding Section thL- attempt was made to determine those sotnaor errors that
produce the largest contributions to the error budget at syst em level. It only a few sen-
sor eerrors daiine the system error, it is possible, to model the corresponding sensor er-
ror coefficients In a low-order sensor model. However, it may happen that all the sensor
errors explained in Section 2 cause large system errors and that none of the sensor er-
ror coefficients can be ignored in comparison with any other. In this case a Kalema fil-
ter would have it rank up to 33 and this is boun to load to numerical problems or to

•,I

C.I iem m m ~z i



violate real-time computational conditions.

4.1 NUMERICAL PROBLEMS IN• HIGH-ORDER ERROR MODELS

Numerical problems, for example round-off errors, often result in negative elements
within the trace of the covariance matrix P. These negative elements are not defined at
all and have fatal consequences for the fiTtering. In order to avoid such problems the
methods of formulating the filter equations in terms of triangular matrices can be
applied. As the comparison between various procedures has shown /12/, these methods ge-
nerally involve an increase in the number of calculations in comparison with conventional
filter equations. The advantage of avoiding numerical problems, e.g. negative elements
within the trace of the covariance matrix P, must therefore usually be paid for with an
increase in computational operations.

In order to save the number of computational operations, it is possible to take
into account the structures of the discrete transition matrix f and the covariance matrix
R. Most of the elements of these matrices are always zero. Using the system error model
without any sensor error coefficient 0. and the matrix t12 for the cross-coupling of
the sensor errors via the transformatTon matrix Chb to t~e system error level, the co-
variance propagation equation of the Kalman filter can be stated as follows:

S(k+l) + ((k) (29)

With the symmetrical matrices P and [

P P1 1 1 22 (30)
.1 2 E22 212 222

is follows by multiplication

2(k+l) fo[(I,, Estt + () 2(k+) (k) (31)

til 22 u +(I 912 +12 ~2(2

922 (k+l) - 2 2 (k) (33)

Using x, for the state variablis without sensor error coefficients and x, for the sensor
error The propagation equation for the state vector

j(k+) [[ (k) (34)

can be stated in the simplified form

11 (k~l) 1 11 (k) x 1 (k) + 1 1 2 (k) x 2 (k) (35)

x2 (k+1) x 2(W (36)

The saving in the number of multiplications can be calculated by using nm1  for the
maximum number of state variables, which is the sum of n, system errors and n, sensor
errors. In the case of the usual matrix-veotor-operations a maximum number m,, of multi-
plications is nenes$aryt

3 en 2  
(37)mmaxI~axmax

propagation of P propagation of x

In accordance with the simplified Eq.(31, 32, 35) it follows for the minimum number
m,,, of multiplications with Paz as a diagonal matrix:

1 2 2 2 2 2
moi * n* nIn24nIn2+2n In2 4 1fl2 + n I n2 +....L of1 +n In 2(38)

propagation of P11 propagation of 12 propagation of x

or, by w.='Lng the tems, the factor n of the savings in the number of multiplications
can be given thus$

3 2nuax 2(n 1 +n ) + (nl+n 2S..... ., - ,(39)
3 2 -1

nain in1I+ 6n~n, + 2nin 2 + n
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Fig. 10 shows the function n=f(n 2 ) on the basis of a fixed number of system errors:
3 angular misalignments, 3 velocity errors, 3 position errors and the altimeter bias.

Although there is a saving in the number of multiplications by taking into account
the structure of the matrices 4 and P, the calculations still need too much time for a
high-order model. If one tries to moael 10 error coefficients, this would lead to a num-
ber m of multiplications of

M = 2n3 /n(n 2) 2n3/2 - 8000 (40)

A digital computer with a floating point processor and an assumed time comsumption
of approx. 60 us for one multiplication will thus need approx. 0.5 s merely for the co-
variance and error propagation equations. It can be seen from this very rough estimate
that it is essential to use low-order models in real-time applications. If the order of
the Kalman filter is limited to a maximum number of 13 to 15 state variables, numerical
problems do not arise and real-time applications remain possible.
4.2 THE INTERPRETATION OF THE NON-MODELLED SENSOR ERROR COEFFICIENTS AS A SYSTEM NOISE

There is another basic possiblitiy of describing the error behaviour of SDS for
flight paths in which a large number of sensor errors are effective at system level and
the numerical problems of using high-order error models cannot be solved satisfactorily.
This is the interpretation of the non-modelled sensor error coefficients as system noise
in terms of the matrix Q. Roughly speaking, the covariance propagation equation supplies
over-optimistic values In the case of non-modelled sensor error coefficients. This effect
can be compensated for by a corresponding increase in the elements of the system noise
matrix 2. However, this procedure leads to problems if essential error contributions de-
pendent on the sign of the sensor signals are interpreted as unbiased random signals.
This applied, for example, in the case of a fixed scale factor error of the gyro: if the
aircraft performs a left-hand turn and then a right-hand turn, the system misalignments
caused by these sensor error coefficients cancel each other out to some extent. The in-
terpretation of these sensor error coefficients as corresponding system noise would make
the covariance matrix worse - irrespective of the particular direction of the turns.
Therefore, this method leads to covariance matrices that assume over-pessimistic values
in the case of contrary manoeuvres. Thus, of the sensor error coefficients defined in
Section 2, those that are basically suitable for description by means of noise matrices
are the fixed gyro drifts, the accelerometer bias and the quadratic non-linear scale
factor error of the gyros,

O course, the sensor error coefficients which are taken into account in the system
noise matrix ý do not occur in the form of state variables and therefore estimation by
means of Kalman filtering is no longer possible. For this reason non-modelled sensor er-
ror coeffioients should only be interpreted as system noise if their contribution to the
overall system error behaviour is relatively small. When the corresponding elements of
the noise matrix g are being determined, the gyro errors are to be written in angular terms
apd the accelerometer errors in velocity terms.

If the system matrix s is approximated by means of the identity matrix f for a suffi-
ciently short interval T*, then the following applies:

1n(k+l) *-%(k) + Ta - ýnb(k) • 6wb(k) (0)

6v (k+l) -6vn k) T) (42)h n -n a ' nb l

"When C.0b : it follows for the variances o that

2 2 +'
2  c~~ T )()

I(k+1) a2.k + T -b Eta k -wMb(3

g2 C

With the integration of the terms ql up to the tine krT,, variances for the mis-
alignments t are obtained in aocordance with

-T (kI) kq"t (44)
-c a -CC

In order to obtain a standard deviation o that corresponds to the basic relation
misalignment drift multiplied by time at the end of the observed interval kT,, the fol-
lowing equation has to be tulfilledt

E tTk) (k) - (kTa) - (45)

By rearrangement one obtains a term in the form of a spectral density for deterain-
ing the elements q,, of the system noise matrix 2

k-T5 * (~ 6) t rad2 /a)(6
or, by a corresponding calculation for the accelerometer erroras

4'm • M " m~ m m • m mm m "m ~ ~~mm•N mIN m Mim m



11 = kTa- E[6a- Sa I [ (m/s) /sl (47)

For the fixed gyro drift value of 0.01 0 /h or the accelerometer bias of 10-4 g the
following numerical values are obtained:

qý = 2.37 •10-15 . kTa [1/s] (48)

Z = 10-6 • kTa [(m/s)2/s] (49)qwV

For the remaining sensor error coefficients the calculation of the expectation
values is necessary. The sensor signals consist generally of a low-frequency part that
describes the flight path, and superimposed high-frequency vibrations. Statistically
speaking, they represent non-stationary time series. The calculation of the expectation
values consequently poses considerable problems: for example, the variances that have
been determined depend on the selection of the observed flight path section. The equa-
tions in Section 4 thus only permit a rough estimate of the order of magnitude of the
elements of the system noise matrix that correspond to the non-modelled sensor error
coefficients.

4.3 THE ADJUSTMENT OF THE SYSTEM NOISE MATRIX FOR THE 3 DIFFERENT FLIGHT PATHS
SELECTED

The adjustment of the system noise matrix Q for the fixed gyro drift not included
in the error model was carried out in accordance with Eq.(46). Despite the fact that
they were non-stationary the expectation values of the sensor signals were calculated
so that sensor errors depending on the dynamic environment of the SDS can also be in-
cluded in the system noise matrix. The sensor signals and the angular acclesations varied

* between the listed values. Mean vali'es were assumed for the expectation values in order
to make a rough estimate for the elements of the system noise matrix 2 postilble. The re-
sults are listed in Tab. 2:

0.4 0/s < a 0.6 O/I 8 b" 0.5 o/s

flight path I
a. 0.

flight path 2 0 /8 < a 4.84 / 0/

2.3 0/s9 2~ c 8.2 0/s8 2 5.3 0/6 2
b Wb

0.5 °/s 4 a 5.2 o/i S . 2.8 o0/

flight path 3 0 2 b ob

0.2 0/81t 1 220o/s2 0/8,

Tab. 2: Standard deviation for the sensor signals

For the fixed scale factor error D-3,10- and the anisoertia term D -4'•10 4  the
corresponding elements of the system noise matrix 2 are listed in Tab. 3:

2 2 2 2/t / ]

flight path 1 5 10

"flight path 2 6 10-9 3.3 10-6

flight path 3 5.2 10- 1.4 10-

Tab. 31 Elements of the matrix g corresponding to the sensor error coefficients Dw, O,

4.3. * TUCE CALCULATION OF ELEMENTS OF THE SYSTEM NOISE MATRIX 9 FOR FLIGHT PATH 1

S different error models viii again be considered. The non-modelled sensor error.
coefficients in each ease are interpreted as system noise.

Error mwdel 1/6no sensor error cofficients taken into account
- f (all s~nsor error coefficenets)

Phue, in this error model 1/6 all the main sensor error coefficients are interpreted as
system Doine. It follove from Eq.(46, 47) and Tab. 2 that

mm w m • • .so w • m•• • lI I m - llql • m . Iwb l•ll



2 -11 2 2q 10 /s and 2.5 •1 A Is.

Error model 1/7
Here, in contrast to error model 1/6, the fixed gyro drift was modelled. This results in

2 Io- 1 2 s and 2-72
qcc 10 s ad qv=2.5 -10 -

Error model 1/8 gy gy
Here, switching takes place between the fixed gyro drift and the gyro errors D,, 2C ,

For this error model 1/8 the elements q were taken as zero. For q.=2.5"10-)A Is holds.

Error model 1/9
The error model 1/9 is basically similar to 1/8. However, here the non-modelled sensor
error coefficients are considered as system noise. It thus follows for the elements of
the noise matrix 2 that

= 7 10- 13/s and qw = 2.5 • 10-7(A 2/s.

Error model 1/10
This error model serves as a reference, i.e. all the sensor error coefficients are mo-
delled.

Fig. 11 contains the time histories of the id-values for the component of the east
position error. According to this, the models 1/7 to 1/10 exhibit a largely identical re-
sult, i.e. the axes misalignments and the fixed scale factor error of the gyros as well
as the accelerometer bias can be interpreted with sufficient accuracy as system noise for
this particular flight path 1. However, the situation is different in the case of model
1/6, which does not model any sensor error coefficients. Although on the whole sufficient
agreement with the reference model 1/10 can be obtained, deviations up to approx. 4. 500 m
do occur in the middle of flight path 1.

4.3.2 THE CALCULATION OF ELEMENTS OF THE SYSTEM NOISE MATRIX Q FOR FLIGHT PATH 2

Once again 5 different error models are considered.

Error model 2/6
All the sensor error coefficients were interpreted as system noise. This leads to

- 2.4 * 10-/s and q2  W 0-1) /s.

Error model 2/7
The fixed gyro drift only is modelled. The remaining sensor error coefficients result in

S- 2.35 • 10o'/s and q4-, 107 /a.

Error model 2/8
In error model 2/8 switching takes place between the fixed gyro drifts R! and the gyro
errors 0: , b" , ." The elements q2 are set to zero and

?vv" W107 )2/s.

Error model 2/9
This is basically the same an error model 2/8, however, all the non-modelled error con-
tributions are included in the system noise matrix. This leads to

2 0-12
q W10 1 /s and qw 2 10"7(M)2/s.

Error model 2/10
This is the reference model again including all sensor error coefficients as state vari-
ables.

Fig. 12, which contains the time histories for the l1-values of the angular mis-
alignment to, shows clearly the difficulties involved in the interpretation of dominant
sensor error coefficients au an unbiased noise. The anisoertia term not contained in er-
ror models 2/6 and 2/7 leads to results which deviate considerably from the reference
values. The eltments of the system noise matrix Q can be adjusted according to whether
agreement with the reference values is to be achieved at the beginning, in the middle
or at the end of flight path 2. The results for the ervor models 2/8 and 2/9 represent
the actual error limits sufficiently well because no dominant senor error coefficient
is interprotated as system noise.

4.3.3 TUE CALCULATION OF ELEMENTS OF TilE SYSTEM NOISE MATRIX 2 FOR FLIGHT PATH 3

Again a total of 5 different error models are considered.

Error model 3/6
All the sensor error coefficients are taken into account in the system noise. This leads
to

- 1.2 - 10"10/s and % 2.5 - 10-7(-)2/s.



Error model 3/7

Only the fixed gyro drift is modelled. Therefore

qO= /0 1s and qv2  = 2.52/s

Error model 3/8 0 0 0
Now sensor error models are switched between D , D , D and Dw, Do, D. The elements q
are set to zero and x y z x z

2 = 2.5 * 10-7(m) 2Is.

Error model 3/9
This error model corresponds to model 3/8, however, all the non-modelled sensor error
coefficients are included in the system noise matrix. This results in

q2 = 0-12 /s and qvv 2.5 * 10-(7)2 Is.

Error model 3/10
This is the reference model again. It is identical to models 1/10 and 2/10.

Fig. 13 contains the time histories of the la-values for the north position error.
Error models 3/6 and 3/7, which do not include the dominant sensor error coefficient D",
give only an inaccurate representation of the reference values. The modelling of DhW
alone leads to deviations of approx. + 800 m. The la-values of the reference model 3/10
can be approximated with a deviation 6f approx. + 400 m by using error 3/9, which takes
account of additional sensor error coefficients in the system noise matrix Q"

4.4 THE ADAPTIVE KALMAN FILTERING ALGORITH

It was shown in Section 4.3 how some of the sensor errors can be modelled or taken
into account in the system noise matrix Q. However, there remain a number of sensor error
coefficients that can be effective at system level when certain manoeuvres are performed.
These sensor error coefficients can lead to a divergence of the Kalman filter algorithms.
The cause of this divergence lies in an over-optimistic covariance matrix P, which re-
duces the elements of the gain matrix K and thus - roughly speaking - ignores the measure-
ments being received. In order to avoia this divergence, the system noise matrix Q can
frequently be increased to a suitab½e extent, though this lowers the level of sysEem ac-
curacy drastically. In the case of SDS, the calculation of constant system noise matrices
Q must allow for the worst dynamic environment of the SDS. For example, a large number of
sensor error coefficients effective during a short manoeuvre are able to initiate the
divergence of the Kalman filter algorithms.

It is far easier to solve this problem by using variable system noise matrices Q.
This leads to matrices Q dependent on the actual manoeuvres flown. The calculation of
the elements of such a variable system noise matrix Q can be performed by means of the
so-called adaptive Kalman filtering taking into account the statistics of the filter re-
siduals. The relationship between the expectation values of the measurement z, the co-
variance matrix R for the measurement errors of, for example, a radar unit, the measure-
ment matrix H ana the unknown noise matrix Q can be formulated as follows:

T TE[(z-g').(z-Hx') ](k) = LR(k) + H[P'(k) + Q(k)]lT. (50)

The estimates A and the covariance matrix P correspond to the predicted expressions
V, P' via

x'(k) - 1(k) St(k-1) (51)

g'(k) - 1(k) g(k) T (k) + 2(k) (52)

The filter residuals (z-Hx') in many adaptive filtering procedures are used as the
basis of a statistical analysis /13, 14, 15, 16, 17, 18/. In visual terms Eq.(50) means
that the differences between measured state variables and predicted state variables are
described statistically by the corresponding covariance matrices R, P and 2. The result
is a variable system noise matrix 2 or a corresponding effect on Ehe gain matrix K.

From the large number of possible adaptive filtering algorithms the one based on
the work of JAZWINSKI /13, 14/ was selected because it requires a particularly small
number of calculations and is thus especially suitable for real-time applications. In
this algorithm the caloul~tion of the expectation values of the filter residuals takes
place on the basis of n measurements backward in time history. If this expectation values
do not correspond to the sum of the covariance matrices • and •, this can be compensated
for via the noise matrix 2.

According to /14/, for a matrix B

E " E(•-•') (z-•')TJ - R - T (53)

the following criterion applies:

B > 0 4 2 w B or B < 0 2-0 (54)



By use of this relatively simple algorithm the system noise matrix Q continuously
adapts itself to the predicted statistics of the Kalman filter. However,-only at the
level of the measurements can the elements of the matrix Q be calculated by this simple
algorithm. An extension of the adaptive Kalman filtering In order to calculate all the
elements of the matrix Q increases the computational burden drastically.

5. DISCUSSION OF RESULTS

5.1 THE RESULTS OBTAINED FROM AN ADAPTIVE FILTER WITH SWITCHABLE SENSOR ERROR MODELS

The discussion of the results based on low-order error models within an adaptive filter
assumes external measurements and a knowledge of the estimation errors. Both conditions
can be fulfilled in the case of simulated data. The known reference flight paths 1 and 3
are interpreted as external measurements and the system and sensor errors whose values
are known from the simulation are suitable for checking the estimations of the adaptive
filtering.

5.1.1 THE RESULTS FOR FLIGHT PATH 1

Fig. 14 contains for flight path 1 the time histories of the parameter L defined
as follows

rms of kId <1 0/s + L = I or rms of I1I >1 /s - L = 2 (55)

In the event of manoeuvres the sensor error models were exchanged in accordance
with the criterion for switching. If the flight path corresponds to a straight line, the
error behaviour is described by the error model which only contains the fixed gyro drifts.

Fig. 15 is based on error model 1/9 and represents the time histories of the esti-
mation errors and the corresponding l1-bands for the fixed gyro drift D*.The accuracy can
can be improved to about 0.005 0 /h. However, these extreme levels of accuracy require a
period of observation of approx. 60 min. The estimation errors reach an accuracy level
of 0.002 0 /h. If one compares the time histories of the estimation error and the corres-
ponding ic-band, it becomes clear that the self-diagnosis of the filter produces values
that are over-pessimistic by about the factor 2. The reason for this effect lies in the
interpretation of the non-modelled sensor error coefficients as system noise.

Fig. 16 indicates especially well the existence of sensor errors that are effec-
tive at system level but non-modelled. It contains the elements of the system noise matrix
calculated by the adaptive filter. An increase in the elements to values up to 1.3 m/s can
be seen in the section where manoeuvres were performed. This is a result of larq6 devia-
tions between the reference and the modelled error behaviour of a SDS in the case of
manoeuvres. The take-off and the first turn are not visible in Fig. 16 because the co-
variance matrix P is still decreasing from its initial value and therefore the increase
in the filter residuals during these manoeuvres does not affect the calculation of the
adaptive system noise matrix.

5.1.2 THE RESULTS FOR FLIGHT PATH 3

Fig. 17 shows how the frequent and extreme manoeuvres of flight path 3 cause a
large number of switching procedures between the sensor error models 2/9.

Fig. 18 contains the time histories of the estimation error and the la-band for
the anisoertia term of the gyros. The assumed accuracy at the beginning of + 2-10- a
can be improved to approx. + 2.10"1 a. The procedure of switching can clearly be reco-
nized in the shape of the 1i-band since of course it is only possible to obtain an esti-
mate, and thus an improvement of the covariance matrx S, if the error model L-2 is used
for filtering.

Fig. 19 shows for flight path 3 that it is only at the and of the time histories
of the system noise matrix g that the filter residuals exceed the limits given by the
covariance matrices 5 and

5.2 THE RESULTS OBTAINED FROM AN ADAPTIVE KALMAN FILTER WITHOUT THE MODELLING OP
SENSOR ERRORS
The aim of switching between various error models was to give a sufficiently ac-

curate mathematical description of the error behaviour of a SDS, although low-order sen-
sor error models were used. The success of these techniques depends on the following con-
ditions, howevert
- It must be possible to divide up a flight path into sections of different structure on

the basis of suitable criteria and
- only a few sensor errors are effective at system level in each of these sections.

The validity of these conditions was examined in Section 3 on the basis of covari-
ance and error analysis for flight paths 1, 2 and 3. In the case of arbitrary flight paths
which are subject only to the limits imposed by the aircraft's specifications it may hap-
pen that the conditions referred to above can no longer be adhered to with suff i cient ac-
curacy. A possible technique in this case is to take account of all the sensor errors in
the system noise matrix g.



5.2.1 THE RESULTS FOR FLIGHT PATH 1

Fig. 20 contains the time histories of the estimation error and the corresponding
ia-band for the angular misalignment c. with respect to flight path 1. The results are
based on the switchable sensor error model 1/9, which has already been discussed. The
estimation error and the li-values show a sufficient correspondence.

Fig. 21 contains the estimation errors and ic-band for the angular misalignment e.
once more. However, all the sensor error coefficients are included in the system noise
matrix 2. It can be seen that the filtering leads to far too optimistic values for the
l-band, and Eq.(18) is violated.

5.2.2 THE RESULTS FOR FLIGHT PATH 3

The problems that have just been discussed are shown for flight path 3 in Fig. 22.
Whereas the various estimates for the angular misalignment e. might still be acceptable
for flight path 1, the situation with flight path 3, with its frequent and considerable
manoeuvres, is different: here extreme deviations from the reference error behaviour
arise if the sensor error coefficients are only taken into account in the system noise.

In Fig. 23 the corresponding results are shown for sensor error model 3/9 which
can be switched between the dominant error sources. The comparison between the results
shown in Fig. 22 and Fig. 23 demonstrates clearly the advantage of the sensor error mo-
del 3/9 for flight path 3.

5.3 THE RESULTS IN THE CASE OF INTERRUPTED EXTERNAL MEASUREMENTS

The results discussed so far are based on external measurements that were available
all the time. However, if a radar unit or a MLS station fails or the aircraft is too
far away from such a station, for exemple, it becomes especially important to have a
modelling of the real SDS error behaviour which is as accurate as possible, since it is
necessary to predict the errors according to the error equations all the while the ex-
ternal measurements are interrupted.

5.3.1 THE RESULTS FOR FLIGHT PATH I

Figs. 24 and 25 show the time histories of the estimation errors and the corres-
ponding ic-band for the angular misalignment c in the event of external measurements
being interrupted after 40 min; two error models are compared. Fig. 24 is based on the
switchable error model 1/9, which has already been discussed. In Fig. 25 the correspond-
ing results are given for an error model which contains no sensor error coefficients.
Here, the faulty self-diagnosis of the filter can be seen. If sensor error model 1/9
is used, a very small estimation error is obtained.

The errors at the angular level lead to position errors according to the error
model used. Figs. 26 and 27 represent the results for these components. The following
results can he achieved:

6N - -300 m + 600 mt error model 1/9

6x - -2000 m ± 500 ml error model 1/6

Thus, the use of error models without senscor errors leads to far lower levels of
accuracy even in the case of flight path I which uontains fewer manoeuvres.

5.3,2 "¶IE RESULTS FOR FLIGHT PATH 3

Fig. 28 shows the estimation error and the Is-band for the angular misalignment £0
for flight path 3. After 20 min the external measurements are lost. Based on the error
model 3/9 an accuracy of about 0.1 0 is reached at the end of the flight path 3, the
estimation error is less than 0.01 .

Fig. 29 in based on a sensor error model which interprets all the sensor errors
as system noise. Although the self-diagnosis of the filter gives a value of approx. O0,2O,
the actual estimation error is approx. 0.2 0# i.e. a serious violation of Eq.(18) occurs.

Figs. 30 and 31 compare the results of the two error models for the position
error components. Whereas the switchable error model 3/9 procudes Ic-values of
approx.t1300 m after the loss of the external measurements (Fig. 30), the errqr model
without sensor errors gives hI-values of approA. +1500 m, although the etimation errors
are as much as -5000 m (Pig. 31).

6. SUM"ARY AND CONCLUSIONS

The basic problems in the design of error models for aided SDS is the need to provide,
in a low-order error model, a sufficiently realistic mathematical description of a large
number of sensor error coefficients which, depending on the manoeuvres flown, can be ef-
fective at system error level. Three different tlight paths were used to discuss the ty-
pical sensor and System error behaviour of a SDS and to develop corresponding error mo-

Il. If the flight path can be divided up into sections with different structures where



only a tew sensor uLkL.J~
sufficiently good description of the real system error behaviour by switching between
various low-order sensor error models.

In the case of sensor errors that cannot be modelled although they are effective at
system error level, the system noise matrix Q was correspondingly enlarged. This was done
on the one hand by giving rough estimates of-the sensor error effects not included in the
error model, and on the other hand by using adaptive Kalman filtering, which makes it
possible to calculate the elements of the system noise matrix 2 on the basis of a sta-
tistical analysis of the filter residuals.

Finally the results of the calculations obtained from simulated flight paths were
discussed for various error models with or without the modelling of sensor error coeffi-
cients, and also when external measurements were interrupted.

The results in the case of the loss of external measurements are of particular in-
terest since here increased demands are made on an error model for a SDS.

If the consideration of real-time conditions means it is only possible to model a
few sensor errors, then it is necessary to find a suitable method for including in the
system noise matrix those sensor and algorithm errors which are not modelled but are
effective at system error level. The calculation of fixed matrices g proved to be inade-
quate because, with the exception of constant bias, all the sensor errors have to be re-
garded as being dependent on the particular dynamic environment of the SDS.

If low-order error models are used for flight paths with extreme manoeuvres, in which
a large number of sensor errors can be effective at system level, it is necessary to
adapt continuously the system noise matrix to the predected statistics of the Kalman fil-
ter. The problem of adaptive Kalman filtering lies in the need to develop efficient al-
gorithms for the statistical analysis of the filter residuals. The analysis of the filter
residuals should provide all the elements of the system noise matrix Q.
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"I USE OF FILTERING AND SMOOTHING ALGORITHMS
IN THE ANALYSIS OF MISSILE SYSTEM TEST DATA

Edward M. Duiven; Charles L. Medler; Joseph F. Kasper, Jr.

THE ANALYTIC SCIENCES CORPORATION
One Jacob Way

Reading, Massachusetts 01867
I USA

The increasing complexity of modern weapon systems demands corresponding in-
creases in the sophistication of the approaches used to test these systems. The follow-
ing two chapters discuss advanced techniques for the processing of missile system test
data. In the first chapter, data from multiple references are used in a post-flight
analyzer that isbaased in large part on a smoothing algorithm. The objectives of the
processing are to obtain the best estimate of overall system accuracy and to recover the
maximum information about individual guidance system error contributors. In the second
chapter, a procedure for validating the models used in filtering and smoothing algorithms
is presented. The precedure checks model validity using data from multiple system tests.
It employs well-known statistical hypothesis testing methods in an innovative manner.

INTRODUCTION

Modern weapon systems -- particularly ballistic missiles -- have grown in com-
plexity by a significant amount over the past 20 to 30 years. Designers and developers
now concern themselves with the total mstem aspect of missile development. Obtaining
a broad system-level understanding of the missie and its environment has become vital.

Increasingly, system-level understanding is supportee by modern analytic methods
including applications of filtering and smoothing theory. Advances in the theory have
taken place in concert with weapon system development. Two inter-related elements of the
modern analytic approach are system modAling and system testing. Models, which are mathe-
matical representations of the physical characteristics of a system, have a number of uses.

Models for the errors associated with various system components and subsystems
are formulated and then combined to create an overall weapon system error model. Such a
model ean be used to generate performance projections (e.g., weapon system accuracy) even
beiore the weapon system has been built and deployed. Parameters of the model can also
be varied about the nominal values to illustrate where the overall system is most sensi-
tive to vari.tions in subsystem performance. In this way, critical elements in the sys-
tem design can be identified and given extra attention in the development effort.

Prior to testing, the weapon system error model can be exercised to determine
how well a proposed test procedure supports understanding of weapon system behavior.
Knowing the ability of a given test to isolate key system performance characteristics
is a valuable aid in test program management. Once testing has been performed, data are
available to support validation of the various models. Quite often, conditions existing
in the test environment must necessarily be different than those which would exist in the
oper4tionAl environment. Models provide the mathematical bridge which enables accurate
extrapolation from performance under test conditions to performance under operational
conditions.

Finally, models for aystem behavior are the vehicle which supports development
of next-generation, advanced qystems. By efficiently characterizing system behavior,
models serve an the building blocks for future system design activities. In many ways,
they represent the "legacy" of a system development program.

The keys to overall weapon mystem modeling are proper formulation of component
and subsystem models, sufficient testing to obtain data which are representative of all
system characteristics and a reliable model validation procedure to ensure that the math-
ematical representation corresponds faithfully to the actual system.

The two chapters which follo% are closely related. They are both involved with
the application of model-based modern analytic methods to ballistic missile development.

The first is concerned with the Minuteman III flight test program. In particu-
k lar, the chapT----iscusses the use of external reference information to enable determina-

tion of specific error characteristics which make up the model for the missile guidance
system. It is shown that the ability to identify elements of the model is strongly in-
fluenced by the nature of the available reference systems and the chosen test plan. An
algorithm based on a Generalized Likelihood Ratio (GLR) test is seen to be effective in
isolatin& certain nonlinear error phenomena, provided that adequate reference data are

• available.

The second chapter is concerned with validation of the models for multiple phases
in the operation -- O a ballistic missile system. A procedure based on statistical hypothe-
sis testing methods is preseited. The procedure can be used to determine whether a pro-
posed test program is capable of isolating bias error phenomena. Alternatively, when
data from multiple tests have been coliected, the procedure provides a statistical assess-
ment of the presence of bias error phenomena in the system being tested.



BALLISTIC MISSILE GUIDANCE SYSTEM EVALUATION
USING MULTIPLE REFERENCES

I. INTRODUCTION

A. OVERVIEW

Historically, ballistic missile system performance evaluation has been accom-
plished by post-flight processing of guidance system telemetry and radar measurements.
This was adequate when the goal of system testing was weapon system accuracy estimation.
However, as guidance systems became more accurate, the goal of system testing shifted to
the characterization of guidance system errors in the "operational" environment, and it
consequently became necessary to upgrade range instrumentation quality.

As a consequence, instrumentation and post-flight data processor development
activities aimed at upgrading guidance system test methodologies were instituted [1-31.
This chapter focuses on the test programs initiated by the U.S. Air Force in 1970 cul-
minating in launch of the last Minuteman III Production Verification Missile (PVM) in
March 1980. Over the 10 years, a series of programs directed at improved guidance sys-
tem characterization and advances in the quality and availability of external reference
systems were initiated.

Section II is an overview of the USAF test programs. In Sections III and IV,
a discussion of the methodology and performance evaluation studies undertaken to "opti-
mize" the recovery of guidance system error characteristics is presented. Section V dis-
cusses a data processor -- the Post Flight Analyzer (PFA) -- developed to evaluate data
from a series of test programs. The processing of the flight test data, and the associ-
ated results, are described in Section VI. Finally, Section VII presents a summary and
suggests enhancements that may be desirable for future ballistic missile testing.

B. ACKNOWLEDGMENT

The data processing methodology described in this chapter, as well as the per-
formance evaluation and data analysis software. is the result of a dedicated effort by a
number of TASC employees. The original GLR test methodology was formulated by H.L. Jones
and refined by K.S, Tait. The performance evaluation software was developed by J.A.
D'Appolito, C.M. Ermer, L.M. Hawthorne, and D.J. Meyer. C.J. Vahlberg and D.J. Meyer
developed the data processing software.

II. BACKGROUND

In 1971, with the Minuteman III test program approximately two-thirds complete,
a significant decision was made by the USAF; it resulted in the termination of system
testing at the Eastern Test Range (ETR) for cost reduction. Prior to this, approximately
one-half of the test missiles had been launched at the ETR. Subsequently, flight tests
were conducted only at the Western Test Range (WTR). The high accuracy tracking capability
and the good geometry characteristics available ac the ETR were sacrificed.

The guidance analysis community began to recognize the limitations of the test
methodology in operation. The level of accuracy desired from the test program could nrt
be achieved with the external reference systems available at the WTR. Also, the quantiza-
tion levels associated with guidance telemetry data were not consistent with the levels
required for guidance system error characterization. The USAF begzn to look at alterna-
tive reference systems that could overcome test limitations.

At approximately the aame time the Charles Stark Draper Laboratory (CSDL) was
actively developing a floated inertial reference platform, known as AIRS, the Advanced
Inertial Reference Sphere [4]. The instruments developed for AIRS were designed to pro-
vide system quality an order of magnitude better than the primary Minuteman III guidance
system (the NS-20).

The AIRS development schedule and the need for an improved reference system were
nearly coincident. As a result, the USAF instituted the Missile Performance Measurement
System (MPMS) Program. An AIRS platform was incorporated in a separate wafer* along with
its associated electronics, power supplies, telemetry unit, cooling system, etc. The
primary guidance system computer was modified to allow for the time-tagging of guidance
system outputs (integrated specific force). Time-tagging was a means of eliminating the
impact of large quantization levels on the recovery of guidance system errors; it reduced
quantization-induced errors by approximately an order of magnitude.

Although originally planned as a multi-missile test program, only one MPMS mis-
sile was flown. The test was conducted on special Test Missile No. 11 (STM-Il) on 15 July
1976. AIRS functioned well and much was learned about the performance of the AIRS hard-
ware as well as NS-20 instrument error chaeacteriatics. However, cost considerations
dictated that that program be limited. MPMS led to the FLY-2 Program in which the AIRS
platform was replaced by a second NS-20.

*Minutemar III is capab of carrying one or more insertable missile body sections
(wafers) between the fourth stage motor and the payload section.



In principal, the FLY-2 concept would appear less than optimal. In most test
programs it is desirable that the measuring device be an order of magnitude more accurate
that the system being tested. However, by taking advantage of the NS-20 instrument ori-
entations (Figs. 1 and 2) and the fact that the platforms can be aligned, in azimuth, to
any desired orientation, within gimbal constraints (Fig. 3), the reliance on "identical"
systems can be minimized. Thus, for FLY-2, it became a question of how to orient the
platforms to achieve "optimal" recovery of a set of "primary error sources." Optimiza-
tion study results are discussed in Sections III and IV.

A series of three FLY-2 missiles were flown between November 1976 and June 1977.
Data from the three flights provided significant insight into a number of error contrib-
utors not previously included as part of the system error model. However, FLY-2 was
limited in its performance assessment capabilities due to the lack of an independent
reference with an accuracy superior to the WTR radars.

This shortcoming was resolved with the introduction of a GPS* receiver within
the FLY-2 wafer. The original intent of the GPS Receiver Test Program (GPS/RTP or FLY-2/
GPS) was to demonstrate that the receiver could provide an accurate post-boost update in
the ballistic missile environment. Since it was ptojected that the receiver would main-
tain locks on the signals transmitted by the satellites, it was determined that the range
and range-rate measurements should be ustd for post-mission evaluation.

Two test flights were performed as part of the Ainuteman III test program. Test
missiles PVM-18 and PVM-19 were launched on 31 January 1980 and 27 March 1980. The pres-
ence of an accurate external reference, in addition to the FLY-2 configuration, provided
the best data collected during the Minuteman III test program. In summary, the USAF had
pursued a course that led to ever-increasing test capability without having to make m4jor
changes to an overall test philosophy.

I1i. EVALUATION METHODOLOGY

The methodology used to "opaimize" FLY-2 (and subsequently FLY-2/GPS) perform-
ance is very strongly tied to the objectives set forth for the test programs. Thus, it
is important that these objectives be presented and the test program goals be put into
perspective. The goals of FLY-2 were to:

0 Validate the effect on system accuracy of preflight software (Ground
Program) modifications introduced as a onsequence of the Guidance
Improvement Program#

* Increase the understanding of a number of "r " error sources
included in the guidance system error model

* Detect and identify "unmodeled" error sources

* Identify sources of anomalous perforance using the unique datA
• charaeter~i •dc- avif omhe"T~f7• inst rumentat ton *ystem.

"The same goals were established for FLY-2/GPS with the additional goal of demonstrating
GPS receiver performance in the "operational" environment.

The prKIv error sources are- 1, initial azimuth misalignment. 2) accelerom-

eter cross-axis compliance, 3) gyro g2 and g4 coefficients, and 4) platform compliance.
The error mechanisms for these quantities ire included in the Minutemen III guidance
error model. However, the coefficients typically could not be separated during otatic
testing;§ sled testing does not provide the appropriate dynamics for coefficient obscrva-
bility. Thus, these quantities may be "observed" only during Iovered flight, The goal
of FLY-2 and FLY-2/CPS was to provide data to assist in characterisins these priority
error sources.

The unmodeled error% of interest can actually be called mismodeled errors.
* There has beeni ic-" t iT at certain of the "bias" error coeff(dn-tsiiiive time-varying
characteristics - specifically shifts and/or ramps. This type of error, if present in
the guidance system, could have a tignificant impact on weapon system accuracy. In addi-

2.
tion to the bias shift/rasp type of error, additional unmodeled errors include gyro gX-

and g& -sensitive error cotfficients. These "unmodeled" errors could be addressed using
FLY-2 and/or FLY-2/GPS data once suitable models had been developed for them.

rdlob-vi o-itioning System - A satellite navigation system being developed by a tri-
service Joint Program Office 151.

tExcept during the staging events when high acceleration rates are present due to motor
shutdown and startup.

tOne in a series of accuracy upgrades made to the Minuteman III guidance system between
1970 and 1976.

fStatic testing implies all testing in a l-g field. including tumble and vibration
testing.



Finally, sources of anomalous performance are those error characteristics that
were not anticipated but had been discovered as a result of data analysis. A variety of
these surfaced during the test programs. However, no evaluation studies had been under-
taken, ahead of time, to assess the ability to detect and isolate sources of anomalous
performance.

Based on the objectives discussed above, there are two criteria by which the
test program may be assessed (optimized): 1) recovery of the priority error sources in
a post-mission data evaluation environment, and 2) detection and identification of un-
modeled (or improperly modeled) error characteristics.

The USAF test program objectives called for post-mission processing of CsL data
to extract information about the priority error sources and the "unmodeled" errors. It
was determined that the processor would be based on a Kalman filter [6,71. The filter
estimates the priority error sources and the "unmodeled" errors incorporated in the fil-
ter, to some level of confidence. To address the question of the presence of instrumert
error coefficient shifts and/or ramps, a new methodology was developed. The technique
referred to as the Generalized Likelihood Ratio (GLR) test is a direct extension of the
Kalman filter. The GLR tests use filter residuals to determine whether there are any
unmodeled errors (bias shifts and/or ramps) that would cause the residuals to be other
than a zero-mean, white-noise sequence.

Figure 4 depicts the flow of data through the post-flight evaluation software.
The filter processes the radar, dual NS-20 guidance telemetry data, and, if available,
GPS measurements to estimate the errors in the filter model. The filter minimizes, in
a mean-squared error sense, the error between the actual measurements and those predicted
by the model. The NS-20 error model assumes that the principal instrument errors are
biases over the period of powered flight, It is well known {61 that the sequence of
measurement residuals will be a zero-mean white-noise sequence if the filter models are
correct.

However, if certain of the vrror coefficients display sudden shifts or t'amping
characteristics, the model is not correct and the measurement residuals will not be white
and zero-mean. The GI.R algorithw testa the mean and whiteness of the filter residuals
8[y. The test is a two-step process. The first step determines whether a shift in one

(or more) of the coefficients has taken place,"This is referr-d to au the detectton
process, Detection is performed by forming a weighted sum ot the last M meaiur'ement
residuals* and using this quantity as a test statistic in a binary hypothesis test. If
the ttgt statistic, 0, is greater than a specified threshold. c. a shift i's dotected, if
it is smAller than e. no shift is assumed to be present.

The second step is identification. The GCt forzulation reosults in an 4lgoritho
that generatesan•timate o oio-htat %hifted, the timo of the ghift, and the
shift *agnitude, Under tho at4sumption of no ariort knowledie about the ju*p eharAeter-
istic the GI. vstimate is "optimalý" The eapahibty to estimate the jump characterlstics
wake% the GWI tLott sore attractive than other residual-based dotertion processes (9).

The critical p4ratetor% of thr G3- test dooign are the ;'robahtllty of False
Alarm (PF) and the Probability of Wt•tction (P. The Probability of False Alarm is do-

fined as the probability that a shift will be detected when no 4hift occurs, It is s-hoeo
in (61 thit the higthef the value ot t selected, thv owert the Probabdlity of Valse Alarm.
However, that is not the only trade-off.

The Probability of Detection. d4ttined :,s the probability that a jump (if pres-
ent) will be detected, is a function of the shift detection threthold, t, and the window
length. N. as well as the magnitude cf the juap itself, v (81. As seen in Fig. 5, the
longer the detection window, the higher the Probability of D~etection for a given P7 "
However. the letngth of the window it li-mited by the wissile flight time, computational
capabilities of the hardware used for post-flight processing. and tho fact that multiple
juavu may occur during the flight.

The methodology used for evalualion of the FLY-2 and Fl.Y-2XPS flight test pro-
rams in depicted in Fig. 6. The same error .ovarianee analysis procedures were uged
or both the FLY-2 and FLY-2/GPS studies. Only the FLY-2/GPS simulation is dincugsed

here,

There are three steps involved in the generation of projected FtY-2/*CS perform-
ance estimates. The first step is simulation of the OPS stgment. It is necessary for
two reasons:

a To develop a time history of GPS satellite orbital positions and
velocities so that proper accounting Is made for GIS/missile geometry

* To generate the GPS satellite position, velocity, and clock cali-
bration error covariances.

In Fig. 6. the FILTER module represents the sFcot•d step, recursive solution of the fil-
ter error covariance propagation and update equations. These equations are solved once

*h-qu t- UtyA--is - t: firred to as the (;LR detection window length.



for a specific GPS satellite measurement schedule. The outputs of the FILTER module are
time histories of filter-indicated performance and the Kalman gain matrices.

The third step in the evaluation process, the SYSTEM module in Fig. 6, involves
recursive solut-ion of the linear system error covariance equations, These equations are
solved repeatedly to produce an error budget, using the same Kalman gain file each time.
When all error contributors have been evaluated, the overall measurement system perform-
ance projection can be calculated from the detailed error-source-by-error-source break-
down. This analysis produces the following benefits:

Determination of key error contributors - indica-ing wher to fovcus
attention for subsequent performanrc improvements

* Identification of insignificant error contributors - indicating
where a less costly (i.e., poorW7ju'al-y) subsystem might be sub-
stituted with minimal performance degradation.

The methodology presented in this section was u.ed for "optimization" of FLY-2/GPS per-
formance. A more detailed discussion of the error covariance methodology can be found
elsewhere r5,101.

The FLY-2jGPS errvr t;ariance simulations determine the Kalman filter estima-
r ~tion error coainematrix based on a sequence of measurements. There are three sets

of error msiasuretenis associated with the GPS-RTP. The first is the difference between
the two IMU velocity z-seosurements. the second set of errorzieasurements are those asso-
ciated with th ge radars, and the thirdset results from processing of the OPSI oOasurezmetat.

'the error sources tor FLY-2/GPS are those associated with the two IMUs, the
raaar And the CPS sAtellites. Table I lists the errors modeled for each of the IMUs and
selects-! for use it the Filter Model and Truth (i.e.. system) Model formulations.

Table II lists the error sources associated with the WTR measurements. Error
sources associated with the GPS satellite. propagation delays, the missile receiver areSivent in Table 111, The uncertainties in satellite p-osition. velocity, etc.. are pra-

vided by a program which simulates the GPS satellite ground tracking process, and deter-
sines the estimation error covariance for the GPS satellites. The propagation errors

and trrier and code-loop errors listed in Table III are "odeled as white wtesurtetvit1noise sequences in the simulation and 4re not estimated.

IV. PERFQRM•MNC PROJECTIONS

FLY-I (or single 1WU vs. radar) perforoancr was evaluated using aeveral trajec-
tories that emulate nominal misoions flonl froe Valdnberg Air Force base (VAMl) to the
Kwajelein Atoll. FLY-1 performance was developed as a baseline ag;inst which FLY-2 and
FLY-2/GPS perforsance can be compared- The nominal groutnd track and e"if Sc faorce pro-
files tor these trajectories are shown in Figs. 7 and 8. rospectively. For theose 4nly-
tes, the alinath offset angle. A0. (Fig. 1) is assume to be r-ro. Range measurements
from the South Vandenberg Air Force San,. Point No~u, and Pillar Point radars were os-
4umed available every half-second beginnihg 15. 40, and 50 seconds into the mission,
restec•ively.

FLY-I rvsults are presented in ters of norsalised (unitless) quantities called
recovery tatio. To) typets of recovery ratios art of interest: 1) guidance errojr.re-
ov!y?_•tcqai. and 2) er"or coeficiet recovery ratio. The former is dV -cs

R3S Error In Estimate of (2uldanse •uantity

These are obtained fort

SDon-Range, Cross-Track. Verticel Position and Velocity Errors at

Reentry Vehicle Deployment

* Doun-Raoge and Cross-Track fiso Distances

* CEP II[)

* Initial Azimuth fisaligrment.

Recovery ratios for these quantities are always less than or equal to 1.00; the smaller
the value, the better the recovery of the error of interest.

The errorrceficient recovery ratio (RC) i.s the ratio of the final rms unce'-

tainty in the estimate of the error coefficient. or. to the initial mts or Aflori un-

certainty, ag0 That is:

(2)
C 0
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Down-range and cross-track guidance error recovery ratios for FLY-1 are given
in Table IV. Vertical position and velocity ratios (not shown) are essentially identi-
cal to the down-range numbers. The processing of combined radar and NS-20 data yields
cross-track error reductions of 40 Lo 50 percent. Crosstrack miss distance recovery is
essentially equal to cross-track velocity error recovery because cross-track velocity
error at boost-burnout is the major source of cross-track miss. Unfortunately, process-
ing of the combined radar and single NS-20 data does not produce any significant improve-
ment in down-range for vertical) guidance error estimation as a consequence of radar ac-
curacy and geometry relative to the missile trajectory. The Vandenberg and Point Mugu
stations essentially provide only down-range information. However, the NS-20 IMU is more
accurate in the determination of down-range position than the WTR radars. Thus, the
NS-20 "calibrates the down-range radar.,." Point Pillar provides good cross-track infor-
mation and is the souzce cf recovery for these errors. The reduction in error of the
predicted impant point (i.e., CEP recovery) results solely from the reduction in cross-
track miss prediction error.

Priority error source recovery ratios for FLY-I are summarized in Table V. This
table lists the smallest recovery ratio attained for a given coefficient over all simu-
lated flights. Since the radar data basically yields cross-track information only a
20% reduction in-n-itial-azimuth error Is attained. However, processing of FLY-1 Aata
produces no significant recovery of any of the remainin_ priority error sources.

The guidance error and error coefficient recovery ratios are excellent measures
of flight test performance; however, considered individually they are too numerous to
use in a meaningful optimization criterion. Furthermore, there is no single flight test
configuration which simultaneously minimizes all recvvery ratios of interest. Instead,
two simple measurcs of performance, one for guidance error recovery, and a second for
error coefficient recovery were developed.

In the course of the optimization studies, approximately 150 FLY-2 flights were
simulated. Table VI lists, for each priority elror source the best (i.e., smallest) co-
efficient. recovery ratio attained over all flights. It must be empbasized that no one
Llight simulation yielded all these result3.

If a paiticular error source coefficient strongly influenced the error behavior
of an IMU, simply avaing the outputs of two systems (under the assumption that the
error sources in both jystems are equal in rms value and uncorrelated) would reduce the
effect of that error source on system error by a factor of I/4 or 0.71. It could be
argued that coefficient recovery ratios greater than 0.71 are not significant. Table VII
shows that FLY-2 produces no significant recovery of accelerometer or platform compliance
coefficients. The same is truu for gyro bias and g-dependent drift rates. In fdct, of

all the priority orror source coe~ficientv only gyro g2 . and g4 -deperlent drift rates
ore eecovered at a significant level. For these coefficients it is invenient to define
a composite coefficient recovory ratio!

R (mit R + min R + min R + min RpI (3)

wh;ýre

min R = smallest recovery ratio attained for a given coefficient in a

given run
6E, 6B signify gyro C2-dopetdent drift coefficients

J,P signify gyro g -dependent drift coefficients

R CO" and RG toe used am measures of FLY-7 perforvAnse for optimization purposes.

A major concern waxsi#lection of prisaary and secondary NS-20 INU aximuth offsets
atmd trajectory rtentry angle to optimize (ofer, miniayie) the guidance error CEP and com-
posite coeffieient recovery ratios. Three-axis velocity difference data and radar track-
itng data were processed evpry 4.5 seconds throughout the boost phase using a Kalwan fil-
ter algnritho to estimate guidance errors, instrument and platform error coefficients.
and initial alignacnt errors.

With regard to aximu:h ouffet angle (4o) optimitation, one might assume that
simultaneous offset Ot both IMUs is desirable. However, for the optimization critcria
selected, this ig not the case. To illustrate, results of two test cases from the Aeries
of medium reentry angle studies are summarized in Table V:1. The flights had a fixed
azimuthal difference of either 30 er 45 deg between the two systems. However, the orien-
tation of ti-p-r[W-y guidance system (System 1) vas varied about the ao-0 deg orient*-
ation. he cof posite coafficienst recovery ratio kt d ahe CEP recovery ratio for these

flights are also presented.

For a fixed azimuthal difference. superior recovery always occurs when one sys-
te'i to launched with zer" offast. This was observed to be the case at all reentry angles.
In this orientation the gyro and avcel-roauccr errors contribute the least to guidance
erro:rs When both IAU* are offset so that their individual contributions to guldsnce
errors are cumpsrablu, the optimal post-flpght data processor cannot distinguish betweed
th* two systems. Thus. recovery ratios are poor, conversely, when one systes is placed
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on-axis, its contribution to guidance errors is greatly reduced and the errors of the
off-axis system become more observable. The on-axis IMU becomes the reference through
which errors in the off-axis system are recovered.

Azimuth angle offset optimization studies were performed, with one platform al-
ways at zero offset, for low, medium, and high reentry angles with results shown in Figs.
9, 10, and 11. All three sets of results are quite similar and demonstrate that initial
azimuth error recovery shows little variation with offset angle. This is because much
of the initial azimuth error recovery comes from radar tracking data and not IMU velocity

Y difference data.

The guidance CEP recovery ratio shows some variation with azimuth offset angle.
However, the variation is not pronounced. Guidance CEP recovery is a minimum when Aa =
180 deg, i.e., when the level platform axes for the two systems are antiparallel. How-
ever, actual implementation of this configuration is not possible due to guidance system
gimbal constraints.

Referring again to Figs. 9 through 11, the composite coefficient recovery ratio
shows the greatest variation with azimuth offset angle of any of the recovery ratios con-
sidered. Furthermore, for all reentry angles considered, this ratio reaches a minimum
with a 30 de offset of the secondary IMU. This minimum is fairly broad, however, pro-
viding low composite coefficient ratios in the range of 22.5 to 45 deg. Also, the com-
posite coefficient recovery ratio plot is symmetric about zero degree offset so that both
positive and negative offsets are useful.

As a consequence of these optimization studies, the following conclusions were
drawn:

* The primary guidance system should be aligned to the target aiimuth
(4a = 0 deg)

* The secoadary gaidarco platform should be offset 22.5 to 45 deg
from the primary guidance system

0 The reentry angleg for FLY-2 should be in the middle of the systems
capability range.

The first two recommendations %ere followed on all three FLY-2 flights. However, a range
of reentry angles was selected so that jpeific error coefficient recovery could be em-
phasized rather than minimization of the comopite performance index.

}laving addressed the "optimization" issues associated with FLY-2, it is possible
to assess GLR test performance, The GLR test was specifica]ly designed to detect and
identify shifts or ramps ia certain guidance system 1nstrument error coefficient•. Atten-
tion is directed here to the detection and identification of shitte in tho iccelerometer
bias and/or gyro bias drift coefficients, The rtsults are bared on th same %o"el used
in the optimization studies. In addition, two fores cr the GLR xest mechanization are
considered - fixed-Lag and Fixed-Interval.*

Fixed.LaLG is bases on a data window (M) of fixt(.d length. The relationship
between wJwlength and detectable jump magnitude i• shown in Figs. 12 and 13. For
sh:ftt in both accelercmeter bias and gyro bhaa drift. there is an asymptotic relotion-
ship between detectable jump magnitude and window length. The minimum acceptabte window
lergth is Approximately 21 (100 sec for the 5 see sampling interval). However, maximum
detectability for all possible jump times would require window lengths on the order of
45 (225 see). Figure 12 indicates that accelerometer shifts on the order of 10o (a is
the initial rms uncertainty) art detectable, with a false alarm probability (PQ) of 0.05
and 6 detection prot-ability (P.) of 0.50. For gyro bias drift, shifts on the order of
50o are detectable if they occur prior to third-stage thrust termination.

The regiont of superior shift detectability are shown iAn Figs. 14 and 15.t Ac-
celerometer bias shifts are most detectable if they occur after burnout. The poor per-
formance prior to burnout is caused by the large specific force components exciting the
t higher-order accelerceeter and gyro error terms. Thus, bias shifts must be large rela-
tive to the specific force effects on the g-dependent errors if they are to be observ-
able. Aiter thrust termination, the detection of smaller shifts is possible (for the
sane P.) because of the lower specific force component magnitudes.

It is well known 111-141 that gyro bias drift errors enter guidance '.elocity
error through the term #xf, where j is the platfors misaligmaent vector resulting from
gyro drift errors and f ii the specitic force vector. It follows that .:yro bias drift
coefficient shift detection should be the best during the period of powered flight when
f is maxinum. The data plotted in Fig. 15 substantiotes this preaise.

Me- terms iVi t---rvl• and Fixed-Lag were selected because of the close association
of the forsulatioas to the fixed-Interal 4M Fixed-Lag Saoothee •i61.

i~f tFtxed-L&S and rixed-Interval results are shown in Figs. 14 and 15 for coaprison; caly
th lwt r are dsusd



Fixed-Interval GLR uses a variable length window which runs from the candidate
jump time to the end of the data interval. Figures 12 and 13 show the effect of the in-
creased window length on jump detection. The projected detection performance of Fixed-
Interval GLR is presented in Figs. 14 and 15 for comparison with the Fixed-Lag algorithm.
These figures show the jump magnitude required to produce a detection probability of 0.50
when the threshold is set for a false alarm rate of 0.05. Naturally, the larger windows
resuic in improved performance for all cases; however, the improvement is most dramatic
foa accelerometer jumps prior to burnout (200 sec).

Accelerometer bias jumps of about 2a are uniformly detectable throughout the
flight. The significant difference between the two GLR mechanizations in detecting jumps
before burnout is explained as follows. The Fixed-interval algorithm always has avail-
able the filter residuals after burnout where the effect of an earlier accelerometer
shift is highly observable. The Fixed-Lag version lacks this information and is unable
to identify a small shift In the presence of large g-sensitive error coefficients.

Significant infor-mation concerning a variety of the priority errors may be ob-

tained using FLY-2 flight test data. However, a number of shortcomings were identified
based on insights gained during the performance evaluation and optimization studies.
fhese shortcomitigr, w re borne out during subsequent data processing activities.

Principal amonf' the shortcomings is the inability to distinguish between cer-
tai.a error sources ihose signatures, in measurement space, are nearly identical. It is
impcsbible, f'r example, to separate between initial primary and secondary IMU azimuth
misali 6 nmeits; conseeleht;ly, the need for an accurate, independent position/velocity ref-
crenc2 is apparent The advent of the GPS-Receiver Test Program (GPS-RTP) was most timely
since it prnvioed the potential for uniquely accurate reference system measurements. Fig-
ure 16 shows the GPS SiLellite geometry anticipated for the missile test dates.

The inco:poration of the GPS measurements significantly improves the capability
to estimate guida.,ce-system-lnduced deployment errors as well as initial azimuth misalign-
menL. Taole VIII summarizes the results of the FLY-2/GPS performance evaluation study.
These results represent those associated with a medium reentry angle trajectory. Thesecondary system was offset 45 deg from the primary. The table also contains the pro-jecte-I performance for FLY-1/Radar and FLY-2/Radar. It is apparent that overall weapon

system test program performance could be greatly enhanced via the use of GPS data.

Recovery of the priority error sources is also improved. Table IX presents the
secondary system guidance error coefficient recovery capability, for a particular FLY-2/
GPS mission. These are the error sources that demonstrate the significant recovery capa-
bility, FLY-I/Radar and FLY-2 performance projections are also included.

Certain of the recovery ratios tend to remain large (poor recovery), irrespec-
tive of the measurement type or quality. This is a consequence of the processor's in-
ability to separate the various error sources. Consequently, for evaluation of future
systems, a new methodology to define filter models, filter dimensions, etc. that recog-
nizes the limitation of "optimal" data processors should be developed. In addition, pre-
launch and flight test data must be processed in 4 complementary manner to provide maxi-
mum system understanding relative to each type of data.

The value of GPS measurements in the detection of instrument coefficient shifts
is demonstrated in Figs. 17 and 18. A factor of two to three improvement in detection
capability can be achieved with the incorporation of the GPS information. Other than
this improvement, however, the characteristics of the detection process are unchanged.
The G.R methodology must be modified to account for the inability of the GLM test to
identify, with high confidence, a number of instrument error characteristics.

V. DATA PROCESSOR STRUCTURE

The top-level structure of the Post Flight Analyzer (PFA) is depicted in Fig.
19. The PFA is structured such that guidance system initial condition errors and instru-
ment error coefficient shifts are determined using a five-step process;

0 Data Preprocessing

a Filter Analysis

0 hodel Analysis

0 Jump Detection and Identification

* Decision Making.

In data preprocessixMn telemetry data frou two NS-20., the GPS measurements,
and data from several radars are sorted, time synchronized, compensated for determinis-
tic errors, rotated to appropriate coordinate frames for coparison, and combined such
that all relevant hixh-rate data is reduced to a rate suitable for the advanced Analysis
tools. Since this step involves substi.tial computation, the PFA allows parallel proc-
essing of each data type, thereby decreasing the preprocessor timeline substantially,

The fluter analysis programs take the sequence of range and range-rate differ-
ence measuremers a(Plianl/or radar) and velocity difference measurements (between the



two NS-20s) provided by the preprocessor and calculates estimates of NS-20 error coeffi-
cients (primary and secondary systems), GPS errors, and radar errors. The estimation
process is carried out with a suboptimal Kalman filter augmented with smoothing capabil-
ities for key epoch times of the missile flight (e.g., deployment). The residual differ-
ences between the measurements and the estimates form the basis for the model and shift
analysis tests which follow.

The model analysis programs characterize the residual differences provided by
the filter. In particular, tests are performed to determine if the residuals are a zero-
mean white noise process with a variance predicted by the filter model. If these tests
are passed, the mathematical model imbedded in the filter is consistent with the true
system dynamics. If the "whiteness" tests are failed, further analysis into the nature
of the failure are initiated.

Jump detection and identification analysis is used to seek one or more instru-
ment parameter shifts consistent with the filter residual characteristics. The GLR test
provides the primary means of instrument coefficient jump detection and identification.

A. DATA PREPROCESSING

A number of important steps must be taken to prepare raw recorded data so that
it may be efficiently and accurately analyzed. The software that performs these steps
is depicted in Fig. 20.

The PIGA* Prefilter calculates the specific velocity sensed by the primary NS-20
and the indicated velocity difference between NS-20s. Seven categories of deterministic
errors are compensated:

40 The six PICA pulse sums are adjusted (using the telemetered time-
of-last-pulse) to reduce the effects of quantization and sample
time differences. Compensations are also made to account for tim-
ing differences due to the asynchronous sampling of the PICAs and
due to guidance computer clock drift rate.

0 The six PICA pulses are compensated for errors due to "coning," the
result of a misalignment between the PIG float and PIAG input axes.
The misalignment angle and phase are calibrated using prelaunch
telemetry data.

* The PIGA pulses are subsequently passed through a digital low-pass
filter to reduce the residual random errors resulting from quanti-
zation and timing uncertainties, The result is the "best estimate"
of all six PIGA pulse sums.

* The PIGA pulses are compensated with pre-flight estimates of bias
and nonlinearity errors and then transformed into a velocity vector
in NS-20 computational coordinates.

0 The velocity vector Is then corrected for platform-to-computer mis-alignments. The misalignment is based on the prelaunch values of

gyro g2 and g4 error coefficients. Initial misalign•ent, due to
gyro torquer limit cycling. is also taken into account.

0 Platform compliance errors are compensated next using a 27-term
•I platform bending model.

0 Finally, the velocity of the secondary NS-20 relative to the primary
NS-20 (lever arm effect) is subtracted from the sensed velocity Of
the secondary system. This compensation is based upon the teles-
etered RS-20 gimbal angles which have been interpreted, smoothed,
and differentiated.

The results at this point in the NS-20 processing are two measurements of the
integraLtd A'pecific forcet (specific velocity), sa sensed by the two sets of instruments.
compensated for all known deterministic errors. The specific velocity vectors are pro-
vided to the trajectory integrator.

The Trajectoryjlqigqr calculates the position and velocity of the missile
based on the biet availabe gravit model and the sensed specific velocity. To allow for
refinements in the trajectory (as gad date is removed and errors are estimated) without
repeating the long integration process required by this program, the total gravity gradi-
ent matrix is also calculated.

Radar data is preprocessed using two programs. The Radar Sypchronizer performs
the function of merging data: range measurement data from up to 10 t uraicTn3iadars are

Whe acre eraiters used on Minutesm IllI are PICAs or Pendulous Integrating Gyroscopic
Accelerometers (11).

tSpecific force is the sum of all forces acting on the vehicle except for gravity fIll.
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extracted from the raw data tapes, put in common engineering units and time synchronized.
The result is a single sequential file containing all available radar data.

The Radar Prefilter determines the difference between measured radar range and
range-rate and computed range and range-rate based on the NS-20-indicated position and
velocity time history generated by the Trajectory Integrator. High-frequency measurement
noise is reduced by averaging all range differences over a 4.5 see time interval. The
geometry of each measurement is also determined in order to properly weight the one-di-
mensional range and range-rate difference measurements in the estimation of three-dimen-
sional position and velocity vectors.

Two types of GPS measurement data are available: preflight data and inflight
data. The primary purpose of the preflight processing ia to calibrate GPS-related errors,
most notably receiver clock errors. These estimates are then applied to the inflight
data.

The data tape records contain a mixture of parameter values from receiver-gener-
ated "high-rate" and "low-rate" data tables; two separate programs extract the required
components from each table. The first reads selected values from the low-rate table and
prepares the data for input to the calculation of pseudo-range.* These data items, such
as master time delays, user and satellite epoch count differences, etc., are either con-
stant or slowly time-varying quantitites. The required high-rate data table items are
accessed by a second program. The items include the replica code counter states, vernier
range corrections, range-rates, and status and identification tags for each channel.
The program uses this data, along with that supplied from the low-rate table, to form
the receiver-to-satellite pseudo-range measurement and also scales the range-rates and
corrects for the range-rate computational delay prior to outputting time-tagged, satel-
lite-indexed, corrected pseudo-range and range-rate measuremernts.

The GPS measurements are compensated for the following calibratable errors:

4 Satellite clock errors

* Receiver clock gravity-sensitive trending

* Tropospheric propagation delaysI Relative position and velocity offset between GPS antenna phase
center and the primary IHU

* Relativittic effects, both special and general, between GPS receiver
and ground-based user.

A final preprocessing program determines the differences between the measuredand computed range and range-rate using the receiver- and satellite-indicated position
and velocity. !Re satellite state vector is computed at each time of signal transmissionusing the beat estimate of the "Block 11" ephemeris data provided by the GPS Joint Pro-

gram Office t151. The receiver position and velocity are determined from the best esti-mate trajectory interpolated to the time of signal reception, The resulting difference
measurements are then compressed to suppress measurement noise effects, These range and
range-rate differences, along with the computed measurement geometry, are the final pre-
processor outputs.

h. FILTER ANALYSIS

The filter calculations use the sequence of range and range-rate differences
(GPS and/or radar) and velocity differences (betwen NS- 20s) to calculate the t-est esti-
mate of NS-20 guidance coefficients, GPS errors, and radar errors based on A-kriori error
statistics. The residual differences between the measurements and estimates are t•e
basic inputs to the GIt tests. Date flow is shown in Fig. 21. The residual calcula-
tions are divided into two separate sets of programo for computational efficiency, The
first, Gain Calculation. requires the straight-forward, although lengthy, computation of
Kalman g~ai beonthe nominal trajectory, the system error model anm the measurement
sequence.

Two forms of smoother may be used. The Fixed-Point Smoother 116) allows the
computationally efficiei-i-stimation of a limited numlcr of smoothed states at selected
times. This is particularly attractive if only certain candidate states are suspected
to be time-varying. The rixed-lnterval Smoother 16) allows the smoothed estimation of
all parameters but requires more computations. both have a place in he searth for un-
modeled parameter changes.

The second program set, Residulal, Calculator, uses the gains to interpret the
measurements -fiiithe data preproe-sor. 'During preliminary data editing, the relatively
simple residual calculations can be performed many times, using the same set of gains,
without significant loss of accuracy. The more lengthy gain calculations need be re-
peated only after *bad" data has been removed or whenever the filter model is changed.

Pi~si~or ej measurements cojmkin otrue" slant range plus the receiver clock phase
offset.
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C. MODEL ANALYSIS AND JUMP DETECTION/IDENTIFICATION

The primary jump detection is performed using the Generalized Likelihood Ratio
(GLR) test. The Kalman filter residuals are used in the GLR test. The GLR test compu-
tations are divided into two routines: the first calculates the GLR gain matrices, the
second performs the GLR test on the data. (The•'•LR gain matrices need only to be recom-
'puted when the filter gain matrices are recomputed.) The GLR Test routines use the gain
matrices to determine whether the filter residuals are consistent with the model. In
the event of a jump detection, the time and identity of the parameter(s) which changed
(jumped) are estimated. These jump estimates may then be used to change the model and
the residual calculations may be repeated.

Residual Tests are performed on the filter and smoother outputs. If the models
are correct, the residuals will be a zero-mean, uncorrelated random sequence and with
variance as predicted by the model. Thus, the sample mean and variance calculations pro-
vide some clues as to the nature of the modeling errors. The residual tests provide a
"quick-look" capability to identify missions with possible parameter jumps.

VI. DATA PROCESSING EVALUATION RESULTS

Data processing included evaluation of data from the three FLY-2 flights and
the first FLY-2/GPS mission. Here, the processing results from one FLY-2 flight (STM-
13W) and the FLV-2/GPS flight (PVM-18) are highlighted. Table X summarizes the princi-
pal characteristics of each flight.

The STM-13W data analysis focused on jump detection and identification. A
quick-look technique for determining the possibility of PICA and/or gyro error coeffi-
cient shifts was developed based on the velocity difference data generated by the dual
IMUs. Figure 22 is a plot of sensed velocity differences over the first 1500 sec of
powered flight. Three distinct phases are evident. During the first or powered flight
phase (0 to 180 sec), uncompensated acceleration-dependent errors cause parabolic error
growth. Over the second phase (180 sec to 500 sec) no error growth is evident since the
vehicle is experiencin-ga nearly zero specific force. The third phase (after 500 sec)
provides a clear indication of a PIGA bias shift.

The PICA bias shift is easily detected by the GLR algorithm. However, in order
to identify a gyro error (e.g., biss drift) coefficient shift during the powered flight
phase, a closer look at the data over the first interval is required. Rather than veloc-
ity differences, it is more enlightening to examine platform-to-coaputer misalignment
ansles, •. These angles can be obtained by recalling that, over a very short time inter-val At,

4t At

to (I x f) dt = #v (4)

The Av are the differences in measured velocity. If t is assumed constant over the in-terrv-t At,

Sx (ffdt Av a - elt (5)
to0

where [A) is the skeV-#ymmetic magrix of integrated specific force components. As a
consequence

StA 1 I Ax (6)

Figure 23 presents the estimates of the three component %.f in computer axes
(down-range, cross-track, and up). Straight-line approximation- .t evrves correspond
to the assumption that the gyro drift is caused by a bias only si* ly with a Jump
change in magaitude. The curves in Fig. 23 indicate the possibility of gyro bias error
breaks occurring at approximately 60 and 135 sec. However, the shifts are not large and
may be accounted for by the US-20 error modal.

It was anticipated that a PICA bias shift would be evident in the CIA output
and perhaps one or more gyro bias shifts would be detected. It should be recalled that
the CLR test answers the question: what is the relative likelihood titat a given suidance
coefficient experienced a shift at a given time, compared to the null hypothesis (no
shift)? The likelihood ratio (1) is the quantity used to quantify the alternative hy-
potheses. Large * implies a significant jump in the parameter of interest. Values of
A 4 10 are not significant as indicators of a jump at the P. : 0.05 level. Result# were

obtained using both the Fixed-Lag GIA ilgoriths with a 100 sec data window, and from the
Fixed-tnterval GLA algorithm incorporating data up to 600 see into the flight. For brev-
ity, only Fixed-Lag results are presented herein.

The Fixed-Lag CLI results (Fig. 24) display a weak FICA bias anomialy at 140 see
which falls vell below the i t 10 threshold. Consequently, this weak anomaly was not
deetmed to be significant. A strong anomaly is evident in the post-boost phase. While
this anomaly has minimal impact on system accuracy (becAuse of its time of occurrence),it was evaluated in detail. The conclusion of the analysis is that all three PIGAs in

the primary system experience shifts in their bias level near 450 sec.



:1 Fixed-Lag gyro bias drift likelihood ratios demonstrate a false response due to
the large PIGA bias shifts (Fig. 25). Only two of the three gyro bias drift states are
presented; the third drift state is nearly unobservable and consequently of no interest.
Indepth analysis of the telemetry and radar data indicates that no detectable gyro bias
drift anomalies occurred during the boost phase.

Results of the STM-13W data analysis are typical of those for each FLY-2 flight.
The presenY_ of a large PIGA bias shift near the 450 sec time print was evident on all
the flights. In addition, there was no indication of a detectable PICA or gyro anomaly
during boost.

It was concluded that anomalous guidance system performance, in the form of
shifts in instrument parameters, is not significant statistically or in terms of weapon
system accuracy. Thus, for the FLY-2/GPS data processing activity, the focus shifted to
guidance coefficient estimation and GPS receiver performance assessment.

For the PVM-18 mission, four CPS satellites provided range and range-rate meas-
urements. The subsatellite points for each satellite are indicated in Fig. 26. The sig-
nals from the satellites were acquired approximately five sec after launch and, except
during staging events, provided accurate information out to approximately 1000 sec.
Satellites No. I and No. 2 yield very good cross-range information, while Satellites No.
3 and No. 4 contribute primarily to down-range information. Overall, GDOP (Geometric Di-
lution of Precision (51) was approximately 4-5 over the flight, with the vertical channel
having the poorest GDOP. The cross-track axis had a single-channel GDOP less than 1.0.
Values of azimuth, as measured from north, and elevation above the local-horizontal plane
of the satellite relative to the receiver are summarized in Table XI.

The primary-minus-secondary IMU velocity differences for PVM-18 are presented
in Fig. 27. The three phases of error growth (i.e., powered flight, free flight, and
post PIGA bias shift) are evident.

The velocity differences are quite small through the first 125 sec of flight
(the first and second stages of missile thrusting). A rapid divergence occurs during
third-stage thrusting, leveling off in all three axes at thrust termination. The nature
of the third-sta diver ence occurring most noticeably in the cross-track directIon

Wa errors or
a alU or both7 miis Cross-trac1k sensitivity to gyro

errors- s extreme- g n i utemandue to the exclusively in-plane (x-z plane) thrust-
ing pattern utilized. The sensitivity to errors about azimuth is further accentuated by
the partic-alar trajectory flown.

Rangt and range-rate difference measurements along the Satellite No. I line-of-
sight are presented in Figs. 28 and 29, respectively. The dotted line represents the
high frequency measurement data and the solid line represents the "smooth" difference
measurements used in the subseouent data analysis. These aro typical of the range and
range-rate measurements provided by all four satellites. (The large spikea in the range-
rate measurements occur during period* when the tracking algorithm is in frequency track
only.)

The continuous CPS measurement availability and excellent measurement quality
made it possible to improve the post-mission analysis results. The S X and FS1 gyro er-

rors were identified as the primary sources of the observed impact error fot PEH-18.
This conclusion is based on the fact that the polt-flight analysis is in excellent agree-
sent with preflight prtdictions of the miss-distance contributions of the Sbl and F

error sources. However even with the excellent GPS measures ftt ualitr the inherent
:t e7-ýf P. :%=- er or M- -iAl

F in._rumenterrors i. stll inLo.etion. This separability problem was demonstrated

based on results of a seiisitivity study performed as part of the PVM-18 analysis. This
study examined the sensitivity of the estimated impact error contribution of critical
gyro error sources to their initial taw uncertainties. Results of this study show sig-
nificant variations in the estimated miss distance resulting from the individual gyro
error sources, while total impact error displays minimal nat variation. This behavior
is indicative of a basic inability to isolate individual gyro error source contributors.

Post-flight evaluation of hinutemsn performance based on GPS test measurements
indicates that CPS is an excellent absolute reference for both position and velocity.
Estimation of initial platform misalignament is also improved. In addition. qualitative
insight Into PIGA performance ean also be obtained through examination of INU/GPS veloc-
ity differences. A performance issue that impacts future utilization of CP$ must still
be addressed, however. This issue is the proper use and interpretation of data that is
extremely accurate at the position and velocity levels but, due to the complexity of the
underlying guidance error model, does not provide unique insight into the magnitudes of
specific instrument-related error mechanism*. In other words, the model observability
problem must be addressed as it becomes necessary to Vork to finer levels of detail in

geerting systom understanding. The capabilities of filtering and smoothing analysis
otter a great deal in evaluation of complex weapon systems but only to a certain thresh-
old which must be identified.
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VII. SUMMARY

Over the past 10 years the U.S. Air Force has upgraded the accuracy of the Min-
uteman III. To assess and further these accuracy upgrades, a number of flight test pro-
gram instrumentation enhancements were incorporated. These include post-flight process-
ing of multiple IMU test data (the MPMS and FLY-2 Programs), and use of GPS data (the
FLY-2/GPS Program). This series of flight test programs was planned and executed in a
logical manner to minimize cost/schedule impacts.

The Minuteman III flight test program enhancements have been successful. A num-
ber of significant error mechanisms were identified and isolated using data obtained dur-
ing the MPMS, FLY-2, and FLY-2/GPS Programs. With the improved accuracy objectives asso-
ciated with the next generation ICBM system, problems of flight test optimization and
post-mission processing will continue to provide challenging opportunities over the years
ahead. There will almost assuredly be further advances in filtering and smoothing theory
to support the needed growth in system understanding.
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TABLE II
RADAR ERROR MODEL SUMMARY

NUMBER OF STATES
ERROR SOURCE NAME FULL TRUTH FILTER

MODEL MODEL MODEL

RANGE MEASUREMENTS

Bias Error 1 1 1"
Scale Factor Error 1 1 !
Random Error 1 1 1
Measurement Noise 1 1 1
Survey Errors 0 0 0

RANGE-RATE MEASURFMENTS

Bias Error 1 1 1
Scale Factor 1 1 1
Random Error 1 1 1
Measurement Noise 1 1 1
Survey Errors 0 0 0

TABLE III
GPS ERROR MODEL SUMMARY

NUMBER OF STATES

ERROR SOURCE NAME FULL TRUTH FILTER

MODEL MODEL MODEL

SATELLITE ERRORS

Position 3 3 0
Velocity 3 3 0
Solar Radiation Force 1 1 0
Gravitation Constant 1 1 0
Satellite Clock 3 3 0

PROPAGATION ERRORS 2 0 0

RECEIVER ERRORS

Missile Clock 5 3 3
Carrier and Code Loop 2 0 0

TABLE IV

FLY-1 GUIDANCE ERROR RECOVERY RATIOS AT BOOST BURN-OUT

REENTRY DOW-RANGE CROSS-TRACK I)O -RANGE CROSS-TRACK PREDICTED iPREDCTEANGLE POSITION POSITION VELOCITY VELOCITY CROSS-TRACK PED
ERROR ERROR ERROR ERROR miss

Low 0.98 0.56 0.99 0.63 0.63 0.82

Medium 0.99 0.53 0.99 0.56 0.56 0.76

High 0.99 0.55 0.99 0.62 0.63 0.79
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TABLE V

BEST FLY-1 PRIORITY ERROR SOURCE COEFFICIENT RECOVERY RATIOS

ACCELEROMETER COEFFICIENTS GYRO COEFFICIENTS
•_ -. INITIAL

IST ORDER CROSS-TRACK PLATFORM 4 AZIMUTH
NONLINEARITY 2 BIAS g-DRIFT ggDRIFT g-DRIFT ERROR

OFg COMPLIANCE g-RF(iFiI) (Bc2)

0.99 0.99 0.99 0.99 0.99 0.96 0.98 0.80

TABLE VI
BEST FLY-2 PRIORITY ERROR SOURCE COEFFICIF.NT RECOVERY RATIOS

ACCELEROMETER COEFFICIENTS GYRO COEFFICIENTS

IST ORDER CROSS-TRACK PLATFORM 2 4
NONLINEARITY g2 COMPLIANCE BIAS g-DRIFT 2-DRIFT g-DRIFT

W(Fil) (Be2) 8C 6D 6B 6E P J

0.93 0.96 0.93 0.99 0.76 0.81 0.48 0.18 0.07 .22

-:EFETTAOLE VII

EFFECT OF AZIMUTH OFFSET VARIATIONS ON ERROR RECOVERY - FLY-2/GPS

DIFFERENTIAL INDIVIDUAL AZIMUTH COMPOSITE GUIDANCE
AZIMUTH OFFSET OFFSETS (deg) COEFFICIENT CEP

IAe 1 •a 2 1 RECOVERY RECOVERY
(deg) A*1  6_2

30 0 30 0.29 0.62
-15 15 0.47 0.65

45 0 45 0.32 0.63
-15 30 0.44 0.72

-22.5 22.5 0.49 0.76

TABLE VIII

SUMMARY OF GUII2ANCE ERROR RECOVERY RATIOS AT BOOST BURN-OUT

GUIDANCE RECOVERY RATIOS

TRACKING DOWN-RANGE CROSS-TRACK DOWN-RANOE CROSS-TRACE INITIAL
SYSTEM POSITION POSITION VELOCITY VELOCITY AZIMUTH

ERROR ERROR ERROR ERROR ERROR

FLY-i/Radar 0.98 0.56 0.99 0.63 0.80

FLY-2/Radar 0.71 0.50 0.71 0.60 0.60

SFLY-2/GPS 0.01 0.02 0.02 0.03 0.36

TABLE IX

SECONDARY GUIDANCE SYSTEM PRIORITY GYRO ERROR
SOURCE COE"FICIENT RECOVERY RATIOb

INSTRUNENTATION RECOVERY RATIOS

CONFIGURATION 88 69 P J

FLY-I/Radar 0.98 0.96 0.98 0.99

fLY-2/Radar 0.54 0.33 0.22 0.56

FLY-2/GPS 0.51 0.25 0.15 0.37
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TABLE X•- FLIGHT TEST PeRAETERS

PARAMETER FLI-13W PVN-18

Launch Date 31 J nuary 1977 31 January 1980

Launch Time 05: 5:0O PST 05:40:00 PST
Reentry Angle Low Medium

Primary Azimuth Offset ý0 deg 0 deg
Secondary Azimuth Offset 45 deg 0 deg

TABLE Xl
GPS SATELLITE/RECEIVER GEOMETRY

GEOMETRY*
SATELLITE

NUMBER AZIMUTH ELEVATION
I_ (deg) (deg)

1 198.0 34.8

2 324.0 32.0

3 42.8 66.0

4 36.3 36.5

*At time of launch.

V

I
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VALIDATION OF FILTER/SMOOTHER MODELS

I. INTRODUCTION

A. MOTIVATION FOR MODEL VALIDATION

The importance of the model used in design of a Kalman filter/smoother is well-
recognized. In practical applications, tradeoffs inevitably exist between complex models
which represent the real world with great fidelity and simplified approximate models
which lead to less costly implementations. To the system analyst, the question of model
validity is of great importance for two reasons. First, if Kalman filtering results are
to be interpreted with confidence, it is essential that the model be a valid representa-
tion of the physical system. Second, and perhaps even more important, the model often
represents a baseline design of the system with associated baseline system performance
characteristics. If that model is not a valid representation of the actual system being
tested, there is an implication that the system does not match its baseline design, and
therefore may not meet its baseline performance characteristics.

In this chapter, a procedure for model validation is described. The procedure
is based on statistical hypothesis tests focused on the question: "Are the estimates
generated by a Kalman smoother from system test data consistent with the system model?"
The procedure is a multiple-test approach; filter/smoother estimates from several system
tests are combined in a common data base on which the statistical hypothesis tests are
performed.

The model validation procedure discussed is based on well-known statistical hy-
pothesis testing methods (1,21. The contributions presented are first, a problem formu-
lation and second, analysis and data reduction procedures which la--to efficient appli-
cation of the statistical hypothesis tests. Auother approach to the model validation
problem which is potentially applicable to the same class of systems is based on maximum-
likelihood parameter identification procedures 13,41. In each of those methods, Expecta-
tion-Maximization (E-M) algorithms 151 are used to obtain maximum likelihood estimates
of statistical parameters. Those estimates are then available for use in the calculation
of test statistics for hypothesis testing imilar to that discussed here.

Another approach to model validation is based on direct examination of residual
sequences resulting from an ensemble of test results 16-81. Procedures based on this ap-
proach are designed only to detect the presence of data/sodel inconsistency; unlike the
procedures described in this chapter, they do not attempt to isolate the snurce of the
inconsistency to specific system parameter*. Kashyap and RaooT '-scuss the model vali-
dation problem from this viewpoint with an emphasis on much smaller aystems than consid-
ered here and under the restrictive assumption that all tests are based on identical sce-
narios. Goodrich and Caines 171 consider the statisti'Al parameter Identification prob-
lem based on likelihood functions formed directly from the innovations (i.e.. filter re-
siduals) of each test. Barea 181 approaches t0e model validation problem by generating
test statistics from normalized residual sequences from each test. Although the*e latter
approaches have considerable potential beeuase of their generality, they are computation-
ally very costly, and do not lead to the development of an expanding data base available
for use by the test designer/analyst.

8, THE NOMEL VALIDATION PROBLEI FOR LINEAR DISCRETE-TIKE SYSTEMS

The models used in the design of post-test dats processors are typically devel-
oped via a two-step procedure. first, models using algebraic and differential (or dif-
ference) equations are developed tror each cowporint and error sourc4 of the cosplete syn-
tem based on physical understanding. Second, speeific numerical values for the various
parameters of these models are deteraineisitrough laboratory tests, analysis of previous
field tests, and engineering Judgment. This procedure leads to a formulation of the
model validation problem based on t.e model structure and parameters shown in Fig. I.

In this discrete-time formulation, the structure of the model, including the
order of the difference equations describing the dynamii sdel, is assumed to be correct.

The various model parameters shown !n Fig. I are less certain and are to be validated.
The vector t is referred to as the initialization vector for the model. Use of a sepa-
- rate symbol for • (which is eactly X in Fig. 1) is motivisted by the multiple-phase

models discussed In Section It D. Note that a separate block has been ahown representihg
the measurement system because the measurement system model is an essent1al part of the
overall model validation question. If dynamic states are used in the aeasurment system
model, they nust be included in the 4, vector representing system dynamics in Fig. 1.

The model parametero fall into two categories: Structurol ramoters which de-
fine the elements of matrices #, and H1 and st~tjstlcaIo poara@M-tjs bit-d•e--e the nor-

eal density functions which model , w1 and v,. The approach described here is directed

only at b and 1, the statistical parameters associated with t. For typical systeoP, these
parameters are among the most crucial in determining overall pcrformance. 16 a ballistic
wissile system, for example, non-zero values of b lead directly to a bias an the impact
distribution; similarly, off-nominal values of IT,* I) lead directly to an off-nominal

Circular-Error-Probable (CLP) for the system. The other statistical parameters and the
structural parameters in fig. I should not be dismissed as unimportant, but they are
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Design of the bias capability procedures was primarily by j.E. Sacks and covariarce ma-
* trix validation procedures were developed by F.K. Sun. The software system, including

the data base design, was developed by S.L. Rubin.

II. VALIDATION OF THE MODEL INITIAL MEANi

In this section, details of th~e model-mean validation procedures are presented.
The first subsection provides a description of a "data equation" representation of
smoothed estimates from a Kalman filter/smoother. The other two subsections describe al-
gorithms for data processing and capability analysis which are based on the data equation.

A. THE DATA EQUATION

Efficient computation of all test statistics and probabilities described in this
section is based on a single equation, called the data Pquation, for each test result.
The data equation defines the explicit relationshipF-letween smoothed estimates calculated
by a Kaliman filter/smoother algorithm and e~, the initialization vector of zhe dypamic
model state. Figure 2 illustrates the relationship between the data equation and the
model structure of Fig. 1. The smoothed estimate of x which appears on the left-~hand
side of the data equation can be interpreted a5 a noisy measurement of c.. The response
matrix, D. describes the cross-coupling which exists between initialization cerors and
estimates, and the noise term, el, represents the accumualated effect of the asd -aed zero-
mean dynamic systes~ and measurement system noise processes, jiy and (y11

L DrNAMAIC MEASIRMtENT DT I
$YS~fM SYSYWA

THE DATA t(AATION: Dit~

Figttte 2 Data Equation Descript ion of CWmplte System Sictruinu

All of the data4 proccasing procedures 4itch ar* us-ed for validitiol *;tat-istic~l
pr r (I~ "d .0 oft are b-ased on atiog only 0. 0. An) Rt a# input daita. It cAn

t. tý shoten r tI at sAg~io t~~4m tfor- I **d b. That is. oat could

ane 'he criginal dat,4 seqonoctI~, tthAn by' torrectly procossingt alono. this CO&-

preosson of the thtusoids of lndiwidwal masurents otie ntpcldt eune
ý4, into t single vector estioatt &*kts the validatioa ptocedures d**cri*bd in this chapter

Inthe folloving paragraphs. th atsa quat ion for eacwh test k (14 .. V)

bu i houald bt emebr4tat url.feetd oo.4too Wvc*(
reslt oreachte .

Let the itaitt~lkt~gtiott vactot' tn Pit. 2 be rewrittten

Wbere

.:tI~ the a-cttual initi.41 04an. omIj

Whaere I toAssumed hnO4.n. The data equation i91 fig. 2 can be rewritten

0-
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where

Cov(e) D DT + Cov (e') (3)

and we define

R Coy (e) Coy (R ) (4)

For an optimal filter/smoother,

Coy (xo) =Coy v 7 +

or (5)

I5 10 = R + PS

where P5 is the error covariance of the fixed-point smoothed estimate of •o" Furthermore,
for an optimal filter/smoother, and for [ = x[o,

Therefore, provided the inver~se existL,
D t R e-) (6)

o
So, given the a priori covariance, 1.o, and the Kalnan smoother error covariance, pS, one

can ideally use Eqs. (5, 6) to find matr>es R and D necessary to define the data equa-
tion, Eq. (2).

T f Unfortunately, for many sys, models of interest, observability of the various
components of o varies widely, The effect is that R is a very poorly-conditioned matrix

and computation of R via

R = 0 .. pS (7)

is very inaccurate. The inaccuracy is due both to the finite word length effect on the

subtraction and to rotnd-off error during computation of P8 in typical filter/smoother
algorithms. This drawb.;ck, combined with the requirement for inverting 10 in Eq. (6),

has mct..iv-ted the use of recursivu equations for the direct computation of the D and R
matrices. These equations are presented in the appendix along with an outline of their
derivation.

2. The Normalized Data Equation

Although data processing procedures based on statistical hypoLhesis tests could
be developti directly from Eq. (2), there are two pvactiral •easons for not doing this.
First, test statistics based on A in Eq. (2) would not be distributed according to stan-

dard probability distributions for which efficient computational procedures already exist.
Second, as mentioned earlier, limited model ebservability results in a poorly-conditioned

R-matrix, i.e., a high degree of linear dependency among the components of R_. Bot of- o
these difficulties can be overcome by a normalization procedure which will result in a
reduced number of normalized estimates, zi, which will be pairwise uncorrelated. Test
statistics based on these normalized estimates will be ceniral- or non-central X random
variables under the varioub hypotheses considered in the next *-ection.

To obtain the normalized data equation, Eq. (2) is premultiplied by a matrix, M,
chosen so that the resulting noise term, Me, will ha'-e identity covariance. if we let

, T

R = R T (8)

where 0 is any positive semi-definite square-root of R, then M can be computed from

M 0 = 1 k9)

Because of the ill-conditioned nature of typical R matrices, M will usually be a pseudo-
inverse of Rk. One procedure which has proved satisfactory for co'1puting M is based on
use of a singillar-value-dec-uposition algorithm to obtain matrices U and S such that

R = U S UT (10)

where
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S =Diag ts 1, s 2 ,. ... (11)

ard U is an nIxn matrix of eigenvectors of RTR. The transformation, M, can therefore be
cozputed using the formula

M = (Sk) uT (12)

where ( f evotes a pseudo-inverse matrix and

""mx(nm) (13)

is a rank-m pseudo-inverse of S Multiplying Eq. (2) on the left by H yields the -ol-
lowing normalized data equation for the bias problem,

z H b + v (14)

where

r=MlR (15)

is an m x 1 vector of normalized estimates and

H M D (16)

is an m x n normalized respince matrix. The covariance of the noise term in Eq. (14) is

Cov() = Coy (Me) = H R MT % (17)

as desired.

8. DATA PROCESSING PROCEDURES

Data processing for model-mean validation consiat;; of a four-step procedure de-
signed co "evaluate" consistency. The four ateps are: model acceptance, error detec-
tion, error isolation, and parameter estimation. Each of the steps is based on quanti-
ties derived from the cumulative, normalized data equation

z Hb+ (18)

where x, H, and v now represent collections of elements from single-test data equations,

"Z I V v(19)

1.i I ~pothesis Testini Procedures

Model & is designed to test the validity of the normalization process.
If some of"the -- •o• latrices (#,, H3 s Q1, Rvu) do not accurately model the system which

generated the data processed by the Yalman filter, then each vk in Eq. (19) may not have
identity covariance. This would cause subsequent statistical-hypothesis tests to be unre-

liable because of deviations from the assumed X2 (central or non-central) distributions.I The hypothesis to be tested is

HA: v -I (0,1) (2C)

The test statistic to be used is

AA 11_-H bt12 (21)

where b is the leaett.squares (also maximumi-likelihood under IA) estimate of b babed on

Eq. (18). The hypothesis test is

Re.ect
A > XA (22)

A ce
Accept



12-34

where the threshold, AA, is determined from a specified level--of-significance, a, such
that

Pr { AA > AA I HA is true) a (23)

The threshold, AA is determined from Eq. (23) using the fact that if HA is true, then

A X2 (24)AA p

where degrees of freedom p = m - Rank H and m is the dimension of z. Rejection of HA

means that, with high confidence, there exists a modeling error other than b ; 0, and
the succeeding analysis procedures may yield misleading results. Non-rejection of HA,
of course, does not preclude the possibility of other modeling errors. It does imply
that if such errors exist, they have not caused z to deviate significantly from its base-
line statistical distribution.

Error detection is designed to detect the presence of an error of the type con-
sidered, a non-zero mean in this case. The hypothesis to be tested is simply:

HD:b x 0 (25)

and the test statistic used is derived from the same least-squares solution used in the
model acceptance .test,

AD = II H .112 (26)

The bias detection hypothesis test becomes

Reject

A < AD (27)
Accept

where the threshold, XD, is again based on a specified level-of-significance, a,

Pr I A > AD I HD is true) = a (28)

Under hypothesis HD-

- D 1 2 p Rank H (29)

.. enabling calculation of the threshold, A * from the central X 2 distribution. This test,
like the model acceptance test, is a sigRificance test; rejection of H D means that, with

high confidence, a non-zero bias exists in the system.

Figure 3 is helpful in interpreting detection and isolation test results. The
triangle shows the relationship between the data) z, its projection on the linear space
spanned by possible bias vectors which has length AD (called "explained sum-of-squares"

or ESS). and the residual vector which has length AA (called "residual sum-of-squares"

or RSS). For the isolation tests discussed below, the projection of z on i subpaRce of
that spanned by all possible biases is considered.

Another interpretation of AfD is as a Generalized Likelihood Ratio (Gti) which

could be used as a GLR test statistic to select one of the two alternative hypotheses:

vs %:b$o

OA~h. ~. LIMNAR SUJSSACE

DA~kL ANNFO BY
W0WMNS Of H

Figure 3 Decomposition of Data Into Explained and Residual Portions,
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The third and fourth steps of the consistency evaluation are done simultaneously
following detection of a modeling error. In the error isolation step, the analyst at-
tempts to isolate the error to a subset of the components of b. The following notation
is used to describe the isolation procedure:

B(J) { b nxl vector, b arbitrary if j&J, b 0 if j K J } (30)

where

J = {1 <- Jl < J2 ... < Jq _ }

is an index set with q < n elements. Selection of the index sets, J, could be based on

engineering judgment or on automatic set selection procedures.

The hypothesis to be tested for each J can be written

H : b (J) (31)

and an appropriate test statistic is

AD = IA H b 112 (32)

where ib is the least-squares (and maximum likelihood) solution of the over-determined

set of equations

HIJ b J z (33)

In Hj, columns of H whose indices are not in J are replaced by zeros.

The form of the isolation test is

Reject
A >j A x(34)

Accept

where the threshold, K), is determined from

Pr I A J > I Hi is true a (35)

Under hypothesis H3 , it can be shown that

A -~ 2  p = Rank H -Rank Hj (36)J Xp

so that the threshold computation is again based on a central x distrubtion.

Each isolation test statistic, Aj, can be interpreted as a OLR. the two alter-

native hypotheses for each J are:

HU t b unconstrained

Hj I b C (J)

The fourth component of the evaluation is the estimate, "b, generated for each
of the sets tested. Engineering judgment is of utmost importance in the interpretation

of the (AJ, b ) pairs. A3 is a measure of how much of the ESS, AD, is explained by
biases in B(J)* A perfect score. A3 = 0, would indicate "certain" isolation of the bias.

In actual data processing, random effects are aliased by various bias so-rcesl different
bias sources may have similar signatures in the data space. As a result, the analyst
may *accept* (i.e., fail to reject) two or more sets, g(J), as explaining the data. Se-
lection of the most likely bias candidates from among those accepted is based on statis-
tical scoring techniques nad, most importantly, good engineering judgment.

2. Out•ut Information fm. HypothesAs Tests

Output information troma computer program which implements the hypothesis tests
must include test statistics and thresholds for each of the tests along with the least-
squares estimates, bj, for each alternative index set, J. A sophisticated isolation

algoritham should also include a ranking system for determining which of the alternatives
arz the best candidates for explaining the data. A discussion of criteria for ranking
the various alternatives is beyond the scopt of this chapter 121.
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C. CAPABILITY ANALYSIS

In this subsection, procedures for calculating probabilities associated with the
detection and isolation tests described above are presented. These probabilities are of
great importance to the system analyst. First, during the planning stage of system tests
and test instrumentation, it is important to-learn as much as possible about the observa-
bility of various system errors, if they in fact exist, under the proposed test program.
Second, capability analysis based on these probabilities provides a guide for planning
Sandii-nterpreting the data processing procedures and results.

1. Scaling the Bias Errors

Capability analysis results are based on the probability density functions of
the test statistics. These densities are completely determined by the original model
and specfication of model eLrors which are assumed to exist. The procedure to be used
to specify error sources considered in capability analysis is to select errors which are
"significant" according to a well-defined system performance criterion. This is called
"scaling the error sources."

For model mean validation, system errors are non-zero components in the initial-
ization error bias vector, b. The scaling criterion has the form:

.= bTEb (37)

where

Ji ~1 kIkT
kE = - = Jk (38)

N number of tests from which data are to be processed.

and

"" J Ek sxn (39)

is a gradient matrix defining the sensitivity of a sxl output vector, r, to the initiali-

zation error vector, c.

2. Evaluating Detection and Isolation Probabilities

Probabilities associated with the detection and isolation tests are calculated
from the known probability density functions for test statistics AD and Aj, Let bT rep-

resent a hypothesized true bias in the a priori distribution of t. Then the cumulative
data vector, z, in Eq. (18) would be

z m HbT + v (40)

Therefore x would be distributed normally with mean itbT and covariance I. denoted Z

14N(HbT, I). Let the least-squares (and maximum likelihood) estimate of b. be written•XI

b H z (41)

where H' represents a pseudo-inverse of H. Therefore, the detection test statistic de-
fined in Eq. (26) can be written

A (HTH) a]: (42)

Since the bracketed matrix is idempotent, and z is normal with identity covariance. AD

is a aon-central x2 random variable, denoted

AD ~2(p.62

where

p = degrees of freedom Rank It

a2 = non-centrality parameter =IHbTl1

The probability of detecting the hypothesized bias. is given by

PD(bT) Pr 2 (p6 2 ) ' A (43)
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where the threshold, ADP satisfies Eq. (28). This probability can be evaluated using

well-known procedures for non-central X2 densities.
For the error probabilities associated with isolation tests, the situation is

slightly more complex, but again results in evaluating probabilities fron a non-central

X2 density function. The constrained estimate, b3 , can be denoted

b = H5z (44)

Combining Eq. (32) with Eqs. (42), (44) we have

Aj = IT (H"T (HTH) H" - Hj"T (HTH) H-] z (45)

The bracketed matrix is again idempotent so that

A 3J X2 (p', 82) (46)

where

P1 rank H -rank H (47)

and~~~ lz-tJ J) 1'kTll2

For a specified index set and hypothesized true bias bT, the probability of not rejecting

(i.e., accepting) set J as possibly containing the bias is

Pj(bT) = Pr x(P1,06) < j (48)

where the threshold, X j , satisfies Eq. (35). If bT is, in fact, contained in set B(J),

then 6 2 = 0 and

P %) = I - a (49)+J

where a is the level of significance used to select the threshold, X

Although AD and A can be interpreted as generalized likelihood ratios, they
were developed from a geomitrical viewpoint.* A. can be interpreted as the square of

the distance from the point (HbT + v) in I-space to the set HB1(J) defined by

{ : ib ,c bj & S(J)) (50)

Then, Pj(b%) can be interpreted as the probability that this distance in less than a

threshold distance, Aj, which defines an "acceptance region" around 11B(J).

3. Outputnformation from Capability Analysis

For capability analysis, biases bT which satisfy

I ITJll = d (51)

for a specified error magnitude, d, are considered. There are many ways in which proba-
bilities associated with specified alternative sets. B(J). can be calculated and pre-
sented. One which has been successfully implemented is to consider true biases, b.

which are in the set

M(A~d) m (b1, : bT ab(I) and 11lig = dl (52)

where I is a specified inde set. Then maxim and minimm probabilities

Pmax.&atn(JI) b mOA, sin Pj (%T)

bT uIMd)

can be computed; they define the range of probabilities of accepting set B(J) as eqplain-
ing a bias caused by _b~3(I.d). haplles of results of this type are presented in Sea-
tion LM.

SDeveloped by J3.. SacE"

S. ....... ................. .... .. . ... ...
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D. SOFTWARE SYSTEM IMPLEMENTATION

This section describes an efficient software system implementing the procedvres
presented here. Extension of the procedures to multiple-phase models is discussed first
since this extension has a significant impact on the software design. The remaining sub-
sections summarize major design considerations and organization of the complete software
system.

1. Multiple-Phase Models

The system model considered in the previous section is specified by Lhe system
and measurement model equations in Fig. 1. For some systems, ho'ever, a complete model
of a complex system can be most efficiently represented by two o;" more sets of system
and model equations, each set representing one "phase" of system operation. The relation-ships between variables describing system operation during two adjacent phases is defined

at a specific value of the independent variable, called the interface time, by the fol-lowing equation:

xj .A~- xj- (T-I + Ajo• (54)

where

ýjo :initial condition of phase j

xj-l (Tj-I ) state of phase j-1 at interface time, TJ.1
Aj~jI,, Ajo are known transformation matrices

S~ N (0, 1J) the initialization error for phase J.

Equation (54) provides the motivation for distinguishing between e and xo in the previous
section; the statistical parameters of xjo vary from one test to another because of varia-
tions in Aj,j., and/or the distribution of x-I_ (Tj-1) but t. is modeled by a probability
distribution which can reasonably be assumed to be the same for all tests.

Distinct measurement systems will generally be used during distinct phases and
the resulting measurements processed in distinct filter/smoother runs resulting in a col-
lection of smoothed estimates, 5 j 1 . .=, Np, whert N is the number of phases for

"o p pwhich estimates are available. Therefore, Np data equationu must be combined to form a
single, normalized data equation for the entire test. Another important difference in
the multiple-phase case in that in order to account correctly for correlations which must
exist between estimates of initial conditions in different phases, smoothed estimates
(along with corresponding D and R matrix elements) of a subset of the state vector of the
earlier phase at interface time must be included in the data equation.

For a two-phase model, the composite data equation (before normalization) is

2 2,11 2 2 0  92

where

aol

s : .- j. , 1; (Tl.to) (56)

and x is the subset of the phase-one state vector at the interface time corresponding to
mon-zero columns of A2, 1 . The composite covariance .matrix is

Ri (yumettri

""2  J

i coy ats gel) (58)
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Since

•i-. Rio -- Ro = .. .. .. . (59)

Ri is a sub-matrix of the Rl-matrix for phase I based on the augmented estimate defined
in Eq. (56).

The fact that the smoothed estimate of x1i provides critical information is not
surprising. In fact, it can be shown [91 that in order to obtain sufficient statistics
for estimating statistical parameters in a two-phase system, a third estimate (in addi-
tion to _8J, j = 1,2) is necessary. In [91, it is shown that (_os -sl s2) are suffi-

S-i -0
cient statistics for the parameter estimation and validation problem of interest in this
chapter.

2. Important Design Considerations

The procedures described in Section II are based on the normalized data equation
elements (Zk, Hk) for each test result. The extent to which calculations of (zk, Hk)
should be formalized depends on several factors. Some of the most important are:

i) Size (i.e., number of states) and observability of the models

ii) Number of phases in the model

iii) Number of tests available for analysis

For highly observable (i.e., well-conditioned R) single-phase models and a small number
of tests (say up to 10), little formal data organization is necessary. Data equation
matrices (D,R) could be computed from closed-form formulas (Eqs. (5) and (6)) or from
the recursive formulas (given in the appendix) implemented concurrently with the filter/
"smoother equations, One additional program would be required to compute and store nor-

* malized data equation elements, Ok Hk)' Subsequent analysis (data processing or capa-
bility analysis) could then be performed by specially-developed programs, possibly using
subroutines from standard regression analysis packages. For more complex cases however,
especially when multiple-phase models are involved, a more formal approach is essential
to obtain the maximum benefit from the analysis techniques.

The organization of the software system presented in Fig. 4 includes four dis-
tinct program segments and two data base segments. The first of the program segments,
The Interface Program, is optional depending on the choice of method for computing D and
R matrices. If closed-foas formulas are used, or if the recursive equations are inte-
grated with the filter/smoother, then resulting (D,R) matrices can be written directly
to the Input Data Base. Alternatively, the Interface Program, which implements the re-
cursive equations for D and R, can read a file stored by the filter/smoother which com-
pletely describes the model used in the data processing. The minimum set of matrices
which must be stored in that file is shown in Fig. 4. The interface program must also
compute and store tho cumulative state transition matrix for phase j of tost k.

V] DATA
COMPUTATMIOA*tT" DATA IDATA

-WI..ACI H'U IH
~ SNOGRAM

CPAOONAM

Figure 4 Software System Organization

The second proarsm segment, Data Normalization, performs two functions. First.
for multiple-phase models, it assembles the composite data equation matrices and the er-
ror response matrix, Jk' for each test, k m .1 . N. Second. for all models, it nor-

malices the composite data equation elements and stores the resulting (!k. Hk) along with

Jk on the Computational Data Base (CDS). All subsequent analyses deal o_.n with data on ,
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the CDB. Calculations performed by the Interface and Phase Combination Programs are rela-
tively expensive but are performed only once for each phase of each test. Therefore, re-
peated calculations using the last two program segments can be performed at relatively
low cost. The CDB contains sufficient statistics for the model validation problem.

The Data Processing and Capability Analysis Programs contain implementations of
the statistical hypothesis tests and probability computations discussed in Section II.
These two segments share many subroutines and are complementary in that one, Capability
Analysis, assesses the capability of the other, Data Processing, to solve the problem.
User inputs and possible outputs for these two segments are summarized in Fig. 5. Re-
quired inputs for the Capability Analysis Program do not include normalized data, zk;

that is, all of the computations necessary to perform capability analysis can be done
before data are actually collected. This program can therefore be used as a powerful
observability analysis tool in the evaluation of proposed test programs. In the Capa-
bility Analysis Program, details of how the hypothesized true biases, bT, are to be se-

lected are not indicated. One method was discussed in Section II B; example results are
included in the next section.

R-74156

DATA PROCESSING CAPABILITY ANALYSIS
PROGRAM PROGRAM

* (Hkk.1 _k FOR TESTS TO BE 0 H, FOR TESTS TO BE
ANALYZED ANALYZED

USER • LEVELOF-SIGNIFICANCE. a * LEVEL-OF.SIGNIFICANCE. oa
INPUTS

* ALTERNATIVE INDEX * ALTERNATIVE INDEX
STS J, i . 2..... SETS1J,.I - 1.2....

0 HYPOTHESIZED TRUE
BIASES. 1 . 2....l

* HYPOTHESIS TEST 0 DETECTION PROBABIUTIES
TYPICAL RESULTS lecceptlece. Po (tIy
OUTPUT detoction. WolU0on)

DATA * RANKED LIST OF 0 ISOLATION PROBA!LITIES
ALTERNATIVE SIETS Pi (or)

Figure 5 Inputs and Outputs for Analysis Programs

III, EXANPL£t INITIAL MEAN VALIDATION IN A T1O-PHASE. SYSTEM

This example is based on a simple two-phase model of a ballistic missile system.
The dynamic equations represent error models of Inertial Navigation Systems (INSs) which
might be used in a mobile missile launcher (prelaunch) and onboard a missile (postlaunch).
Numerical values used are for illustration only and are not based on any specific weapon
system. The parameters to be validated are the components of the assumed zero mean of
the state initialization vector for oach phase

bi J E 1,2. (60)

A. BASELINE MODELS

1. Prelaunch (Phase 1) Nodel

The 14 states in this model are summarized in Table I along with the one-sipms
uncertainty of the initialization vector and time constants associated with the Narkov
error models. This model represents errors in a local-level, velocity-daped (damping
constant - 1.0), inertial navigation system moving in a path tangential to the earth's
surface at velocities small relative to earth rotation 110,111. Three representativeerror sources are modeled: gyro drift rates, accelerometer sensing error* duo to deflec-

tion of the local vertical, and velocity reference error&.

Measurements processed by a Kalman filter/smoother for state estimation in phase
I are to be generated by subtracting INS-indicated position from an externally-derived
position measurement. Measurement noise is aumed to be 100 ft (one-aigue) to each hori-
&ocatal di~rection (north,, east).
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TABLE I

PHASE 1 MODEL STATE VECTOR AND INITIALIZATION ERROR MODEL

STATE a ioINITIAL MARKOV

NUMBER VARIABLE NAME UNCERTAINTY TIME CONSTANT

1 Latitude Error 0.5 nmi

2 Longitude Error 0.5 nmi

3 North Velocity Error 0.2 kts

4 East Velocity Error 0.2 kts

5 North Platform Tilt 0.3 iTh

6 East Platform Tilt 0.3 mTin

7 Azimuth Misalignment 2.0 mir

8 North Gyro Drift-Rate 0.1 m-Th/hr 18 hrs

9 East Gyro Drift-Rate 0,1 •ii/hr 18 hrs

10 Vertical Gyro Drift-Rate 0.1 OTn/hr 18 hrs

1i North Vertical Deflection 0.25 iTii 50 hrs

12 East Vertical Deflection 0.25 ýTh 50 hrs

13 North Velocity Reference Error 0.5 kts (Bias Error)

14 East Velocity Reference Error 0.5 kts (Bias Error)

2. Postlaunch (Phase 2),Mode!

Table II describes the 17 states used to represent a space-stable inertial navi-
gation system with orthogonal axes parallel to an earth-centered coordinate system. The
table also includes one-sigma uncertainties of the comaponents of ".li Two representative
error sources are modeled: accelerometer bias errors due to miscaibration and uncompen-
sated gyro drift-rate errors. The latter include biases in each coordinate axis (three
gyros assumed) and two terms representing thrust-dependevat bias errors in the x and z
directions.

TABLE 11

PHASE 2 MODEL STATE VECTOR AND INITIALIZATION ERROR MODEL

STATE V L NM a INITIAL
NUMBER VARIABLE NAME UNCERTAINTY

1 r 50 ft

2 r y Position Error 100 ft

3 rx 100 ft

4 v INS 0.5 ft/sec

5 Vyl Velocity Error Errors 0.5 ft/sec

6 5i 0.5 ft/sec
7 o.5 min

8 iNsalLgnment 0.2 sin

9 0z x 0.2 sin

10 ax 0.02 ft/*ec2

11 ay Accelerometer Errors 0.02 ft/sec2

12 all 0.02 ft/sec2

Bias Error
13 tSource 8 ain/hr

14 y Gyro Drift-Rate odel 8 'n/hr
S15 91t 8 Zin/hr
16 cra s-Sensitive Gyro 10 ain/hr/S

17 ef f Drift-Rate 10 Ztn/hr/g
I Ii
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Position measurements for phase 2 are assumed to be similar to those in Phase 1
so that z consists of measurements of INS position error along each coordinate axis with
additive noise which has a one-sigma value of 30 ft.

3. Phase Interface Model

The following transformation matrices define a simple model of the process by
which the Phase 2 INS is initialized by the Phase 1 INS at interface time just prior to
launch. The complete initial state vector for Phase 2 can be written

?20 = A2 A1 xl(ti) + - 2  
(61)

where the A matrices are defined as follows.

A defines a 7xl output vector from Phase 1.

£1 Aj!l(tj) (62)

where

A0 (All (63)07x7)

A1 Diag (1, cosL, 1, 1. 1, 1, -1)

and L latitude at launch.

Next, A2 contains the necessary scale factors and coordinate transformations to map

into the Phase 2 INS errors:

^21
AIA2

2 2- (64
17x7 ..

where 0 0-:o 0o,(. 0 .,
A 21a Cie I^8n op A22 C sCOa csine A2 -aist np coo$ 0

In these matrices. 0 represents the lauiuch directien (azimuth) and C1 . C2 are position

and velocity unit conversion factors. The 17 x I vector, C2' in Eq. (61) represents ini-

tialization errors in the Phase 2 INS introduced during the transfer alignment process
and Phase 2 INS instrument errors (biases). These errors are assumed to be uncorrelated
with WY. The mean value of C2 is to be validated.

B. DESCRIPTION OF THE TESTS

For this example, 10 test scenarios were simulated using standard covariance
analysis procedures. Parameters which summarize the test scenarios are tabulated in
Table I11, The 10 tests describe a mix found in a typical test program, some yielding
such better observability of system error sources than others, No one mission would pro-
vide a clear test of the correctness of the tero-mean assumption for the model's initial-
ization vectors. Only by procissing data from an ensemble of missions can a determina-
tion be mde with a high degree of confidence,

TABLE III

PARANI•TERS OF THE TEST SCINARIOS

NODEL PAf•lRItSS... .... • . . .. .. . ... . ... . . . .. BASELINE MODEL

TEST Phase I Phase 2 PREDICTED
NUMBERS --. PERFORMANCE

LATITUDE LAUNCH LAINCI RANCE CEP (feet)
L AZIwiTH o ELEVATIONS R(hai)

1,4 304 1354 45 850 $400

2 340 1350 300 2400 15000
3 300 1365 65" 1500 14200

5,8 O 135k 45 850 8800

6 00 135$ 30* 2400 15200
? "1355 650 1500 14200

9,10 30* 180" 45* 100 8900
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C. CAPABILITY ANALYSIS RESULTS FOR THE EXAMPLE SYSTEM

1. Bias Detection Capability

Table IV contains bias detection capability results for several cases. Five
different hypothesized "true" bias sources are considered. Each bias is identified by
the state variables in the left hand column which indicate that the corresponding element
of t or t2 is biased by the indicated magnitude. The a priori sigmas are from Tables I
and II. For the two cases which contain more than one biased component, two probabil-
ities are printed corresponding to the worst (PD(min)) and best (PD(max)) cases among all

those biases satisfying the error constraint, jibTIIE d. This error is the rms miss-

distance across the ensemble of 10 tests which would be caused by each hypothesized bias.
The two values of d for which results are given in the tables (1000 and 2000 ft) are
relatively small for the example system which has an average CEP across the 10 tests of
11,000 ft (see Table III). Thus, the probabilities presented correspond to a system bias
which would be difficult to detect in the impact domain defined by down-range and cross-
range error based on the 10-test ensemble.

TABLE IV
BIAS DETECTION CAPABILITY RESULTS

COTIIG RO (aI ) (a)
TRUTH SET PD(MIN) PD(MAX)

CONTAINING ERROR NUBR FBAS NMEOf BIAS
BIAS AND MAGNITUDE T AT TER ATA PRIORI d (ft) TESTS ATTESTS DAXA- ROR- ( t P D(MIN) P D(NAX)

________5 10 20 5zI10 12-
16VN0.2 kt 1 1000 1.0 1.0 1.0 3 . 2 9 (b)

2000 1.0 1.0 1.0 6 . 5 8 (b)

{6H),2.0 sirn 1000 a a 0.11 0 . 2 0 9 (c) (ONLY ONE VALUE OF SINGLE-
COMPONENT BIAS YIELDS

2000 0.11 0.11 0.12 0 .4 1 9 (c) REQUIRED d)

"1N6,0.1 1'000 0.18 0,29 0.53 0.086

2000 0.52 0.86(d 1.0 0.172

16A$ D(.NE)I 1000 0.14 0.19 0.29 -0.124 0.26 0.44 0.77 0.235
0.124 01259

0.25 u 2000 0.29 0.52(d) 0.86 -0,245 0.78 0.99 1.0 0.471

0,250 0.517

(a ay.4 1000 a a 0.11 -0. 0 0 20 (c) 0.14 0.18 0.27 -0.0072
0 0

0.02 ft/sec2  -0.0019 0.0075

2000 0.11 0.12 0.14 -0. 0 0 4 0 (c) 0.27 0.48 0.82 -0.014
0 0

I- ' _ 1 0.0038 1 .0.015

NOTEs
(a) based on threshold* for level-of-significance a a 0.10; Table entries =a indicate

no detectability of the hypothesiaed bias

(b) b1 )0 oi Implies low systva sensitivity to Ci

(c) bi - a1 Implies high system sensitivity to Ci

(d) Simulated data processing results tor these cases are discussed in text.

For each case 4i.e., each bias source and each d value) three probabilities ate
given corresponding to the number of test results assumed to be available for protcosing.

* The five-teot case #*ssume* that only tests 1-4 and 9 are available and the 20-test case
"asaumeS that each of the LO tests described in table III is conducted twice.

The various cases in Table IV can be grouped into three broad categories. Por
some cases, indicated by note (b) in the figure, the bias magnitude required to produce
a significant 4 is far greater than the modeled prior uncertainty. Such a bias. if it
existed in the system, would represent a severe system anomaly and would be easily de-
"totted by the data processing algoritha it the associated state variable is observable
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in the classical control/estimation theory sense. For the north-velocity bias case
shown, the smoothed estimates of the system initial velocity for the 10-test ensemble
would clearly indicate the presence of the bias; the nodel validation data processing
software would not be necessary.

A second category is typified by the cases indicated by note (c) in Table IV.
Here the system performance measure is extremely sensitive to the hypothesiLed bias so
that, for the {,AH) case for example, a bfa of only one-tenth of the a priori uncertainty
would cause a 1000 ft rms error. For these cases, even perfect measurement of thO ýtates
of interest would have great difficulty in distinguishing between the unbiased a priori
model and the actual, slightly biased density function.

The third category includts the rest of the cases in the table and the majority
of cases in practical applications. For these cases, system sensitivity is moderate,
relative to the d of interest, and the unique capability of the data processing algorithm
based on data from multiple tests is of maximum advantage. The steadily increasing prob-
abilities as the numbers of tests increases is clearly evident.

2. Bias Isolation Capability

Table V contains bias isolation capability results. Three of the hypothesized
bias sets for which detection capability results were presented in Table IV are used here.
The probability of accepting each of six alternative sets is computed for each case. As
with the detection capability results, for multiple-component hypothesized biases, worst-
case (PJ(MAX)) and best-case (PJ(nIN)) probabilities are comput-d for each cese. The ef-

fect of increasing d (from 2000 to 4000 ft) or the number of tests (from 10 to 20) is
shown for each truth/alternative pair.

TABLE V

BIAS ISOLATION CAPABILITY RESULTS

Pr{ACCEPT THE ALTE8HATIVE SRTJ
(FOR HULTIPLE COMPOIT TRUE BIASES, PQIA()/PK(NIa i ) -RM SW•V)

-oAx - t. -Tv sr
BIASF .... .

2000 10 1-o 0.13 0.13 0.;3 0112 0.11

4gil 2000 20 1-0 0. 0. 0. 0. 0.

2000o 10 0.41o.03 a-s o. 901 O.8 •(b) o.s?/o.o2 o.16/o.oI 0.48/0.01

200)(41•|_ O0 20 0.t4+O.01 1-u 0.90/0.88 0.23/0. 0.1310. 0.51/0.
40100 10 0.03/0, "-a 0.i9/0.84 0.0100. 0.10. 0.10.

2000 to 03810.03 0. 0.90/0.61(b) O3.1 O. 020.460 10- 0.46/0.49

. ) 2000 200.IO-/.11 0.16/0.11 0.3I/0.17 0.86to.I? 1 1- 0.0/10.16

4000, 10 06.84/0.01 0.81I0.01 0,81/0.01 0.481/0_0t 1-a 0O 0/0. 01I+i -4• -I0 ,~OO ~lOO ,tOO ~ lOO -o -,I10

momw
(a) 84*ie an thbeeholh for a .e0.-of-signitice a * 0.10: Table *tries I-* i tbt dt-

vitned probability tbat ao altlroati* #et coatainiag tb* truth be aWEpte4.

(b) Probability a."0 a 1-0 indicate. catreme di(ficulty of distialui•o btatl W tbis
trubaltteramtive pair.

A general feature of the results is that for alternative sets which do not con-
tain the hypothesized bias, the probabilities of acceptance (i.e., the probabilities of
mis-isolation) do not vary such from one alternative set to another. This result is
typical of mis-isolation probabilities which have been computed for many weapoa system
models. Exceptions to this general feature do occur however; one such case is Indicated
by note (b) in the figure. That result (mis-isolatioa probability -l:') means that
blases in the vertical deflection errors and the velocity reference etrorA in a local-
level inertial navigation system have alemost identical sltnatures in the data space. It
can be shown that by using engineering Judgment in interpreting Isolation test results.
incorrect acceptance of 6V as & bias source can almost certainly be avoided.

0. DATA PROCESSING RESULTS

In order to illustrate applications of data processing algorithms to the ex-

ample tuo-phase system, two sequences of simulated, normalized, biased d.ta, ILkl. were
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generated. Biases simulated in the two sequences corresponded to two cases considered in
the previous bias capability aualysis results, each of which caused d 2000 ft of ras
error:

Case I : (b8  E I N (0))1  0.172 .Th/hr)

Case 11 b b1  = 8 D() -0. 245 ZTh,C~ S_hT • bll =E 16AVD(N)(0)= 045 ,

b2 (6AJD(E)(0) = 0.250 iT})

k kFor each case, the sequence {z ) was made up of 12 sets of 10 z (representing results
of each of the 10 test scenarios).

1. Case I: Single-Component Bias

This case is based on a single-coaponent bias which is highly detectable (PQ

0.86) and easily isolated (Pj Z 0.13 for J not including & ). In 10 of the 12 trials,

the hypothesis, b = 0, was rejected at the a = 0.1 level, an experimental detection rate
of 0.83. Isolation results for the six alternaive sets considered earlier (Table V) are
sumarized in Table VI. Acceptance rates of incorrect alternative sets for this small
number of trials are higher than predicted, but for each set, two of the false acceptances
occurred in the trials in which the detection teat failed to reject the b = 0 hypothesis.
Thus, use of engineering judgment in these cases would help to avoid an Incorrect conclu-
sion; after failure of a detection test, the analyst should not conclude that a bias
exists in any of the (falsely) isolated sets without a careful examination of the bias

estmates, b, produced for each set.

TABLE VI

BIAS ISOLATION RESULTS FOR CASE I

NUMBR OF TRIALS ACCEPTANCE PREDICTEDALERATIE OR WHICH SET J RATE PROBABILITY
SET M VAS ACCEPTED (H3 ) (NJ/12) (Pj)

( 5N, 'E£ Z) 12 1.0 (1-.)

6 )1  3 0.24 0.13

3 0.25 0.13

4 0.33 0.13

t*) 3 0.25 0.12

Itf) I3 0,25 o.11

This case is based on a tvo-coepatent bias which is only marginally detoctable
(PD- 0.52) and very easily mis-isolated (Pj -Z 0.50 for reveral sets which do not include

the biased states). The hypothesis Ob * 0 was rejected at the s t 0.1 level for only
three of the 12 trials for this cgse;_this 0.2S detection rate was poorer thap the pre-
dicted value 0.52 but within reatso becauae of the "all sauple size.

IV. SWWAkY AIUD iXMhSIONS

A formal, organized approach to validation of th* statistical parameters of ioi-
tialization errors in linear dynamic ystc* models used by Klmasn filttr/smoothers has
been presented. The approach for the mean-value (bias) parameters has been discussed in
detail; a Similar approach which has been developed for initial covartance matrix vali-
dation is discussed briefly in the follm-ing paragraph. The bias validation procedures
include statistical hypothesis tests for detecting and isolating bias errors based on
data processing results and capability analysis formulas for calculating probabilities
"of detecting and isolating (or ais-isolating) hypothesised model bias errors. All of
the aalysis procedures are based on a data equation representation of the overall aye-

tea •hich %rasftorms Ma initialization vector, ., into a smoothed estimate vector,• • (Fii. 2).

Analysis procedures for the eovariance problem are als based on the data eqta-
tio of Iris. 2, but noralitation for this problem is done with respect to the covariance
O. e_'(poce*es and measurement boise effects) rather than with respect to the covarlamee

atof •. Hlypothesis tests for covarionce matrix validation are based on quadratic forms
in normal random variables. Another difference in the covariance problem is the way in
which errors ore scaled during capability analysis. Since a model error for th~s problem
is of the fore alo, the effect of this ertro on the system output vector it a chsge.
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be used as no:-.s on Alf; one which would be appropriate for weapon systems such as the
example in Section III is the change in CEP due to AEo.

The procedures have potential application beyond the basic model validation
problem. For example, if the model is viewed as describing an ideal system design, the
procedures cau be used as system parameter estimation tools. Since parameter estimates
are generated from sufficient statistics for all the data, the algorithms provide an
efficient method for compressing and storing the data generated by an ensemble of tests.
For situations in which both bias and covariance errors exist in the system model, the
algorithm can be used recursively to successively adjust estimates in the data equations
as improved estimates of model parameters are generated.

APPENDIX A: RECURSIVE CALCULATION OF DATA EQUATION MATRICES

In this appendix, recursive equations are presented which can be used to compute
matrices (D,R) associated with the smoothed estimate data equation for a single-phase
model as discussed in Section II C. An outline of the derivation is also presented.

D,R FOR A SINGLE-PHASE MODEL

Let the linear discrete-time system model be represented for each k 0, 1, .. ,

£f by

?i+l 42ý, + Li . Coy (w2 ) =Q (A-i)

x = ~ N (0, 10)

2 +4I H+I XC+i + ,Z+l - Coy (y,+l) Rvl+I (A-2)

Then matrices D,, Rl such that

D =Do + I I =0, ... (A-3)

T
R, Coy (x2 ) = l To Dl + Coy (et) (A-4)

where A is the optimal filteced estimate at time 2, can be computed from the formulas

Dj+I = (I-KD+1 Il+,) 41 Dl + Kl+ 1 Hg+1 2+l* (A-5)

SDO=0

and

RRl+I 4  RA ; *T + K1+1 "'2+l K +1T (A-6)
Ro =0

where

E+I* =,(t+l, 0) = 01 *.-I ' (A-7)

. +i : H2 +I P.+l/2 H+/ +T + Pvg+I (A-8)

(Kl+1 is the Kalman gain and PP+I/A is the one-step prediction error covariance.)

Equations ýA-5), (A-G) can be derived by in induction rocedure. The zero ini-
tial conditions are a result of the filter initializatio#n

S=t Ixo( 0 (A-9)

The induction procedure is based on the Kalman filter update formulas and uses the ortho-

gonality property of an optimal filter

Coy (k+I. v+i) s 0 (A-10)

where

>ý,+l , 1+1 - H,4  * + A-i

is the innovation at time 1+1. The *p+,* factor in Eq. (A-5) results fto. tie following

representation of the state at A+l,

I 
(

-4 .. .(- 12



where w£+ is the cumulative effect of all process noise.

Now let Eqs. (A-I), (A-2) be replaced by an augmented state model:

a a a a(A-3)

a ~ ~

a = H.+1 - +1 (A-14)!1+÷l 2+ -+1 +V£+l

where ""a a (AC ) waj-
X_ O 0 -k o I , w

and (A-15)

H£+1 = (H2 +1  0)

A filtered estimate of this augmented-state system is therefore

a (A-16)

where ft5 is the optimal smoothed estimate of x-i -0

The data equation for the smoothed estimate A_• is
SS -

SDi ÷ e• , = 0,1 .... (A-17)

where
5 8 S

D£÷I =D 1 -Kj,+1 H2+I (41 D2 - 0+l) (A-18)
D:s0

DS0

Corresponding covariance matrices, are

RI (f_) Coy (Re. _> (A-19)

twhich satisfy recursions

R, *j Re + K K s1 T (A-20)

c

R:+1I8, +R5  + I + 1sT (A-21)

Equations (A-18) - (A-21) are derived directly trom Eqs. (A-5). (A-6) by replacing each
matrix by an augnented form, including

TRa R and D( (A-22)ReT R~ D

and then equating corresponding partitions of the two equatioas.

Summarizingt for a single-phase system in which the smoothed data equation ma-
trices (Ds, Ra) are required, the necessary recursive equations art (A-5), (A-la) and
(A-21). Matrices 3 and Re are not required for this case. The matrices denoted (0,R)

in Section 1I are the smoothed data equation matrices (D, Ra ) in this appendix, evalu-
ated after the last update at time A

• , ' , * • • " , o ,. • :• 'o : " ..: , : ' " : .' : .. .• • .. " .• .-" • -. .• -• : -.• , .: ..• • • ' ' , ...v • - : .• ., , • , ' < • ' ' ,' • : , .., L , , ". " , .• ..,: • ° ; , .¢ • , • , .• , ..• ,• • ..? • : '• : ' '• \ ¢ ! • -.• : .• ; : , • ' ,• • ', -: , r , : ' , .• : '• , • ., • , ..;I,
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INERTIAL NAVIGATION SYSTEM ERROR MODEL CONSIDERATIONS
IN KALMAN FILTER APPLICATIONS

by
James R. Huddle, Ph.D

Chief Scientist
Litton Guidance and Control Systems Division

Woodland Hills, California USA 91364

SUMMARY

This chapter develops the full linear model describing the propagation of error for inertial navigation
systems employing the local-level, wander-azimuth navigation mechanization equations. The model applies
to Schuler-tuned. space-stable or strapdown inertial system instrumentations. For this model, alternative
approximate linear models are developed which in different operational applications have pioved adequate
as "design models" for the application of Kalman estimation theory.

INTRODUCTION

The application of modern linear estimation techniques requires an "adequate" model of the system
whose states are to be estimated. The adequacy of a particular model of a physical system is usually
determined by digital computer simulation. In these simulations as accurate a model as Is obtainable is
employed to represent the physical system and the subset of Its s ps which are of interest in the applica-
tion are estimated using a Kalman filter based on a "design model" [LI of this system. The adequacy of the
design model is ascertained by observing how well the. state estimates track the actual states of the simula-
ted physical system using the root mean square (rms) difference between them as a criterion. Some
designers also compare the standard deviations from the estimator covariance matrix to these rms values
as an indicator of design adequacy. A more absolute judgement of estimator performance is obtainable by
comparing the rms estimate errors with the standard deviations from the covariance matrix for the estimator
based on the exact model of the simulated system, the so-called 'real-world" model covariance analysis
approach. To economize on mechanization requirements It Is usually desirable to simplify the latter complete
estimator design model, motivating the examination of various simplified candidate design models.

Regardless of the estimator design criterion employed, the work of estimator design involves a "tuning"
process in which states are added or deleted, dynamic intercouplings are changed and white noise compo-
nents are altered. The subject of this chapter deals with an aspect of this latter process for the case of
inertial navigation systems. Herein it is shown that the analytical model for propagation of error in the
navigation variables of position. velocity and attitude have alternative forms with various degrees of approx-
imation. The model differences are Important In that they imply different real-timte digital computer mechant-
isation requirements in terms of memory and duty cycle. These models have been employed In operational
systems and have been proved effective for differing application requirements.

LOCAL-LEVEL COORDINATE SYSTEM NAVIGATION EQUATIONS

The process of terrestrial navigation using inertial equipment involves the measurement of force by a
usually orthogonal triad of accelerometers whose orientation relative to the earth is established and main-
tained by three usually orthogonal gyroscopic axes. Since the orientation of the accelerometers relative to
the earth is known, the force due to gra~vity can be removed fr-om these measurements using an analytical
model, to obtain the acceleration of the Inertial system center of mass relative to inertial space. Correction
of these measuzrements obtained or expressed in some reference navigation coordinate frame for Coriolis
accelerations due to the effects of earth and reference fraive -rotation rate relative to inertial space, yields
the rate of change of system velocity relative to the earth with respect to the reference navigation coordi-
nate frsame, Integration of these variablei, with proper init~alization, then yields the velocity of the Inertial
system relative to the earth. Transformation of the velocit" components to anl 04srth fixed frame and sub-
"squent integration yields system position change relative to the earth thus accomplishing the navigation
objective. To make thette statements more specific, the navigation equations that are mechanized for most
aircraft inertial navigation systems assume as the navigation reference coordinate frame Ix, y.& a a local-
level system with swander azimnuth anhle* a. as illustrated In Figure 1. This coordinate frame resides at
the center of mass of the inertial system and is maintained In the local-level orientation as the system Is
moved relative to the earth. Alternative ntechaniaations for the behavior of the wander angle are possible.
for example if az(t) r 0 for all t. then the navigation equations correspond to the north-slaved mechaniza-
tion since the y-oisa is always directed northward. in thi case the x and y axes are coincident with the
local east and north axes while the a axis still remains coincident with the local vertical.

COORDINATE FRAMES FOR ERROR MODEL DEVELOPMENT

The locall-level coordinate naviga on equations that are implemented id the real-time digital computer
have been. derived In dotail eisewhe_ r.I 1 and are summarised in extended form in the appendix to be
readily employed ioelow. The developmtnt of the describing error equations presented here Is more con-
ceptual th'xtt mathemiatcally rigorous to simplify presentation of the material. The development Is facilitated
by the introduction of two additional orthogonal coordinate systems to that depicted In Figure 1. The frator
shown there ts hereafter referred to as the r*emetic* frame antd is local-levell at the tuve position of the
inawtial, systei with the asimuth angle, a.

PLATFORM FRAMS

The first additional frame Is called the platform frame and is slightly misaligned from the refereftce
Iremo via small attitude error angles as defined by the skew-symmetric twanstarsaatlona



where:

z
€ 4 ¢ 0 4x

4v "+x 0 y

where the angles are positive counter-clockwise about their respective axes, the variables *x,y representingtilt of the platform coordinates and the azimuth variable * z representing the difference:

CsAa - • (2)

y
Y

EARTH POLE

z

y

EQUATORIAL PLANE

X

Figure I. Illustration of the Local-Level Navigation Reference Coordinate Frame Ix.y.aI and an Earth-
Fixed JXYZ, Reference Coordinate Frame.

SYSTEM COMPUTED LOCAL GEODETIC FRAME

The second orthogonal coordinate frame used In the error description Is called the system computed
local geodetic frame and differs In angular orientation from the reference coordinate frame by three small.
independent non-orthogona rotation& due to errors in system computed geodetic position and the wander
anglet

6# A t 0- *-8 Is the error in system computed geodetic latitude positive clockwise about the tocaw east
axis. Note 8 Is positive cotter-clockwise about the east ais

* 6 .% - i Is the error in system computed longitude positive counterclockwise about the earth'.
"" Waxs. Note this aeor con be projected onto the local north and vertical axes
knowing the system latitude as:

(3)

6 0 A - 1 Is the dlfference between the system computed wander angle and that of the reference
coordinate system.

The three sources of angular rotation can be epressed about the reference coordinate axes knowing the
wander angle ase

*The notation convention In this chapter normally identifies scal• r quantities with subscripts except where
the text defines vechtm quantities. Brackets 1 1. are employed to Identify matrices which are all defined

"explcttly in the text. Variables with no subscripts are normaUy vectors which ar defited explicitly li the
te*Xt end where relevant tho text indlcAtes the coordinate system In which the vector Is asumsed to be"pressd.



aex Aa0E Cos a + 6 0N sin a
aey A 8 ON coo a- 8 E sin a (4)

60 A, 8A sin 0 + Ga

These three rotations describe completely the difference in orientation of a coordinate system described by
the direction cosine matrix [Dlcdefined in the appendix, based upon the computed latitude, longitude and
wander angle [I, A. al]c of a locil-level coordinate frame relative to the reference local-level coordinate frames

--[I + l (5)

where:

0 G0e -
[del 4 e o 0 a (6)

ey - 6 x 01

ALTERNATE INSTRUMENT MECHANIZATIONS OF INERTIAL SYSTEMS

Several mechanizations can be employed for obtaining the inertial instrument measurements. Regard-
less of the instrumentation approach employed, the local-level coordinate system formulation of the naviga-
tion mechanization equations can be employed to accomplish the navigation function as long as the
accelerometer measurements can be expressed along the local-level coordinate axes. In all mechanizations
the attitude error #, between the platform frame and the local-level frame is minimized prior to use of the
inertial system for navigation by a process called alignment.

SCHULER-TUNED PLATFORM MECHANIZATION

The Schuler-tuned platform mechanization of the Inertial instrumentation has been employed for several
decades. In this approach It is attempted to maintain the accelerometer sensing axes coincident with the
local-level frame by appropriate precessing of the system gyros. The commonly mounted gyros and
accelerometers comprise what is called the stable element which is Isolated from the angular motion of the
carrying vehicle by a gimbal set. Once initial alignment of the accelerometer sensing axes with the local-level
frame coordinates has been achieved. this orientation is maintained by precessing the gyros, relative to
inertial space, by the system computed spatial rate wc' of the local-level frame. This term is the sum of
the system computed angular rate of the local-level frame relative to the earth a., and the system computed
rotation rate of the earth relative to inertial space, Qi

c c € % (7)

The platform frame in this mechanization it the orientation defined by the accelerometer sensing axes which
are ideally maintained coincident with the local-level reWerence frane. Consequently the angular rate of
the platform coordinate frame relative to the instrument sensing axes expressed in the local-level frame Y.,

Is mechanized as zero.

STRAPDOWN AND SPACE-STABLE INERTIAL INSTRUMENT MECHANIZATIONS

More generally as in the case of an alternate gimbaled inertial system or a strapdown inertial system
mechanization, the platform coordinate frame in a computed orientation relative to that where the accelerom-
eter axes actually exist, that is determined using the Inertial instrument measurements. In the error-less
case the platform frame it again of course coincident with the local-level reference frame. In a strapdown
system where there is no gimbal set and the inertial Instruments are 'strapped' to the carrying vehicle
frame, the transformation matrix between the platform frame and the instrument frame is computed using
the system computed spatial rate of the local-level (rame uc. minus the gyro measurements of angular rate
of the vehicle frame relative to inertial space 8A, both expressed In the locol-level framet

v c W - (P) C (6)
vc =€" Pcgv g

For an alternate gimbaled inertial system such as space-stuble. where the instruments remain fixed relative
to inertial space, the platform to instrument frame transformation matrix is obtained as the system computed
spatia angular rate. expressed in the local-level frame w C

Vc - c (9)

since the accelerometer axes are presumed fixed relative to inertial space.

In all the above mechanisations the linear transformation or dirocion cosine matrix from the accelerom-
eter coordinate frame Ix.y.•aI to the platform frame can be computed once initialleaUon by alinment has
been achieved, by integration of the matrix differential equations

lhc n cvIe 1Pl (10)

where the anti-symmetric matrix of relative angular rates of the platform frame relative to the Instrument
frame in platform axes Is defined asz



" 0 V -V 0 Schuler-Tuned Platformi
y

[vIC _V z 0 V = [e- (PC w ] Strapdown System

V V 0 JWI Space-Stable Platform
y x C

[x]
f J = [P c(11)

rX p 'xa> <X p Ya > <X p 'zal

IN] <yp'x> <YpYa> <Yp Za>
C P a p a p 'a

L<p.Xa> <Sp ya> <Sp sa>Jc

& Using the three coordinate systems defined above, we may now develop a set of ten lines- differential
equations describing the propagation of error for the local-level coordinate system n6r.'igation eqjuations and
the three different inertial, instrument implementations just discussed. These ten equations describe the
time rate of change of velocity difference AV. attitude error 4. position error 60. and elevation error, 6h.

ERROR IN THE SYSTEM COMPUTED VELOCITY

The rate of change of velocity difference is obtained by first differencing the representation of the
mechaniaed version of this equation employing actual values in the system comnput..x,(l1A) of the appendix,
with the representation of the acceleration equation for the local-level referersce navigation frame, (IA) of
the appendix. Since the accelerometer measurements are expressed in the platform coorcinate frame, their
difference from the accelerometer measurements expressed in the reference iraý.ie due to the effects of
attitude error is:

Ia LAp -A = [1 A (A2)

The system computed Coriolis acceleration components are all determined from variables which reside in
registers in the system computer. These system computed values differ from the values of the sm* vari-
ables that correspond to the reference navigation coordinate frame as dlefined below:

AV &V -V AV (3C yU

AQl a. J& a "1[6j
which upon examinatkm of Equations UP, I1A) 1poring the stag! effects a error in the computed radii of
curvature, yieldst

-IV y• - R "1

0 ' (16)

a ov ot,• tano O€ - UU ta f • N tan 0 +, ON W ,•

6 ON a 6pxt $in 60Y Cos a• so•

whefte to tintr order R can be &* d tobes na•irl e for the eth.



Further to first-order: . .- 2cssiai ()
69 = - slasin # sin adf + (2cos 9 cos asic

8( Q 2 ncon 4 co8 d4-11ct#sn da(7
5I which with (4) can be written as i

X y z z y

60y 2z dox a 56

an a( .86 -( 6ea x y y x

or:

8(2 [80] (2= (Q x 46 (19)
Combining the above equations. the difference between (11A) and (lA) to first-order is:

z (21)

(4)A lp +2[11V~ - 6VI (p+2)+a0

where tfromotlewanalytical modelid eatsolelyftoieioor inveybten cmppuyed

0 6V 6V y(21)

dygavt ndta represents h ronted bypttino the gravity modltoreIfa

error existsaaltigatheoleveluaxeildue to tero decIon steomputhed
6Y yy Y C verdtica to the geond releation. It tatnfh ellipsoida oq3) The error

sufc swmdfrthe gravity.mdl6yw6ya0 n
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error-free vector form:

V Ae 2 e x Ve Ye (23)

where:
denotes the rate of change of velocity relative to theearth with respect to the earth-fixed frame which when

Ve •integrated in the earth-fixed frame yields systemvelocity with respect to the earth in the earth-fixed
VZ frame

FXl is the specific force measured by the accelerometers
due to the true system acceleration and the modeled

A 4 A gravity at the true system position, expressed in theearth-fixed frame

AZJ

9 •is the earth rotation rate expressed in the earth-fixed
frame of Figure 1

[YX is the projection of the modeled gravity vector at the

Ye YY true system position onto the earth-fixed frame:

One mechanized version of (23) that would be integrated in the system computer is:

V LCA e-20 XV -y (24)

where all components are expressed in the earth-fixed coordinate system prior to integration. Note the
earth rate components are known exactly in the earth-fixed frame, but the direction and magnitude of the
gravity vector components relative to these coordinates are a function of the system computed latitude,
longitude and elevation and hence subject to the errors in these variables. The equation for the difference
between (23) and (24) is then to first ordert

avit kV -4 DIT (01 A - 2"V a. (DIT ([801 y + 6y) +9 (25)
•e e0  •e a DT ]A 2•e Qe e

where relative to the local-level reference framer

68 4% -(4 - 80)t 0 (4 60) (26)

G6)y -(#- 64)x 0

represents angular error incurred in the transformation of the accelerometer measurements from the platform
frame to an earth-flied tram. Meren, as is small. we havet

" .! " ! " O ]( 2 7 )

i. Note that the computer frme. to not an •asrh-tlied frams but related to an earth-fixed tram through the
computed positkJo and wander angle 1J,#.Ae. Faurthert

RKROR IN THE $YSTEM COMPUTED POSITION AND ELEVATION

In that the direction cosine matrlx IDI tdefines the system computed latitude. longitude and wander
angle, the "ttutbatloa of this matria due d err"o in these three independent variables is of anterest.
Directly from the definition (SA). the foilvi• gperturbatluiorelative to 1•l.AI4,a) can be obtabied
which upon eaploying the delnitloui (SA,4) yields not surprisingly the es.od equivalenc.i

- CXi



6 <X,x> =-6 A (cc s1 + so asc A)

-6a (sac CA + cassax) = 60 <X.y>-

-69 (Su c <SA)

6<X,y>= 6X (so sA - cc at CA)
+60a (sQcxsX- cQcA) = 60 <X,z>- 6 •e <X x>x z
-64 (c a ct sA)

6<X,z> = -49 (co ax)+ ax (c0 cx) = 60y <X,x> - ex

6<Y,x> = --a* (cca c#)- 4a (so s#)= ae z  <yy> - 60 <Y,z> (29)

6<Y,y> =-6a (sa cO)- 49 (cc st)= 6ex <Yz> - 40

6<Y'v- = 64 c0 = 60 • <Y,x> 6ex <Y,y>

6<Zx> = 6A (sa at sA- caa$A)

+6U (s sX - c CA) 60 <Z,y>- 68 <Z,z>+g • • c s ;) 5z Y

-64 (so c4 cA)

6<Z,y>M dA (aa CA + cos#sA)
+aa (cc sx + so a cA) =so0. <zz>- 60• <Z.X>

-•A (cc cO CX)

6<Z,z> = -6 A (c# sA) - at($# cA) = 6ey -Zx> - 40x

where (s.c) denote (sine, cosine) respectively. Clearly:

16D] A (D) - (DI u (60( [D) (30)

y 
- 6 D )

Thus as stated above, we have confirmed that the perturbation vector angle 6 8. represents a rotation
from the local-level reference frame to the computed geodetic frame. Proceeding formally we may differmn-
Uate the first-order approximation In (30) to obtain;

lSDl - 16101 IDI + (69) IN (31)

which from (4A)

D ( * to) ID) (3Z)

yields for (31);

lD1 - (MiG1 * l6e) (•)) (13 (33)

and further upon differentiation of (30) and using definitions we obtain to first-ordert

11DI - 14ol ID) + ol) 14DI & ID€ - IN (14)

wherel

foo1 A (Pi c (.5)
which using (30) yields;

(A11 • (4.)l * lol 14l1) 113 (34)

"Note do denotes the difference in the angular rate of the system computed geodetic frame and the local-
level frame both taken with respect to the earth frame, whereas 6 8 denotes the angular rate of change of
the system computed geodetic frame taken with respect to the loeal-level seodetic frame. from Equations
(31. 34) since (01 Is invertible, we obtains

1(61 (o4( )+ 1.) (601 -(60) 1) (37)

or In scaler form upen expanuImoia



Sx= 6Px + Pfiy -e y6es
x x z y y z

= = 6 P + P6e, - 0 6e (38)6y py + xo.O6x z, 3x

e ~6P +P so6 *-666z =Oz + Py•x .- x6y

c." in vector form:

66 = 6p - p x 60 (39)

The form (G9) merely indicates that the rate of change of angular error of the computed geodetic frame
relative to the local-level reference frame 6 6, is simply the sum of the rate of change of this angular error
relative to the earth 6 P or 6 6e' and the Coriolis effect due to the rotation rate between the computed
geodetic frame and the earth. The second term in (39) can also be viewed as the error in resolving the
correct relative angular rate vector p, from the earth-fixed frame to the local-level reference frame due to
the error 60, in a knowledge of its orientation when the system computed latitude, longitude and wander-
angle are employed.

The final position error equation is that for the elevation of the system relative to the earth. Eleva-
tion error is obtained by integrating the difference between the system computed and actual system
velocity relative to the earth as projected onto the local vertical axis:

• A =V - aV 6V (40)
C

ERROR IN THE PLATFORM FRAME ORIENTATION

To derive the dynamics of the attitude error #, of the platform frame relative to the local-level refer-
ence frame we can proceed in a manner analogous tto that for w,,gular position mr" above. First the dif-
ference between the system computed platform frame tV ýnat-umt framir trard.fo-watiom (P),. at&d the
local-level to instrument frame transformation [P1. is derived:

(6PI & (Pic - IPN [.1 {Pe (41)

where:

LU) "]a[a [ Y[:1
r = [ x + # 1 ay 

( 4 2 )

have been used. Differentiation of (41) yields.

18•1 a ((41 * (I3 # vi) I(P (43)

where I *1 expressed and differentiated with reapect to the local-level frame. Further

taPi - IPI0 -IP1 - (Vl CIP - lVI IPN (44)

=,(16vi ÷V [#D INi e

1lvI a (VIC - Iv) (40)

is the difference between the angular rate of the ystem computed platform frame with respect to the
inertrumnt frame exprese•d in the platform frame Ivi , and the angular rate of the local level (ram* with
respect to the instrument frame IvI expressed in thbeloc-Ievel frame. Squaling (43. 44) using the
inavrtibility of (PI yieldsm

(4•1 - ilvi * Iv) I*1 - (.3 jul (46)

which yields the vector forml

=4v Lu $ 4Kv (47)

It iv of interest to specify (4?) for the thue inatnrmeatation feohaIaiatims dscused abovel Schulez-tunod.
spaco-atable and strapdown.

In the cae o1 a Schuler-tuned machanisation, the platform frame is the instrument frame, henet v* 1
.sero. owever the instnmt frame rotates relative to the oal-lavel frame a the gyrf afe Prea at



60x = 6px + p=6ey -py60z

-- y = 6Py + Px6 e - p=68ex (38)

:• "6 6 Z = a p = + p y 6 x - ax e y

or in vector form:

65 = 6p - p x 63 (39)

The form (39) merely indicates that the rate of change of angular error of the computed geodetic frame
relative to the local-level reference frame 60, is simply the sum of the rate of change of this angular error
relative to the earth 6 p or 6 6e, and the Coriolis effect due to the rotation rate between the computed
geodetic frame and the earth. The second term in (39) can also be viewed as the error in resolving the
correct relative angular rate vector P, from the earth-fixed frame to the local-level reference frame due to
the error 6 0, in a knowledge of its orientation when the system computed latitude, longitude and wander-
angle are employee.

The final position error equation Is that for the elevation of the system relative to the earth. Eleva-
tion error is obtained by integrating the difference between the system computed and actual system
velocity relative to the earth as projected onto tha local vertical axis:

ýh =V - V -9V (40)

ERROR IN THE PLATFORM FRAME ORIENTATION

To derive the dynamics of the attitude error *. of the platform frame relative to the local-level refer-
ence frame we can proceed in a manner analogous to that for angular positin error above. First the dif-
ference between the system computed plotform frame to Instrument frame transformation (P 1 c' and the
l.al-level to instrument frame transformation (PI. is derived:

(oPi A (PICP I (P- i [= P1 (41)

wheret

[1 (1 (42)
(P[ I + 1 

4Zir:i

havo been used. Diferentiation of (41) yIelds:

1Z (l = (1il * (Il Iv)) (tPl (43)

where #'I . expressed and diferetttlated with respect to the local-level fr*Xe. Further

I6PI s -P I l -( P* at IV1C -( v) IrI (44)

S(f1v3 ' lvI 1l3) IPI

wh*bre

(l6v A0 vl€ " lv (4$S

i the difference between the angular rate of the systeam computed platform frame with respect to the
Insuaaswmt frame expressed in the platform frame [vi and the angular rate of the local level frame with
reapect to the instrument frame |vi exprese.d in the-ocal-evte frame. Equating (43. 44) using the
InveitJbilty of IPel ,IdsMt

(41 a lvl + Ivl II " 14*1 IvI (46)

whith yieWs the vector formit
4a lv .' $3, v ''Vt)

It It of Interest to specify (47) for the three instrumentation awharAutions discussed abovec Schulew-tumed.
spa•estable and strapdown.

In the case of a Schuler-tuned aechanatlon, the platform frame is the Instrument frame, hence v ts
iaro, However the instrumnmt from rot&at relativ, to the Iocal-vael Creae a the gyros are c;ss at



the computed spatial rate wc, applied about the platform frame coordinates as opposed to the local-level
frame coordinates. The instrument frame also rotates relative to the local-level frame due to the generalized
drift rate of the gyros c, hence:

6V = 6=+ * W+ C (48)

where 6 w denotes the scalar difference of the components of the vectors w and w:

xc

6 [wZ)W.i :J =s + 6d (49)

and * x w expresses the rotation rate of the platform frame relative to the local-level frame when the
local-level spatial angular rate components are applied in the misaligned platform frame even if they are
perfectly known.

For the space-stable mechanizationt

vc W c (50)

whereas the angular rate of the local-level frame relative to the Instrument frame Is:

V= W_ £ (51)

where the components of v are about the local-level frame coordinates. Hence for the space-stable mechani-

sation using (47, 50. 51). we have

; 6W+ 4 W +C (SZ)

For the atrapdown m e fhanlaation . W ( 53)

c€ At c " c 6g (

whereu the angular rate of the local-level frame relative to the 1nstrumevt frame Is:

W - 1 4 (54)

where we define SeneraUzed gyro drift rate about thpt instrument axes c . as the edference between the
actu frame rotation rate relative to irartial apace, 8. and the gyro outfut measurcments,

tg~ ~ 43(55)

yielding the generaliied drift rate 4 b ,,iocooeve rdnates ast

Ca€ (PI ei (56)

Hence diffe•smnl (03. 54) using (41) and (55, 56), we hove to first order:

6v V 4W 141 [PI 4 * a (57)

Co.nequently using 47. S1. 57) we have

4.*Wt -141 (P) * - " (- I I 61

which is P1 - e p 6(8

yleldst

4• au- * "w (59)

to deltribe the dynamAic of the attitude ertrr for the strapdown Instrument m nhation. We note in
ttuwasry that rejgaless of the tbree 10chmrlaiatkons emplovd, the dynamkta of the attttde arvor propaia

tiaos (43, 42. 59) we identieal in fons. Note however the genrtrud drift rate vector t. eaployed in
the equottie is ubtubed br t rs"(iftifnt the drift rate -itout Instrm.fet aXW to P' aW-tvel frai.
(owdinaute axe.

ANGULAR ROTATION BtMV THE PLATFORM AND SYSTEM COMPUTED GEODETIC FRAMES

The dyanamls ot the sagular rotatlm from the system computed geodetic frame to the platfom framet

9 A - 400)

relative to the local-level franm. tan be obtained br difrertacng the casponding LAvavldu ras# as
derived above (39. 59)s

**4- oi. 6O - so ( W t - 40- 4439 (41)

art '- 4<6>



The advantage of (62) is that it Is simpler to propagate than the attitude error expression (59).
Knowledge of * and 6 e allows determination of # at any instant of time by (60). Noting that since in (62)
the time rate of change of * is relative to the local-level frame which rotates with angular rate w with
respect to inertial space we can conclude:

A + W~ C (63)

where . denotes the time rate of change of •i relative to inertial space. In words, the rate of change of
$ viewed from inertial space ilr4frmply the generalized drift rate of the system gyros projected onto the
inertial frame coordinate axes .

RELATIONSHIP BETWEEN COORDINATE FRAMES

The correspondence between the coordinate frames discussed above can be summarized conveniently in
Figure 2 below. Herein the arrows indicate in which direction the denoted tran,.formation is used in obtain-
ing the ensuing coordinate frame. Since all transformations are orthogonal however. tbe inverse transfor-
mation is realized by the transpose.

INSTRUMENT pT
(ACCELEROMETER) FRAME I I I4,iP D EARTH-FIXED FRAME

f[i.y.la a[(X.Y.Zl

c D(

PLATFORM FRAME SYSTEM COMPUTED
GEODETIC FRAME

fx.y.alp [xz.j 1

S• 601

LOCAL-LEVEL
"REFERENCE FRAME

[it.y. a)

Figure 2. Relationship Between Coirdinate Frames

KALMAN FILTER MODELING LCONSIDERATIONS

After having developed the fundamentud liner difforimtial equation* describing the error propatgation
for inertial navigation Oyftsn. we are now in a positin to discuss vrtous amplil••tions which ha.w been
made to implement operational Katlam filter designs. The objectiv of suth &imphfications In * spacifir
application Is to reduce the eomputer memory and duty cycle r•Wqiroemtt without itcurrint uarevptabl•
ideir~dation ia the performance of the opertional filter.

Simpilfication* that ore Investigated by Katmiko filter design etninver goenerally (All into two categories.
The tire, of thos categories deals with the qutestio a* to how many" of the modlalblo inotruret trror

states present in the error projectkio voctor* for 4ccelervimeter o~n rror V.* and generalized gyro
drift rate c. need be kncluded as Rstaes in the Kealer filter. The elemotal states to be c•n-idervd include
Instrument bia. voste factor erroir. sensitive axis mechanical tlesalignments, sensitivity to products of
acceleration 4nd angular rates. correlafed noise. etc. The docision as to which of these stast are Incor-
porated in the Kalman design *odel is made after sevetal design iterations in which performance with antd
without various states present in the design model to determlned.*f.ter tuntnlng to atcommodato. abstece of
states in the design mod-' is rerforored and trade-of fo to the *perdfkation of error paremetero tlues f
the actual system have been investigated. such a desigo p-ocess Is usually of lengthy duratimn and
r~qutr-d the use of htlghly-*-,'•istkttcld skmulatlin sotware for Its actoplish.iit. The"e Issues &WntB
tfen us furthe~r her.

The second category of simpllficaUono addrases the orror dynamics of the navigstwo system errorl
(10. 39, S9) and is what is of Interest here. Two type* of siplificitdon are of hiterest, these being
reduction o' the modeld error states as hbov*. and secondly the reduction of the dynomic coupling between
the errao states that are retained, Simplifleatioas that hste proved to be espec4ally ueul in operational
filter design aret

a Vertical axis model el1aination

0 Level axes (oriats acceleration elimination

* Use of the "e equsUon*. (t2)

0 Alternative definitions of almuth error

sad a, discussed in deti bel.-.



VERTICAL AXIS MODEL ELIMINATION

The subset of the above error model equations which describe the propagation of error for the vertical
axis of the local-level coordinate frame navigation equations is:

6h 6V z (64)

ivz + y A xA + 6C + 6'( + V(

y yx x y _
where the error in the system computed Coriolis acceleration component along the vertical axis is:

6C I (6p + 26 l)y • VX - (Op + 260) • Vy + (p + 211)y * 6Vx - (p + 2z)x • 6Vy (65)

Due to the dependence of the normal gravity y, on the elevation 
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LL = - IyJ - 2Q2 (66)
dh

where J = 0.5 JM-I + N 1], is the mean curvature of the ellipsoid and M and N are the meridional and
normal radii of curvature, the error in system computed elevation leads to div.rgence of the vertical axis
errors (6hdVz). Because of this effect the system elevation computation error is normally bounded in
aircraft applications by the use of a reference source of elevation as a barometric altimeter which is also
used in a servo loop arrangement to bound the vertical velocity error and bias the error in the vertical
acceleration measurements. This is done even when the level axes computations are uncorrected with other
reference sensor data and are operating in the "free-inertial" mode.

Since conventional fixed-gain error control mechanizations using reference elevation measurements have
obtained adequate vertical axis performance in most applications, this channel is often ignored in the appli-
cation of Kalman filtering to inertial systems! Further since there is little •ross-coupling f.om the vertical
axis to the level axes, there Is little need to model the vertical axis erroz states in obtaining good control
over the level axis error states. In this regard the elevation error does not affect at all the prop'gation
of error foi the level axes whereas the vertical velocity error affects level axis error propagation only
through erroi: in computation of the level axes Coriolis acceleration components as discussed below.

LEVEL AXES CORIOLIS ACCELERATION ELIMINATION

The errors in the system computed level axes Coriolib acceleration components are:

6Cs A (tip + 2,0)2 . V - (tip + 260y . Va

+ (p + 2 a) . 6,V - (p + 2 01 y . 6Vs

(6?)
6C y (iOp + 2411)x . V - (6p + 261)z . Vx

+ (!% + 2q)x . 6V - (p + 201)z 6V

In most aircraft applications *he verti-,al velocity V5 is nominally ea'o ex-ept at a few times during flight.
Consequently, modeling of such an effect would onfy be considered if small transient effects were important.
For example even if the vertical velocity were 100 feet per second (fps), system computed latitude error
were a large 10 naitical miles (nm) thereby inducing an error in computed ea-rth rate of 0.03 •Ie/sec at
mid-latitudes (450) , and system velocity error were a large 10 fps (0.1 M/sec), the acceleration error
for the Coriolis components associated with VI is less than 3 milligals.

Due to bounding of the vo2rtical velocity error to a few feet per second via the vertick. axis mechani-
zation as discussed above, the magnitude of the acceleration error term due to ZVI is substantially less

than the uncertainty in t~ie gravity model terms Yxy I' present in the full velocity error equations (20).

For example for a 1 fps erro and mid-latitude operation of a vehicle traveling at 1000 fps in a direction
reinforcing the level axis earch rate terms, the Coriolis acceleration orror is less than 5 milligals which is

small compared to the gravity model uncertainty of 40 to 50 milligals on a w-rld-wide basis. These effects

are a fortunate coincidence for the Kalman filter designer as he can normally elininate these dynamical

vertical axis dependencies from his design model along with the vertical axis model as noted above.

This type of magnitude of effect analysis can be extended to the Coriolis error components involving the
vehicle level velocity components Vx y, and the error in their system computed values. One finds again
for mid-latitude operation with vehicle velocity components of 1000 fps, errors of 10 fps in the system com-

puted velocity components and 10 nm latitude erroM, 5 the magnitude of the error in the" system computed

Coriolis acceleration terms is less than 10 milligals. Consenuently for most applications the error in the

system computed Coriolis acceleration components can be ignored on a magnitude basis relative to a more

dominating source of "noise" that arises from the uncertainty in the gravity model. There are some

Exceptions to this rule can occur when very precise measurements of elevation are available which if their

use is to be optimal, requires full modeling of thn vertical axis error propagatitn. In some. cases cor. 2

rections can be obtained for level axis tilts due to their accei4ratlon dependent effect on vertical velocity
error in (64).

Assumed as arn average condition.

•*:Here we have presumed use of non-singular forms of the navigation -aquatom where s is cmpable to

the earth rate component about the vertical axis.
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instances however where the errir in these latter system computed Co'Iolis terms may be important on a
dynamical basis. Inspection of free-inertial error propagation curves reveals that the cross-coupling of
the level axis velocity errors between axes induces modulation of the Schuler error oscillations with the
long-term Foucault period obtained as:

•f = •--(68)
z

which is 24 hours at the pole, 33.85 hours at latitude of 450 and infinite at the equator. Normally however
when a Kaliman filter is being employed, the corrections to the inertial system errors using other reference
sensors are obtained at substantially higher frequencies than involved here which "quench" such long-term
oscillations and make then irrelevant. All in all then in most cases, the Kalman filter designer discovers
that the dynamical coupling of errors associated with the error in the system computed Coriolis accelera-
tion error components may be deleted from his filter debign model.

USE OF THE "1 EQUATION"

As noted previously, the "* equation" (62), provides an alternative way of representing attitude error
that is simpler than the attitude error propagation equation (59), provided position error is propagated via
(39) such that attitude can be recovered at any time instant. Hence in most Kalman filter design models
for inertial systems the two following equations are employed, prior to further simplification which may be
possible in some applications, to describe position and attitude error propagation:

6= 6d + 6e x p (69)

X W + (70)

where attitude error can be computed at any time via:

S= ,+ c6 (71)

ALTERNATIVE DEFINITIONS OF AZIMUTH ERROR

The two &ttitude errors * define the till of the platform frame reladive to the reference frame with
* defining the azimuth minaligjAtent. Since error in system computed position is defined by the error in
laitude 6 , and longitude 6 X, it is clear by (4) that the two level position error variables 6 ox are
sufficient to define position error with 668 as an error variable to define the azimuth misalignmeA of the
system computed geodetic frame due to error in the computed wander angle 6 4 and the error In knowledge
of the north direction due to an error in knowledge of longitude. Consequently there appears to be a
form of redundance in the system azimuth mlnalignment definition which if properly exploited might lead to
a simplification of the describing error mollel equations by reducing by one the number of azimuth error
states to be considered. A review of the material presented above reveals 'hat the behavior of the wander-
angle of the reference frame a, has not specifically been defined. The discussion to this point has only
assumed that whatever this behavior is. the resulting error variablest

(72)

601 A. i- a + 6~ ksin 4

remain small such that second order effects can be ignored preurvingi the linearity of tne error model,

In the followiag discussion we co,,fine ourselves to non-singular mechanizations of the local-level,
wander-asimuth navigction mechaniastions as noted at (1A, 9A) of the appendix. Without loss of generalit;'
and for ease of expostion, we consider the umot common wander-atimuth mechanitation whereint

Sot•0 (73)

which yield via (13A) A0(3i , = Oe t• (74)
c. N c

and via the definitioin

p 60 (75)

Note a complete defnition of all terms in the error equations (20. 3,. 6Z) aow only requires specific defini-
tion if the terms ot, 4os, such 4hat overall linearity is preserved. This specification is obtained by ima-
poAg two constralnts. The first constraint Is (16). which by (73, 74) yialas:

Sa "•N tan # - am , (76)

The s•cond constrgnt results from the selection of azimuth behavior for the error model in accordance with
one of the alternatives discussed below which then obtains the specaication of 6p
THE CASE O0 THE EIGHT STATE LEVEL AXES ERROR MODEL

In what might be termed the "normsa} error model we apply the constraints

- = 0 (77)

which yields the result via (7S) that:
ap ') (78)
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Clearly (77, 78) are small so that an eight state linear model for the error propagation is obtained using
(20, 39, 62, 77, 78). The full G.t of eight differential equations are summarized in Table 1 where the
additional simplifying assumption of nominally constant altitude of flight:

V =0
z

Az  Y (79)

has also been made. An additional property of this error model not fundamental to the error propagation
itself is seen to be via (76):

SN tan s (80)
THE CASE 60 =- 0

2

In many applications it turns out as a pructical matter that the "position" azimuth error term 6 06 of
the "normal" error model Is small relative to the platform azimuth misalignment *, and can simply be
ignored in the Kalman filter design. This amounts to the presumption that the Istem computed local-level
geodetic frame obtains the same azimuth as the local-level reference frame even though it is angularly-
displaced from it.

Thus we have:

6 0 z 0 (81)

yielding via (38). since:

0= 0 (82)
2

that:

6do =0 .40 • P-p 60x (83)

Hence from (75):

0. = . • - do6 (84)y x isOx y

Clearly again since (83, 84) are small, a linear model for the error propagation is obtained from (20, 39.62,
83, 84) except that in this case by (81) it has only seven instead of eight states. The seven differential
equations for this model. Ignoring second-order effects. are summarized in Table I. Additional properties
of this error model by (76). (60). (4) are:

SN tan 4 + *y ' x Ox d 0y (85)

Co - 6 sin *

THE CASE $# 0I a
The natural alternative to the prior case is that whuro the azimuth of the platform frame coincides

with that of the reference frame such thatt

4 *0 (66)

yielding via (59). Since:

kma 0 (8?)

that:

S• - y- (X8)
which by (7. 1?. 60, 62) can be expr•ssd t

6 0 o a * • y -y • s ( 8 9 )

Hence from (75):
y a X 60 "pt 60y (90)

Clearly again since (89, 90) are mall, a linear erro siodeal for the error propagation is obtained fraf (20.
39, 62. 89. 90) where in his case only "evn states are present .since the sub4stittUit

4% 1- % (91)

is made. The seven difterenttal equations for this modal Ignoring second-otder effects. &e e" umarized in
Ta"l I. Additioal prqperties oa this model by (76), (4) aret

. " .* : ., -- . ". .
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= PN tan 0 + "+ py 6 - x a e (92)
zx y

-a -z - 6 . sin 0

One advantage of this design model relative to the prior approximation can be appreciated by comparing
the velocity and position error equations in the second and third columns of Table 1. This comparison indi-
cates that the effect of azimuth misalignment can be modeled either at the acceleration level (6 Oz =_ 0) or
the velocity level (0z = 0). The latter model can often be exploited to reduce computer duty-cycle require-
ments in that the coefficient terms (Px,y) being in effect integrals of the acceleration terms (Ax,y), are
smoother and easier to deal with in implementing the model in the digital computer.

A PARTICULAR KALMAN FILTER DESIGN MODEL

If we combine a number of the error model simplifications discussed above, e.g., elimination of the
vertical axis model and Coriolis acceleration, use of the "* equation" and the azimuth error definition

a 0, the following relatively simple seven state design model for a Kalman filter is obtainedi

64 = -SV R + px yy

66 6V I *"iz

6Vx = -(p + 6e)y Y + (4-x + Vx)

• 6VY = 4• + a68)x. y + (dyy + Vy

y X
y x y y x

=~ -l $ + Ey
y z x y

S -y x +x y +

This model has proved useful in practice.
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APPENDIX - SUMMARY OF LOCAL-LEVEL NAVIGATION MECHANIZATION EQUATIONS

The coordinate frame [x,y,z] referred to herein has two axes ix,y] in the level plane with the z
axis normal to the earth's surface at the position of the inertial system. The rates of change of the
Inertial system velocity relative to the earth taken relative to the rotating local-level coordinate frame and
expressed along these axes are:

where.
wrx is the specific force measured by the accelerometers due to the true

system acceleration and modeled gravity components expressed along
AA A the local-level coordinate axes. These measurements can be obtainedAby direct instrumentation wherein the accelerometers are maintained

Acoincident with the local-level coordinate system as in a Schuler-tuned
mechanization or transformed onto these coordinates as occurs with
Sstrapdown or space-stable inertial systems.

F(P + .vy- (i + 20)y • v I are the Coriolis acceleration components which
C (p+( + 29) + 2 V account for earth rotation A, and local-level

zx = P + 1 V navigation frame rotation wz p + Qi, relative
L( + 2a)y •V - (P + 2Q)X V y to inertial space.

P A6 X"are the angular rates of rotation of the local-level coordirates
expressed about these axes which result as the system moves

Sy relative to the earth.

Flax
nare the angular rates of rotation of the earth relative to inertial

y, Il space expressed about the local-level coordinate axes.

yx] are components of the modeled gravity vector of the earth. Usually
the normal gravity field is assumed which corresponds to an ellipsoidal

YAYy J yequipotential surface as the reference figure of the earth where
" • Y, ay = 0 and the effect of earth rotation rate is included in the

,Yz jgravit7y determination.

[ :,2a) y 1 is a skew-symmetric matrix expressing the sum
to + *0 (o + 2[): 0 (0 + 2z)x of earth rate and local-level frame spatial rate

I(a) + 20) y -(o + 20)x 0 with respect to inertial space.

The relative angular rates of rotation are computed after the accelerometer measurements are corrected for
Coriolis accelerations and the normal gravity and integrated to obtain the computed level velocity compo-
nents VX*y *ae"

yX Vy R y
P P.y 0 V x •Rx ( R)

03 a + oN ta*
whea4 [

R ,y are the radii of curvature of an ellipsoidal equipotential surface assumed as the figure of
x y the earth. Note different datums (different ellipsoids of reference) are. often used which

better fit the geoid In the different local areas of system use.

# .A are the geodetic latitude and longitude of system position

is the asmuth of the y axis in the level plane

o sin a. 0 y coo a) it the relative angular rate about the north axis.

Note ; a 0 in the expression for 0 above yields the north-slaved local-level mechanisation
ift (0) 0.



The earth rate components are computed as:

x 4 = Cos * Cos 
(3A)

Q ZJ sinf

The relative angular rates of change can be used to compute the change in inertial system geodetic
position and the azimuth angle a, of the local-level coordinate system. Normally this is achieved using a
direction cosine mechanization of the form

(6] [p) [DI

(4A)

y [D] 
X

The matrix (DI is the orthogonal direction cosine transformation between a set of earth-fixed axes [XY.ZJ,
usually with Y coincident with the terrestrial pole and X. Z in the equatorial plane, and the local-level
coordinate system as illustrated in Figure 1. In this case the local-level coordinate axes are realized from
the earth-fixed coordinates by performing a counter-clockwise rotation about the earth's polar axis X, a
clockwise rotation 4, about the displaced X-axis in the equatorial plane and a final counter-clockwise
rotation a, about the then vertical axis z. More explicitly:

[<XX> <Yx> <Z,x1

(D) & I<X,y> <Y~y> <Zy>I (SA)

L<X.EZ> <Y,*> <Z.aj

<Xxx> = coo a coo I - &in a sin # X

CX.y' = - sin a cos X - cos a sin # sin 4

. X.N> a cos 4 sin X.
cY:x1. sin a cos s

<Y,y> a Cos a cos 0

,4Y,&:, sin a

Zx - coo ain ,. - sin a mint coo

,-Z.y) sin alr h i )i - O cos esin $ Coo Xt

tZis ý- Cos 4) coo

Further:

o 1 ) 0 o 0 (6A)

0 y "Ox 0

is the anti-symmetric matrix of relative angular rates of change ot the navigation coordinate axes relative to
the earth-fixed frame expressed in the navigation coordinate axes. These rates result as the inertial aye-
tem position change* relative to the earth. More expicitly the geodetic position and wander angle rates of
change aay be expressed as'

*u -p - (py in a - P os )
A , s c . i*I (7a)

a =-ON Ot nVA)
ftp -P tan(S)1

As a note of interest only mix elements of the direction cosine matrix need to be propagated fi the mechani-
tation of the nsvigaUon equations. Inspection of the propagation equation (4A) reveals that the elements
of any cc wumn of the direction cosine matrix Is propagated using only the other two elements of the column
and the appropriate relative angular rates. Any column (row) specifies an earth-fixed (local-level) coordi-
nate axis relative to the local-level (earth-fixed) frame. Two such columns (rows) are sufficient to com-plettdy define the trmssforisation since the missing axis Is simply the vector eroas-product of the other tw6

axes. e.g.p Z i XzY. Further inspection of the direction cosimns (5A) roveals aS..41 can be deternined
fully from five tf the dfirectio cosine elements.

ple,. , dine.t.eransform tion sinc.th,,.'asn' axis"ssimplyhe.vector'.os,-,



where p. varies dependent on the type of azimuth mechanization selected. The direction cosine mechani-
zation avoids the apparent signularities above if the relative angular rates px,y,z, remain non-singular.
The level components are non-singular functions of the system velocity relative to the earth via (ZA). The
azimuth relative rotation rate p is usually selected to be a non-singular function u. which can but need
not be a function of the computed navigation variablest

Pz =(8A)

Note for non-singular behavior of pz0 the rate of azimuth wander angle change is singular as:

=- PN tan # + p (9A)

The final navigation equation is that used to compute the system position change along the local vertical
relative to the reference ellipsoid. The equation that to integrated to obtain elevation change is:

h=V (IOA)
z

In words, the time rate of change of elevation is the system velocity relative to the earth projected along
the vertical axis of the local-level reference frame.

ACTUAL REPRESENTATION OF THE LOCAL-LEVEL NAVIGATION MECHANIZATION EQUATIONS

The correct representation of the rate of change of velocity relative to the earth with respect to the
local-level coordinate frame, that Is actually mechanized in the system computer differs from (GA) and is
writtent

V # f A + [0 + (h1 V - Y (11A)
C vAs

wheret

are the accelerometer measurements as they are made along the
platform coordinate axes as introduced in the text of the chapter.
Note since the accelerometers measure the sum of system acceleration

A xand actual gravity (as opposed to modeled gravity) and further
make these measurements with error due to instrument imperfections,

Ap •A y I + lA the vector A should implicitly include such effects. We choose
here howeve; to represent the difference between actual and modeled
gravity and instrument measurement error both in the vector 7

p of the text and let A represent the sum of system acceleration amd
modeled gravity as ;ewed from the platform coordinate axes.

jj are the components of the modeled gravity that are computed using
y [vj system computed values of position and wander angle X ,aj.c

ml C

l 101 are components of the earth rotation rate that are computed using the
c • [y system computed values of position and wander angle. (#*.ul€

and:

PC P * aR (IZA)

y xa *~s 0 N ta

as•a the syem Computed values of the relative angular rat* usi the system computed values of velocity
VC, that result from the integration of(IIA), the radii of curvature that are computed using system cam-
puted values of positon and wander angle [a.*I and pac is the "imuth relative rutatlon rate that is notexplictly epoci(Wo at this point. Nets however- 1h tems in thi equationt

SC• r(IIA)

ON4  a du al% +*0 cc* a
c C c YC

are all obtained from values which are computed In the system c€mputer. The reader is cautioned not to
&o bte the V4itrlet Veo with the comuter coordiate system introduced in the text of the chapter
but, y Cookie itas ath~eat of numbee tht resut (mn the integration of Equatio (11A).
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The actual direction cosine matrix between the earth-fixed axes and system computed geodetic frame is
obtained using the system cumputed relative angular rates between these two coordinate frames as:

[bic = [P ED) e (14A)

where:

[PC -P 0 P I

h Pc "VPiSAC C
and [DI c in the computation of [D] In (SA) above using[,,].

Finally, the actual representation of the equation which is integrated in the system computer to obtain
elevation is:

C z c

I
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SUMMARY

For destinating interception trajectories for torpedo-ship systems it is evident to use on one hand optimal
control theory and on the other hand optimal filtering techniques. At first a simple mathematical model is
given for the plane torpedo motion, which is sufficient to investigate principal effects of controlling
and filtering. For known target trajectories, then in a first main part of the paper an optimal control law
is derived which implies the minimization of a linear combination of interception time and engine energy.
The second main part is dedicated to the filtering problem of the measurement data. Thereby it is shown
that for the torpedo a continuously working Kalman filter can be used. For generating the target trajectory
it is more advantageous to take discrete equations in relative coordinates. For this an appropriate algo-
rithm is derived which bases on an extended Kalman filter. This algorithm is used for smoothing and filte-
ring the target (ship) data and furthermore for generating the target trajectory. As the central point of
the paper is not the mathematical theory but the engineering application for all theoretical derivations,
simulation results are given, which are obtained by calculations on a hybrid computer.

1. INTRODUCTION

Besides applications in aeronautics and astronautics especially in naval engineering interception problems
often occur for the guidance of naval vehicles by which one understands in general the "hard" interaction
of two moving objects, e. g. a target and a pursuer. This means mathematically that at a prescribed or by
an algorithm (guidance law) fixed point of time the position coordinates of the two moving vehicles have
to be equal.

A well-known interception trajectory is for example the dog fight curve, where a pursuer is controlled in
such a way that his forward axis is always directed on the target (1]. This classical trajectory has the
advantage of a generally good accuracy. The disadvantage is the long interception time eapecially in such
cases, where the velocities of the target and the pursuer are nearly equal (2]. Referring to this the
different so-called interception course procedures 131 including the proportional navigation (4) are more
favoreble. They use some information about the motion of the target in advance in order to hit the target
at a prescribed collision point. Especially at the end of the motion, these procedures have the disadvan-
taeg that stability problems occur in the guidance law which deteriorate the accuracy or cut off the
interception completely (5]. Modern time domain procedures of the control theory, as for Instance the
quadratic optimal control, are used in only a few cases by now for the conception of guidance laws for
Interception trajectories (6), [1). The reasons for this lie in the relatively high mathematical axpen-
diture which is troublitaoe especially for the solution of problem in real-time.

Depending on the set problem time-and fuel- or energy-optimal algorithms are offering for rodaen solutions
of i.•iarceptioh trajectories. By this, approximately the spectrum of the most important applications for
the plrblem torpedo-ship is covered. Because of the complexity of the equations of motlon, especially of
the pursuer, the guidance laws cannot given analytically in this case. If one wants to exclude numerical
procedures, which is useful for basic declarations and necessary for real-time tasks then one obviously
has to simoplify the mathematical model of the pursuer. A reasonable restriction is the consideration
of only plane motiont, such as they occur for tuapmle for an interaeption torpedo-surfs'ne thip.If one empha-
sie*s further•ore energetic points of view then one gets linear equations of motion, which are derived
from the kinetics of mass points with in the mean only little alteatiotns of the velocity of the pursuer.
On this model it is easy to apply the optimal control theory.

The realitation of the optimal control laws assume* the measurement of the position 4nd the velocity
coordinates of the target (ship) and the pursuer (torpedo). In both caoes stochastic disturbances occur.
because of the linear mathematital model of the p4rsuer the disturbances for this one can be elimaiated
in a simple wey by using A Kalman filter. In the caite of the target the teak is not to eoasy, a the
target trajectory ti generally oot known eid has to be generated fr-m the meanurmenlt data. As the
measurement equation is nonlinear and a linearization about a nminal trajectory Is not possible. one gets
at first a nonlinear fliltr problem (8) for the target trajectory. However, this problem can be attributed
to an extended Kalma filter so that altogether thia measurement tsk can be hailed by the linear
theom, too.

2. KNTHBMTICAL KOOIL

Starting fr•m a plane motion for the target and the pursuer and assumi4g the validity of the kinetics of
mass Points for the pursuer then the aormalizae equations of action for the totpeo can be descibed in
accordance with Fig. I in the fom

I .I iI , k3 , "1XiXlt 2 , lto 10

i e v1(x 1'a't) 2 x2(to) 'A 0  A
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x x (t X
8 Tu2 8 0 80

Thereby x and x are the position coordinates of the torpedo, x and x its relative velocities in rela-
tion to its flow field, x und x the components T and T of •he thrst T, x the direction of the
thrust in the coordinate lystem exl x) and X, the ingularX#elocity of the torj~do. The components of the
flow field are v and v . Fruther X.hecoefficient in the quadratic drag law is denoted with c, and the
moment of inertil of thi torpedo about its yaw axis is denoted with 1. The time constant of the engine
is 0, the amplification of the engine is k. As control variables are introduced u , as a measure for the
amount of the thrust T, and u2 as the rudder angle. The time is denoted with t, ahcordingly to that
d/dt ().

The system of the equations (2.1) is nonlinear and additionally time varying as far as instationary flow
fields are permitted. Altogether it is not accessible to an analytic treatent within the scope of an
optimization problem. Therefore, in the following the simplifications

1) y. 0

2) •B 0

3) v a const.

2 2
4) x 3 * x4 ut 1

are taken, 1. e. the dynamics of the angular motion of the torpedo and that of the engine are neglected
and a constant flow field is aswsmed. Furthermore the system (2.1) is cunaldered to be normalized in
such a way that in addition to v also the relative velocity V of the torpedo con be regarded approxi-
mately at coustant in its abaloAuh value. Under these •a•suxptions the system (2 1) turns in

x, X+(t 0) UN 1 O
I• = * 2  * K2 (to) I 1 (2.0

.-. X3 - u1 .coe(u 2 ) 3(to) X30

u - x 4 - u1.ein(u 2) , 4(to) 0 0

As neW control variable# mo uaI thrust &Md u2 as its directon in the coordilate sy.tes (x 3 ) are
introduced. TakiAg finally

4a1  u 1 CoaU 2 )

(2.3)S=ul,'diau2)

[ 0 0 1 0 1 1 0 0 V]

0 0 0. 1-XS E 0 0 * 2  + 00 U'I thv2 (2.4)

0 0 0 CI % 00

00
•ck=eu•tbst the motion of the torpedo Is dsc•ie by a dniu syatem f ~

•. .'' _ *Z . (o2=% .{.s)

~ * . . . . . ,. . .. ' . • "( ,,-. . . . . .,.,.- "'
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At first it is assumed for the target that its dynamics is completely known for t > t , It will be
described by the position coordinates - 0

•l:•(t)
(2.6)

&2 C2 l(t)

and the belonging velocities

44(t) (2.7)
(27

so that the vector of the relative motion of target (ship) and pursuer (toipedo) is given by

e(t) =j(t) -x(t) . (2.8)

3. OPTIMIZATION PROBLEM

In the following, first the optimization problem is formulated, then it is solved and discussed in
detail.

3.1 Formulation

As mentioned preliminary, for an interception torpedo-ship time- and energy-optimal solutions are of
interest. Therefore the optimization problem - this means the destination of the control variables
V and U"2 in Eq. (2.4) and the determination of the Interception time T - is formulated in such a way
tAat the quadratic performance index

I TT
.J(u,T) 1?~T()PeT)+ H w -- e()T M +1 d (0.0)

2 t =0
0

is minimized. Thereby the weiShting factor 4 considers the interception time T. It is defined for

Consequently one gets for 6 : 0 pure energy-optim•l and for 6 *, I pure time-optimal solutiona. v•idedly,
the latter case ahould be excluded because of the lineaity of the optiamiation problem. The weighting
matrices P _.• n in Eq. (3.1) arn given by

0 0 0 0 0 0

0 p 2  0 0 q22 0

0 000 0 000

.0 0 0 0. 0 0 0 a:

"whrvby vith P the interception condition x (T) -j(T), x (T) (,(T) aod vith 0 a •Vighting of the
control davlaflontelt) Is realised. CotumequJAtly it Is P, 12 0, P2' 0 and 411 1ý0 q22, t 0.

3.2 Soluftion

for the solution of the aptlisizatioa problem it; the fallowing the absolute value of the thruot u WI is
considered to be urn streialot. bly this the caontrol variable* It) and M " V ) M ore uoontraint, tL.
Therefor* one toai use the methods of the calculus of variation, an appli-atioU of the Aaximi Wrinciple
is superfluous. tOrNMer, by this the lilnearity of the optimization piroblea 10 Aaranto".

I"tm the calculus of vartatios (01 cm. gets for the .ptimal control vtriablbs

C U1  -?r~vA~tT)

A.(t? , (3T .ua3

wi•3th au , as cospeaa of the adjoint veitcr ! beloagi•g to x. With Eq. (3.0) it follows fiva

1I s - . .3 t4331

u .!'*' t.),#(j

: . • , -, : ., , . • . , . . . • o : ; : , , k . ., : , ; : , . ; •,t; , . : • ' , • q " , , -, ' ' ",ft, t . , , ', ' • -•(, . : ' : : " " ""t" ' " : • : = ':": 1T: ;; , , - , • :,)L ' " = "
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The optimal interception time T can be computed from

H(T) - L eLT(T)-Pe(T) :0 (3.6)

with H as HAMILTONIAN. The condition (3.6) is equivalent to the demand

3 0(T) (3.7)

The explicit solution of the optimization problem now requires the destination of the adjoint vector
*(t). If this *s done thenthe optimal control variables are explicitly known from Eq. (3.4), the
optimal interception time T cdn he computed from Eq. (3.6) and the ooen-loop control system (2.4), (3.4)
can be fed-back. For this at first a special case.

3.2.1 Special Case 0 = 0

In the special case _q O,.where no weighting of the control deviation e(t) in the performance index (3.1)
lappensthe destination of *(t) and by this the solution of the optimization problem is very simple. One
gets fo' the optimal thrust and for the optimal direction of the thrust in the coordinate system (xlx 2 )

• (tT ) : K(T ) e 'l; (T-t )l
(3.8

ta1%u 2(T)] : tanta(T)]

Thereby K and a are constants of integration, which follow from the traneversality condition

#I (T) pii-(kj(T)-xi(T)], i 1,2 (3.9)

and a"e given by*1T~ * - _1+ ",(T) 3 (k.)

Foir an 4ntierceptioin -qua1 foxWl tthpofilxon caUn tte la p ;hp p tst. eauxiliery funcitions
k I(T,.., Cjýin Eq. (3.10). uhich are lnirc~utod as 4trviih*,on, arv 4#tins by

(.) 0 • *T)

(3•O

As it can bt oesn frma Eq. 0,0~) the jtp a thtvok 14 44 4 ai~ ih' (T, -;) 0 * lit
1rtectiot to coustant, Awh~ic ",.I" that thy cootrol PraýCedw-t Votr.-tts wlm 'aa artt*l 41fatloa Aele. as

I vr a 3 3M.O)

.- •I t3 (..1-4)v~ A,•which reut ~:i ' t;-# 11 £ i; Vaisita atia Vr1;Xt* *1 At vaquisulr ft seGt

'Me opti"Aa trat.*ztWo'j It turet'wf a eareiigt 10*. riuaily. tb* o0tisAl *t~ Oca6

k (T)0r(

Wfdeb bal to be dam =mm 4411y.



An example for the solution derived shows Fig. 2 and Fig. 3. In this example the target trajtctory

&l M(t = (l+v1).t

C2 (t) 0

for t < 0 and

l (t) = sin(t) t v I.t

Cc(t) = cos(t) - + t v *t

for t > 3 is assumed. Thus the trajectory is a circle which is displaced by the velocities vI and v ofthe flow field. For the pursuer the initial conditions x, I Ox 1, x3J = x4 0 are valid. T1 e drag

coefficient is £ = 1. Furthermore it is v I 0,1, v = 0 Rd p o. Aim o the ?nvestigation is tQ look
for the influence of the weighting 1 16 which id responsible for the optimal interception time T.
In Fig. 2 the optimal interception time " and the constants of integration K and a are drawn over the
parameter 6. In Fig. 3 the taret trajectory is pointed out and for different values of 6 the interception
trajectories are given. The figuration outlines that by an appropriate choice of 6 any combinations of
time- and enersy-optimal pursuer trajectories can be realized.

The solution so far includes only the open-loop control problem. If a closed-loop control is needed,
then the theory given in (9) yields with pl P2 2 = p

Zlt,) TZI J1,(-t 0 r3/4(Tt M g1 (t,T)

[u2,(t.T) 0 r 1/2 T-t) 0 rt 3(T-t [&(t.T)

which maw th4t the optimal cloued-loop control law is of th. form

0

Ul/,tT-) = R(.[-xM- A€(tT" ) ,1A-So it camonits of a linear feed-bac a4d additipeAlly, of a toed-foruard control. The time-varying
coefficients of the conitrl law in t-q. (3.15) arm given by

-Q(T-0 a V,%(Tt•)} * T-ti (1,17)

Sr3-( •-•':)T-NT-ti-0

h 3 (T-0 2 1vt•(T-0 o9 it)-v-.-chtt- (T-0

t"taefhietits of the (-1) afo ta re hEo ou* go
be calculated Off-lt.o. arr P01 t•e l y or* ronh !:A ,4 t of 4, which oe ser4 ot the wtithtir of tA
interceptio1% tin Is needed only far destintmit' itgelf frb# 03.1). tXWemp-Acy f~rt 2 1 pli 1)21- the
teftricisVts of the toVttPllhr at*e &rAin in 1ig. t. In order Ito •it tbem ifndepent oW, the Inter-
caption; tiue 'F and the *Parameter I theY art toeralited with (1-6) and as O#W variable 09 %imo t 2 F-i Is
Introducwed. The *zaile of the open-loqos control in r~ig. 5,SaM rig. ra is againz taken- 40 a basir forr the
olottd-Ioact control as *e*l. in rig. se the optintl thrust u 1t() is drawn for A * 0,7 butt for fthe ope-and
elosee- loop control. 9mwo so" the fathal tonftitty of both cusrvet. Only at the end of the trajector
little dovlatior.n ocot'r, which base on the iraJertwptia4" Condi*Iti which# IS Uth p) 2 1) ooiy fini'te
"wighted. Additioaally, it rig. s tM optimal txrust for o" with

disturbed otatieto "-s t. Dy this disturtiance, which InclWude two rectatcil pulse, the efficiency of
d&ftasins meawtr Against the torpedo can be sioulated. 1U trojertoriev of the pVmbloa mentioned
en given In rig. G. Thert it is obvimAs that tUe closed-loop contro! war" satisfylng also to the cas
of the 4istb4 04t to0.

4

". -



3.2.2 General Case 2 * 0

In the general ca&a Q * 0 the conditions (3.4) are the same as before. Of course for the destination of
the adjoint fuihctioni ,Ttt) and *4(t) now distinctions are necessary, as the optimization problem contains
for the elgenvalues Xi of the system the characteristic equations

A422 .2(jg

X,-4 2 +Q.X 0 , i 1,2 (3.19)

iherefore the three cz.ses

4
1) qii <

4

2) qii E (3.20)
4

3) qii 4

have to be treated 8eparately. As th, procedure is identical in all three cases nere case 3) is taken,
being of special interest in practice.All further considerations are referred to this case. With the
abbreviations

/i r.,.-.21)

Yi ___qi +

which are the absolute values of the real and imaginary parts of the eigenvalues ý i 1,2, and the

auxiliary functions given in Appendix A one gets

r ii (T)11 oi--- • oi (3.22)
*i+2(t,T) - m l(t) M-im CT m oit)I.*ol-)qif2( 32)

The constants of integration *io' i 1,2 are related to

P- p.k 1i(r) + (l-6).qii'k 21(T) (3.23)

0io 1 + (.P ).lli(T)+qii.
21 (T)

with the connection

010 : K'cos(a) (3.24)

•20 = K'sin(M)

to the constants K and a used before. In Eq. (3.23) it is assumed again p j p, the abbreviations
k (T), ki (T), 114(T) and 12 (T) are assigned in Appendix A. In Eq. (3.211 it now important that
blause o£ Eq. (A. ) and Eq. CA.8) the solution of the optimization pi'oblem depends not only on the
final state (Yl(T), &2(T))of the target but also on the whole target trajectory for 0 -c t t T

Vith Eq. (3.22) and Eq. (3.4) it is now possible to integrate the equationu of wotlon (2.4). By this
the trajectory of the torpedo is known. The analytic expressions for x (t) anm x (t) will not be given
here, in this connection it is referred to 110]. In order to show the Influence of %he weighting
matrix R it is zeferred to the example treated before. It is shown in Fig. 7 with a parametor variation
of q = q9 = q, the time of interception T is thereby fixed. It is evident from the graphs that with
the Aramegr q completely different interception trajectories can be realized. This is importent in
order to make an attack to thd ship with the torpedo for instance from behind. The corsideration till
now are only valid for the open-loop control problem. If one wants to use a closod-loop control, which
is generally necessary, one is led again to Eq. (3.15). The coefficients of the controller ame nov
given by

dii(T-t) d2 1(T-t)
ri(-t) -. -, - i.T..-t)

oi o

r (T-t r d (iT-t) 2 - Tt
1+ dpTt o 'r0T-t -t o (3.25)

ro31T-t).doi(T-t)+d i(T-t).d1tT -t)1

L ~~ do T-t )

The abbreviation r (T-t) is assigned in Appendix B. The functions a3, ,..,d in Eq. (3,2S.) follow fk'
Appendix A, if onetoieplaces there the argument t by t-T. In contraeso. o .1-) the coaffiftnts of
the controller have now stationary valves not equal to tero, which EA .b• *ten fr c .



ri lim r i(T-t) = (1-6). rqv~l
T_ (3.26)

S1+2  rnm r1+2(T-t) +2 VqI l] , i = 1,2

The stationary value of the coefficicnt ri is not at all influenced by the drag, the stationary value
of the coefficient r +2 only little, as 0 < £ < 1 can be assumed from physical reasons and fu•-thermore
(3.20) deals with ca e 3). Moreover the little influence of c on r and on r 12 is not only valid for
the stationary values but in general also for 0 < t < T < -, as 'i can be see from a numerical
exploitation of Eq. (3.25). For the feed-forwardcontrol gi(tT), i = 1,2 in (3.15) one gets now

hi(T-tJ1

gi(t,T) h n (T i(T)-[ri 2 (T-t)-il (T-t)]'vi -ni (-*i 12 1 (3.27)

-qli. [r i(T-O). i l(tT).r 1+2 (T-).i 2i (t,T)+(1-S)-•14i(t,T)]

with the auxiliary funccions hi(T-t) and )i(T-t) given in Appendix B. The integrals i..(j=1,2,4; i=1,2)
are thereby explained as in Appendix A but now with t as lower and T as upper integration limit. From
Eq. (3.27) it is evident that for the feed-forward control in analogy to the open-loop control the
whole target trajector3 has to be known for 0 < t < T. It is not sufficient to know only the final
values ( 1(T), C2(T)).

The control law (3.15) with the coefficients (3.25) and the feed-forward control (3.27) produces
altogether good results. It has, however the d'sadvantage that it cannot be used for unknown target
trajectories. Therefore one has to try with a suboptimal solution to eliminate this disadvantage. For
this purpose one develops the integrals (A.4) and (A.8) given in Appendix A by partial integration up to
the accelerations ýi(T)M, i=,2. The feed-forward control (3.27) then goes over in

gi(tT) = r i (T--t) i (t)÷r 12](T-O.[+2(t)-vi]+Ri(t,T) , (3.28)

with the residual function

R (t,T) (l-6)*c.[ i+ 2(t)-k i 2(T)] - Q,(T-t)d[,+ (T)-v 1 ] I

(3.29)
+ rI(T-t).1 1i(t,T)+i 1+2(T-t)01 2 1(t,T)-(l-6).q11 .14 i(t,T)

This residual function depends on the integrals given in Appendix B and on an additional expression re-
sultina rrom the hydrodynamic drag. For ships as targets it is sure that their accelerations are small.
So far it is allowed to neglect these integrsls the influence of which for t*T In any way vaniishes.
Furthermore it can be proven that also the additive expressions of higher order depending on c are small.
By this it is possilke to put

I (t,T) a 0 (3.30)

for 0 c t % T and the optimal control law can be replaced by the suboptimal expression

CI

(3.31)

In the subopt.tal control law fo poliitAry knoal•lge of -he target trajecti ry is necessary. Only the
actual target C.ýordint~ts for the specific time t are needed.

For , he exawple treated before, but now with v -0 o, I z 1,2 and t s 0,s, rig. a showu the differenct
between the ptibal atnd the suboptimal .olutio. One oats that the optimal solution Is coeprable Ln
* oertatu s"ope wit~h the proportional navigation. the sub•optimal soution with a dog-fight curve.

An additical ex. Ploe is given L.i rig. 9, where the target with the cordiNtes

ýlt M -: (+V i ).t

for t -0 i; pursued. Variation parameter is again q q : q and q . q respoctively. The figure
poLnt. ou. that also Ini the suboptimal case different pura3r tl ajectf[.aML& ra.i=able by an
appropriate 4hoise of q, which is oxtreely important for lactinal considerationa.

4. OPTMAL VILTZRING

It the further coansud1 3tw the general zuboptimal control law (3.31) is used. In this control law
occur the sta•- variaoi~e k , • ,x . Of t"• pursuer (torpedo) cmi the state variables C , 4.q of the
target (ship) If one use* in acordarnce to Eq. (2.8) relative coordinates then the Oi1er of State
variables is retcetd frosm eliat to four but in this case no Inertial declaretions for the coordinates
are pouible. It is *l1 the ste, which cotsideration Is used. in any case the state variables L*ontained
Is the contral lav have, to be measured. These measu-rements am subject to stochastia e;r'a to that one



has to develop appropriate filter algorithms.

Yj 4.1 Xalman Filter for Torpedo

As shown in Eq. (2.4) the torpedo can be described by linear state equations. One can assume that in
these state equations no stochastic parts occur if for example no influences of wave motions of the
flow field are considered, With a proportional linear working measuremezit device one gets the measurement
equation

[ 1 0100 o1 •2 wt) , (4.1)

x4

if only the position coordinates and

Iy 2  010 Oo|x 2  (.2
= • ÷ ~w(t)(.20 00 x3  -y2 0 1 0 0 x

if also the velocity coordinates are measured, i. e. in general is

Y = C x + w(t) (4.3)

Assuming that w in Eq. (4.3) is a normal distributed white noise process with Elw(t)] 0, then for
(2.4) and (4.11 a linear Kalman filter can be )utlined. In accordance with the tReoretical background
given in [11] for this case

A-9 + K(t).[y - c.-A) + d,_i(o) Etx(o)] (4.4)

is valid.

Here is for abbreviation d = B.Z+v the deterministic part In Eq. (2.11). The Kalman matrix K(t) now
follows frwe

K(t) : P(t).C.,- (4I)

where the covariance matrix P(t) obeys the RICCATI matrix differeutial aquation

A[ * ) .( j) _p.j• -.(• p pO). )
IFurtheremor it is

(4.7)

for the noise process in (4.3). If one asseu for P(O) and R diagonal matrices of the fore

P.(O) % diag(a~i , : It .... *4

gdias(r11 2 1I 1,...,4

and p Otulates Additionally that the•r arte vqu1 tochantic qualitie* for the position coordinates or one
hand and for the velocity coordinates on the other hand, which **eart

and
r11 h0r22

r 33 =•33'

then the filter can : give nalyticaUy in a se•il way. One pet

I k11 " 33Y3
-k31 0 -(€.k 33) 0 AS k3*y,,33y

j 0 -ý14 o .(,.,,,,,) j k tY t 4]~



Thereby is -because of Eq. (4.9) and (4.10) -

~ k 2 2 , k 1 3 =(4.12)

If the veoite a4 e no 3 e1 u then

The explic~it expressions of the elements k. .(i1l,. ..,4; j:1,. ..,4) are assigned in Appendix C.

vIial th isoite inrdux ind tx eleent not Appendix C.e

0:

osnvlyd on o terthisos lw

11 33 3 /r

In order to hao ns ider hs ofate thme dexildance ofibeAsitodcdi the eleme, .,~j.l...,4, nt kg 10 Appndig. 1.1

fort n measuring~ ofx3fn x 4and .aA0,I i.1wihmuretofxnd s6 1.t

the intialmplificatind ix very thigh thie stae obpriouos, The filtefr namel consiers.I the measuementsmr

oppothe conmidematrion is ev14nt thatthermoare not iexevicileedent incmaion ohe rela0tiths Fi4.6) butwdepend
ench onther tat inohs aeA0teapiiain r ratrta ntecs .Ti sovos

Tisce simplthes cosierembnt dthe chothe pof tionroorinatevles espec) ithl the heP(o). hc hevlct

co ordiaer tohv an ideav tof bhe tienderaend. he officienc of(z-,.4 t Je lter 4a). se in Fig. 10 .a nd this.1
fihue apiict ion ke (t)Istorth n exa mplearetiny capoethe tim. ItiPanameterci tep rtion I co d re with 10 0hr
exista Inowntre r~co h measuremn a. t A =. oy, ie diit.rbe witha nw measureimentofxadx i r1.A

noiseioithel navpigiation in vtrumhigh. These dIstuobvius The vaibltes yimeld thsier otima meostrolen we(
ihn ig 2.oloigtthsthe inta oniinAahc suromnty dnwnwta a cerai p y~ reofaditoth.eo Kamat value~ hs of 2te-
rpostes consider4 atind bythse thed oprtiemal itr is evidentin Thpaiso howf Fig. 10wit Fin. 11e bearytweat
tahe oier tadats to the mean valu 0~~))0 the disiictinsa u reater tanI tives caltoete a ver 1.Ti obvods

iorluhed dtin temation mi dt of the post enedditin tcodnatrol (aw x. e. wthe tate helar wiablhsloit

corinated airctl by hactve tobearig easratiits Thtie tracking). On AFith ter ha L ind "it Fin 12.lio poissi

figreIt A t the etatpe ve toreated knos chap ter 3 .I als an ti cs h intecpineodrodwtia coo'. na

for th pansin tat-gt trajctingyi ihe maus.( to cdante yrv a.,l ontnoscosdrtint di3ubdwihckow enrpeteo.
nois es aof tge ~ the naiain lon oiet3Thes t e devtuoped.At Foriathis yitinecl srdt rt the equialtionro
ifmoin (i. 2a.) Follothe torpd th a ist csreotet fod.a th they sareling t tihe T hatmeansfl ,thnFla

rtsx '...'X4an b j* ll th opia Conro Is ýII ra (k. Thl hw i.1h u otc yta
th 1 l raat oth ia au ti0 0 oftedcubtcuadgvsatgte 5ygo
xtv kl)T0  1 0 -(-

.2I Pasv Takn

Fo 0h detnto o th tagtnaneddi the cnrllw *. e k.' theovtevaiale
(t),... n* cn g tuodiffrentwa~. fton* and thevralsC o . C1)) a edtr

III ato d rctl by ctie berin mi~sisemen# - c tv trcig.O e*hTd ti loptatltous olyl~siv barn masem a(pssvotrcin~i1rý hs n*poz te eltiecordnae
0 0h stt veto x0ckiw rmcatr'. loW hscs h nrilcodtt ca bestaed b 'E. 0 0). n te frthe casidratintathi wayin one
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.(J-e 0 -c.To) 0 I T0

-•:T

ZkT)0 .-L.(1-e 0-c*T) u1(k-T )I t V2 -T 0 ,,,.
-(k.T 0 C [ 0 0 k 0,1,2,... (4.14b)

.a 0- 1) 0 U2 (k.T) 0
C0

0 0-1)
C

The dynamics of the torpedo is consequently described by the general difference equation

x[(k+l).To0  = ±(T ).x(k.T) 0 B+(T0 ).(k.To) , v(To) (4.15)

For the target (ship) the considerations have to be improved in some details.

Case 1: Assuming the ship is moving with constant velocity, the discrete equations of motion for the
target are given by

M~~l-T0 ' 1 0 T0  0 41 (k*T 0) v.T 0
t2 ~ k l) T 1 0 1 0 T 0 2 (k -T0 ) v 2 'TTot3(k'T°)-+ k 0,1,2,..., (4.16)

93 (k+1)'To] 0 a 1 0 t3(k'T o ) 0

t4 (k+l).To0  0 0 0 1 4(k.To) 0

where now t (t) and t (t) are relatIve velocities in accordance with x3(t) and x (t). Inserting
Eq. (4.14) Ind (4.16)4in Eq. (2.8) one gets as relative motion between the torpedo and the ship

le1((kt1).T] 1 0 • e1(kT.To.

e t(ktl).TI 01 0 T 0  e (k-T2 0 0 1 -~eT.~(.7

ae2 (k*)'To 0 0 1 0 To , eTk).o)

*4*t~k+1)T 0 1 0 0 0 1 *4 (k.T,

which is ide*tical with the eontrol deviation e(t) in Eq. (2.8). In Eq. (4.17) z(k.To) is a known control
vector gjven explicitly by

.L(..1e T,,, 1-k.o÷.,'•+)

-. ( +0 +-.T ( -TO) + k%(4.18)

-cc~T
1k . +T o).%(k.To) * ((k.To))

0-€..() -c T 1

(1-CT - 0)( 2 okT)+ru kT)

(• 0 0).(x WT.) +.T- (k.To)]

Consequently, the re<lative motion is described by tho gleneral liu•r difference equation

m[(kX).To] 0 1 ( M 0 ).(kT0 ) + _z(kTo (( ))

Case 2: The assumpti•on of contstant ship velocity is in some cases not fulfilled. Indsed It is sufficient
To -resrict for variable velocity on linea changes. With this assumption Eq. (4.16) turnao in

"t(k+l).o) '0 0 T0 0 TO 0 E .(k.T 0 ) vI'%

E2 Q ÷0,T o 0 1 0 0 0o T C6(k.T 0

(3(•)T01 001 3(-o +, 0 (4.2•0)
tj4[kt0.)To] 0 0 0 1 0 To C r,,,k.,.)I 0

,C5.stk+l).To] 0 0 0 o 1 0 ts(k.To)l 0

0++ 0t+)o 0 0 o i C6 ( +k-%)I 0



In Eq. (4.20) the additional state variables C and C are constant parameters to be identified. The
difference equation for the relative vector e(b), which is now of the dimension (6xl) follows from
Eq. (4.20) in the same way as in the case before, F(T0 ) is the system matrix from (4.20) and the
control vector z(k.T ) derives from (4.18).

As measurement equation for the generation of the target trajectory, which means the destination of the
vector e(k.To) only the bearing angle

_Z[e (k'T)+nkTo) (.1O(k.To) = tan [e-] "I ' ( .T ) ].
[-2 Qi

is available [8]. Thereby n(kT o) is a white noise proces& with normal distribution

E[n(kT 0) 0
(4.22)

E[n(J-To)-n(k'Toa)]T00 0 (0o j ek t k = 0,1,2,.,.

The measurement equation (4.21) is nonlinear. From this equation in connection with Eq. (4.19) the
vector e(k.To) has to be determined. If one excludes pathological cases (8) this can be done in a deter-
ministi7c way, i. e. n(k.T ) = 0 for Eq. (4.17) with four, end for Eq. (4.20) with six measurements.
Necessary condition for t÷e observability is thereby a sufficient course changing of the pursuer in order
to have enough information on the target for solving Eq. (4.19). In the stochastic case as well at least
four measurements are needed to solve (4.17) and six to solve (4.20), respectively, but in general it is
better to have more in order to carry out a data preprocessing. The stochastic measurements of Eq. (4.21)
have to be prepared by a dynamic filter. Following to the considerations in (8] and (12] one then obtains
an extended Kalman filter belonging to (4.19) and given In Appendix D. This filter has been derived for
the measurement Eq. (4.17), for Eq. (4.20) it has to be extended correspondingly. The filter algorithm
itself follows from a linearization of the measurement equation about the momentary estimation vector
_(k+llk). Now, simulations show that the derived algorithm has an inefficient convergence behaviour,
especially in respect of the covariance matrix P(klk). This bases on the dependence of the linearized
measuremnt vecter o(*W on the estimated state vectr e(kklk-l), by which a feed-back occurs in the calcu-
lation of the amplification vector k(k), which represeits here the Kalman matrix. A decoupling of state
estimation and covariance matrix calculation can be reached in a simple way, if one submits the measure-
ment equation to a pseudo-littearization (8], (12]. Then one gets the following algorithm with better
convergence behaviour:

Prediction Phasei

_(ktllk) r F(k+÷,k)-e(kk) + z(k)
-*- - (4.23)P(k÷lik) t _F(k*1,k)-P(k!k)-rT(keZ.k) k :0,162,...

Isaaurebent Phase:

J(k+l) (coas(k+l) , " si,•S(k+l), 0, 01 (4.24)

Correction Phase:

Se(k~lik~l) = j(k~llk)-k(l). (kIl).*(k+llk) (4.25)

P~~l~)afklk-(ktl)-Tk+l)-Pklk

Initial Conditioni

P(0I0) -dag( 2 ).. (4 . 26)

in this algorithm, as well as in the extended Kalman filter in Appendix D, the argument To is ockitted.
The variance oa in Eq. (4.26) can be set in general equal to one.

0
The algorithm given by (4.23) to (4.26) ia now used to generate the target tra~eetory

•t(t) l •t

( 2(t) a 0

for t 3 0. The pursuer (torpedo) thereby drives the following Identification trajectory with the
initial conditions xlo a1 .1,1 x20 = 4,50:

0 _ t ' 1: X(t) M x const.

x2(t) -lttX 20



I _ t _< 2: xl) 1 W .(t-l)+X 10

x2(t) = X2(1) = const.

2 < t < 3: xl(t) W X(2) = const.

x2 (t) - l.(t-2)+x2 (1)

3 <t < 4: x(t) 1.(t-3)+x1 (2)

X2 (t) W X2 (3) const.

4 < t < 5: x(t) W X(4) const.

x2 (t) = - 1(t-4)+x3 (3)

Consequently the pursuer dynamics is assumed as an ideal rectangular trajectory leading to certain
simplifications in Eq. (4.18). As sampling time T = 1/12 is chosen, i. e. there are 12 scanning steps
within each course correction of the pursuer. By This we get the possibility of a preprocessing in the
algorithm (4.23) to (4.26). The results of the simulatiog arg given in Fig. 13 to Fig. 15 for the
standard devlations of the measurement noise of a = (0 5 • 1 ; 2 ). In Fig. 13 the relative distance
error AR = (R-R)/R is drawn in per cent with R = (e2+e)I/2. Fig. 14 shows the course error AO = 6-0, and
in Fig. 15 the velocity error Av = v - v is assigne3 with v = (C2+2)1/2 The geometric configuration
of the parameters R,e and v is hcplafned In Fig. 13 again. h

From all three figures it is evident that the filter is not working until the first course correction
of the torpedo. This bases on the fact - as mentioned above - that the problem is not observable
before [81. After the first course correction the filter gives usable results although it cannot be
overlooked that the filter would diverge without a further course correction. This bases especially on
the parallel course of torpedo and ship during the second motion interval 1 < t < 2. This divergence can
be removed by the second course correction of the torpedo. After this the stationary iccuracy is reached
in the relative distance and in the velocity. The accuracy can be raised in the course by another course
correction.

5. CONTROL AND FILTERING

It is obious to combine the results of chapter 3 and chapter 4 in order to carry out a closed loop
control-filter procedure. This is done by a hybrid simulation on the basis of the simulation plan of
Fig. 16.

On the top of the figure the dynamics of the torpedo is given as derived in chapter 2 Inclusive the Kalman
filter of chapter 4.1. Below the targot filter is outlined and the nonlinear measurement equation for the
relative target data and the controllers are given. The two systems - torpedo (pursuer) and ship (target) -
are connected by a sample and hold circuit, which carries over the continuous system of the torpedo in a
discrete one, as it is needed for the target filter.

In a first phase the target trajectory has to be geneart•d. In this identification phase the switch
between the two controllere is turned to the left (I) end the system is working in an open loop. If the
torpedo has enough information about the target, the identificatipn phase is finished, I. e. the switch
between the two controllers is turned to the right (2) and the closed loop control begins. During this
phase the tarlet filter is working In parallel, If an additional tine-optimization is needed as outlined
In chapter 3, the controller which in hardware is a microptocessor or a minicomputer, respectively,
carries out a target trajectory prediction and destinats Tfrom Eq. (3.6). In this paper, however, this
is not a central point.

As an example of the slaulation procedure the results of Pi'g. 17 are given. Referring to the target
trajectory of chapter 3.2.2, where the target is moving on the x -( I-axis with the normalized constant
velocity "one" the pursuer is started with t9e initial conditioni x (0) - 1,12; Y(0) M 4,50, the
variance of the meturement device is a2 t I . In the identificotooA phase 0 - tt 3 the target trajectory
* is generated. In order to look for geometric influences two diffoernt identifTcatTon trajectories are
chosen. At the time t:3 the control phase begins, it Is finished at tr9. The controlled trajectories are
comarable with the results in rig. 9. The obtained accuracy can be considered as satisfied. In the
x -C -axis one Lets an absolute error of ae 2 - 0,15 for the upper, and of be c - 0,275 for the lower
pWrser trajectory, in the x -'C-aexi the o;wesponding values are aes = - 0,;15 and 6a Z 0.03.
respectively.

6. EXTENSIONS

In chapter 2 a control law is derived which is well appropriate to any target trajectories. In chapter 4
and chapter 5 the consideretions are focussed on targets with constant velocitieo. An extension for

* linear changes In the target velocity I. e. constant acceleration, is given by Eq. (4.20). In order to
prove the efficiency of the algorithms derived including this equation the example of hbapter 4.2 is
taken but now for

t(t) a O,5t 0 0125.t 2

C2 (t) M 0



Consequently, the ship now has an acceleration of 41 = 0,25 in the direction of " The identification
course of the torpedo is very similar to that given in chapter 4.2. The results oi this example are
assigned in Fig. 18. Without any detailed discussion it is obvious that the target filter works in this
case efficiently, too.

Future efforts of the authors will be concentrated especially on targets with any velocity of time.
Furthermore, the theoretical considerations will be concentrated in general on the problem of the best
identification trajectory. This may be done by an intensive investigation of the observability matrix.

7. CONCLUSION

The paper presented deals with control and filter problems for the interception of torpedo-ship situations.
Central points are engineering applications and not primary theoretical aspects. The restriction on plane
motions is not decisive, it is only done for formulas limitations. All analytic results are prepared
such, that they can be realized in a simple manner numerically by a microprocessor or a minicomputer,
respectively. Some of the calculations thereby can be done off-line which is appropriate for real time
situations.
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APPENDIX A

Auxliay ~ " or he ne-loop Control Problem in the Case q o.
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APPENDIX B

Auxiliar'y Functions for the Closed-loop Control Problem in the Case *0.
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APPUDIX C

LL6"Uatt of tZb. VAU04n Netria #CO for the Toapodo Inertial rinter.
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APPENDIX D

Extended Kalman Filter far the Relative Notion of Torpedo-Ship.

Prediction Phase:
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SEPARATED-BIAS ESTIMATION AND
SOME APPLICATIONS

by
Bernard Friedland

The Singer Company, Kearfott DivisionI 1150 McBride Avenue
Little Falls, New Jersey

07424
U.S.A.

A number of applications of Kalman-Bucy filtering require the estimation of unknown constants (biases)
as well as dynamic state variables. In 1969, a method of separating the estimation of the bias vector from
the estimation of the dynamic state vector was presented as an alternative tq state vector augmentation
which often had numerical conditioning difficulties. The optimum estimate x of the dynamic state was shown
to be the sum of a bias-free estimate x (i.e., the estimate that would be obtained if the constant bias
vector b were zero) and a correction term V• , where b is the optimum estimate of the bias and V
is a matrix determined from the other matrices of the problem. Moreover, the bias estimate b can be
obtained from the residuals (innovations) of the bias-free estimator. This paper reviews the general theory,
using a new derivation, and summarizes some of the extensions that various investigators have contributed
during the past decade. Several applications, including calibration and failure detection and identification,
are discussed.

k

1. INTRODUCTION

No contribution since World War II has influenced system science more than the recursive filtering
theory of Kalman and Bucy [1,2]. The theoretical significance and practical utility of tbis work became
widely recognized within a few short years of its advent in the early 1960's. Dozens of papers soon

I appeared which presented alternate derivations and interpretations and demonstrated potential applications
in various fields--most notably aerospace but also in industrial process control and even in the field of
econometrics.

All this activity made the benefits of Kalman-Bucy filtering quickly evident to a wide audience, And
it exposed some of the limitations that were not obvious at first. One of these limitations was the tendency
of the calculated quantities (particularly the "covariance matrix") to become ill-conditioned, with the elaspe
of time, in processes of high dimension. (Considerable research has been devoted to general methods of
improving numerical conditioning of the required calculations--and continues to the present time--but this
general subject is beyond the scope of this paper.)

Even when ill-conditioning did not cause serious problems, the implementation of the Kalman filter in
many instances created a severe burden for the typical airborne computer of the early sixties and motivated
a quest for ways to reduce the computational requirements, even at the expense of a sacrifice in the
theoretically attainable performance.

The problems of computer loading and prospective ill-conditioning had to be faced in one of the early
proposed applications of Kalman filtering: mixing of navigation aid data with inertial data in aided-inertial
navigation systems. In this application [3], most of the variables to be estimated are constants (biases,
drift rates, scale factor errors, misalignment angles, etc.). The customary treatment of these unknown con-
stants as state variables results in state vectors of high dimension. Around 1969 we reasoned that it should
be possible to exploit the fact thit many, if not most, of the state variables are constants to reduce the
complexity of the filter, and thereby to alleviate the computational burden and to minimize the possibility
of ll1-conditioning. We initiated an analysis which culminated in our paper (4] in which the estimation of
the constant or "bias" parameters was separated from the estimation of the dynamic state variables.

We showed that it is possible to obtain an optimum estimate k of the dynamic state using a filter
having the structure shown in Fig. 1, and consisting of a bias-free-state estimator, a bias-estimator, and
a bias-correction matrix V . Mathematically the optimum state estimate 1 is the sum of the bias-free-
state estimate x and a correction teram v , where t is the optimum estimate of the bias, i.e.,

xvx + V9 1

The bias-free state estimate i is obtained by processing the observations in a Kalman filter designed
under the assumption that the bias vector b is identically zero. In the standard implementation of the
bias-free filter, the difference

r - y - y (2)

between the actual observation and the estimate thereof is produced. This difference signal known as the"residual" or nowadays by the more popular term "innovation" is the input to a second filter which can be
called the "bias-estimator" because its output is the optimum estimate I of the unknown bias vector b
The bias estimate t , multiplied by the correction wittrix V is finally added to x , in accordance with
Eq.(l) to yield the desired optimum state estimate.

We expected to find that the bias-separated filter implementation would require fewer numerical operations
than the augmented-state implementation. But we found, to our disappointment, that the number of operations
for each implementation were comparable. (The bias-separated implementation did open some new possibilities
for approximations that may not have been evident in the augmented-state implementation.)

But the advantages of the bias-separated implementation for avoiding numerical ill-conditioning are
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obvious. In the augmented-state implementation the overall process is of order N + K , where N is the
number of dyuafic state variables (i.e., the dimension of x ) and K is the number of biases (the dimension
of b ) and the N + K variables are all coupled, in the filter and in the covariance matrix propagation.
In the bias-separated implementation the maximum dimension one needs to be concerned with the larger of N
or K , and errors in the estimation of the bias do not contaminate the estimation of the bias-free estimate
x of the dynamic state.

The strategy we employed in 1969 for deriving the bias-separated filter was motivated by a similar
strategy we had then been usingsin our study of quasi-optimum control. Investigators unfamiliar with that
technique found the results to be lacking in motivation. Several authors (Agee and Turner (5]. Mendel and
Washburn (6,71, and Bierman [81) have contributed to correcting this deficiency by providing alternate
derivations and interpretations.

The bias-free residuals (or innovations) occurred naturally in the derivation of 141 but their signif-
icance was not fully appreciated at the time: the interpretations resulting from the work of Kail&Lh et al
(9,101 had only just begun to emerge. In retrospect it is evident that the Z:as separation method introduced
in (4) exemplifies one of the applications that can be made of the residuals of a Kalman filter. Failure
detection and diagnoais 111) exemplifies another application that can be made of the residuals. We shall
return to this application subsequently.

2. REVIEW OF TREORY

It has been remarked above that the bias-separated structure of Fig. 1 can be derived in a number of
different ways. Since new methods of derivation can afford new insights, we offer here still another
derivation based on the theory of linear observers. Since the latter theory does not depend on properties
of stochastic processes. the derivation shows that the structural properties of the separated-bias estimatiou
algorithm transcends the stochastic process underpinnings.

for simplicity we consider only a continuous-time process

;-xM~s4b+. U(3)

with observations given by

y- Ca+ Db + v (4)

where b is a constant (but unknown) vector (called the "blam") and u and v white noset processes having
knawn spectral density matrices, Q and I respectively.

In accordance with well-known theory (12), an observer for the procesa Zqs,(3) - (') is defined by

A - (y -3b + K) (;)

X (6)
' - Yy -C; t6•) )

These relations are depicted in fig. U. The gain matrix

is chosen to make the observer asymptotically stable. If the ain matrix is chosen optimally, the observet
Iqa. (5) - (6) is the ala•am filter; otherwise the observer has only the property that the error

tend asymptotically to aero.
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Nov consider the possibility of expressing the obeerver Eq. (5) and Eq. (6) in the bias-separated form
shon :in Fi:.2bA i.e.,

x- X + Vb (8)

where x is the state of the bias-free observer, given by

x Ax + Kr (9)

and b is the bias estimate given by

b -Kb(i - Hb) (10)

where F Is the bias-free residual, given by

r- y - Cx (;)

Note the following:

e The bias-free observer Eq. (9) retaina the general form of an observer and is hence asymptotically
stable if K , as yet unspecified, is appropriately chosen.

a The bias estimator Eq.(10) Is ales in the form of an observer except that its input is the hiss free
residual r (not y ). Moreover, the bias filter gain K I is the same matrix that appears in Eq.(6). In
principle, the results to be obtained could be gonaraliz.% somewhat by permitting K. in Eq.(6) and K0 In
Eq.(10) to be different matrices. Vo will not do this, however

Our objective in the analysit that followu Is to find relationships between the matrices V , a und H
that wwt hold in order Eqe.(8) - (11) be equivalent to Eqs.(5) - (6). To this end, substitute Eq.(8) iULo
94q.(6) to obtain

b - Xb1y - CGi + Vi) - Oh

vhLch Is of the form of Eq. (10) provided that

H - CV + D (12)

This is one of the relatioas we are seeking.

Also, substitute Eq.(0) into Eq.(5) to obtain

a + Vb + Yb - A(x o Vb) + 1b+ K x i7 - Vb)

- Ai + Kj + ( +AV -VrH)G (13)

lut, from 9q.(9) &nd Zq.(lO), the left-hand aide of Sq.(13) is

+ 4 +b- A7÷x ÷ + K4 v (r - NO + Vb

The Ai term cacels oan both ii'es of Zq. (1) leavi•g

(I VL~,)r+ (V - YyH)b Kxr + (I + AV - KxH)9

Thus tq.(S) to satisfied for a1 i and .0 provided that

.sKK, -VK (14)

v - AV + VH + 5 -. K2M

S(A - Ec)v + 1- (13)



Thus the augmented-state observer of Fig.2a, with gain matrices K and K, obtained by any methodx
whatsoever, can be transformed into the bias-separated form of Fig.2b, provided the matrices H . V , and
K satisfy the two algebraic equations (12) and (14) and the matrix differential equation (15), which becomes
the matrix Riccati equation

v - (A - K•)v + VK.DD+ vK~CV+ B -D (16)

upon substitution of Eq.(14).

This derivation is strictly algebraic and does not require that any significance be attached to the
matrices that appear in the respective relations, but only that a matrix V which satisfies Eq.(16) can be
found. (The general conditions on A , B , C , D , K and k that guarantee the existence of a solution
to Eq.(16) have, to our knowledge, not been explored.f In par~icular, there is no requirement that K and

Sbe optimum for the noise u and v . And, irrespective, of the optimality of these gains, the sfeady
state errors in the estimation of x and b will tend to zero if these gains result in a stable observer.
An alternate demonstration of this property was given in [13].

If the observer gains K and Kb are optimum for the noises u and v in Eq.(3) and Eq.(4), however,
then the bias-separated filtef is also optimum. And it is then possible to provide interpretations of the
matrices K and V . In particular, as shown in [4], K is the optimum gain for the bias-free filter, i.e.,
for estimating the state x when b is known to be identically zero, I.e.,

K- Pc'-I (17)

where P -AP + PA' - PC'R-CP + Q (18)

with Q and R being the spectral density matrices of u and v , respectively. Moreover, the matrix V
can be interpreted as the ratio of the cross-covariance matrix of x and b to the covariance matrix of b
Specifically, if

Pxb E[(x -x)(b -b)']

Pb E •[(b - 9)(b -b)]

then, as shown in [4],

V P 4b 1 (20)

This helps to provide an intuitive interpretation of the bias correction equation (8), in which V is
seen to be the gain matrix for correcting the bias. By Eq. (20) this matrix is proportional to the cross-
correlation between the error in estimating the state and the error in estimating the bias. If the influence
of the latter on the former is relatively weak, as measured by a small cross-correlation matrix P , it is
only reasonable to expect that the correction to the bias-fre estimate x , when knowledge of b xks obtained,
would likewise be small. Likewise, if the cross-correlation between the bias estimate and the state estimate
is strong, we should expect a larga bias correction. In addition, we would expect the magnitude of the bias
correction to be inversely proportional to the uncertainty in the estimate, and this explains the presence
of Pb in q.(20).

Another useful relationship involving V , as given in [4], is

P - P + VPbV' (21)

where P is the covariance matrix of the estimate of x in the presence of bias, and P it the covariance
in the abseene of bias. Since VHV' is a postive-(sexi) definite matrix, it is clear that P is larger than
P , which is of -ouroe to be expected. But Eq.(21) quantities the difference between P and P . In
particular if VP V' is small relative to P , than the increase in error due to b is correspondingly
small and b is kot significant in the estimation of x . Since it is possible to include all the bias
veriables except one, say b , in the state x and apply the result of Eq.(21) to b alone, this provides
a way of assessing the afftac of each component b of the bias vectgr b on the astimate of x . Those
components which do not contribute significantly the increase in P over P are candidates for omission
in a suboptimal implementation.

A useful interpretation of the bias estimation equation (10) r-an be had by considering the problem of
estimating an unknonm constant b observed through noise, i.e.,

b-0 (22)

with observation r given by

S- Hb + C (23)

where C is white noise, having a spectral density matrix R . Direct application of basic Kalman filter
theory shows that the optimaum estimator is exactly in the form of Zq.(10) with the gain matrix K0 given by

Kb PbH 'a1  (24)

with Pb being the solution of the variance equation

;Pb a " (25)

It is shown in [41 thOt these are precisely the relations that are satisfied by X and P Hence the
noiuhperation of the bias estimator k.(10) can be interpreted as the extraction of a ostant .bserved 14 white'[notes, with the residual vector r being the obs~rvation. If the hiss b is known to be zero, then by



Eq. (23) r szr-mean white noise with the same spectral density as the original observation noise. This
confirms a well-known property of the residuals in a bias-free filter. But Eq. (23) also explains the effect
of a nonzero bias b in the original dynamic equations on the residual of a Kalman filter designed for zero
bias. In particular, the residual is not a zero mean process but rather has a mean given by Rb with
the "equivalent observation" matrix H given by Eq.(12). As one might have expected the observation bias
matrix D appears directly in H . But the dynamic bias matrix B appaars in H only through its influence
on V . Moreover, since D also appears in the equation for V it is not entirely accounted for by the
D term in Eq.(12).

The interpretation of Eq.(lO) as the extraction of a constant observed in white noise, was first

, f advanced by Mendel and Washburn (6,7] (see also [13]). This interpretation is particularly useful in
failure detection applications as discussed below.

I For simplicity, the above review was given in terms of a continuous-time process. There are exactly
analogous results for discrete-time systems which are presented in summry form in Appendix A.

3. EXTENSIONS OF THEORY

Alternate Derivations--As often happens with theoretical results, not everyone was pleased with the method
used to derive the bias separated filter, and several investigators contributed Alternate derivations which
may provide added insight or suggest further extensions.

In 1971, i~n and Sage (14] reported on their approach to bias estimation using maximum likelihood
methods and which entailed solution of a two-point boundary-value problem. They obtained results which were
subsequently shown by Godbole (1,5] to be identical to the original results in [41. As Godbole pointed out,
this fact was hardly surprising, since it had been known for several years that the Kalnan filter ia a
recursive implementation of the solution of the two-point boundary value problem.

In 3972, Agee and Turner [5) derived equations for the (discrete-time) bias-separatead filter by starting
* vith the correction equation of the form

x x + Vb

and, by a method somewhat similar to the method used in Section 2, determined the conditions under which the
decoupling is possible. One of their conclusions is that the partitioning in only possible when the bias is
not a random process. In other words, although the bias need not be a constant. but rather may be given by

b - b (26)

It would not be permissible to include a noise input on the right-hand side of Eq.(26). Hence any attempt at
extending the result to the caut in which the bias. is a raudom process must of necessity lead to a sub-
optimum filter. It Is noted, however, that the derivation in Section 2, in independent of the Smannr in

* which the gains % and Kbare obtained for the augmented-state filter. The augmented state filter (Fig.2a)
adthe correspondtng gains X andK~ generally cas be found even if the bias b is a random process.

Thus It wou.Ld seam that the reltr ltion that b not be a random process is somehow superfluous. The Agee
and Turner result of (5) thus suggests tither that the bias-free filter of FIg.2b that produces i is not
the optimum filter for the process with b a 0 . or that a solution tolq.(16) for the correction matrix V
cannot be found. It is Interesting, but of no real Importance, that x is the estimate of x In the
absence of bias. If this were tnot the ease, but if we could solve for V .K and II . than the bias-
separated structure of Fig.2b could still be used,

Also in 1972, Tacker at *I. in studying control of intarconnacted energy systems 116) (apparently
independently) discovered tits bias-sieparation result within the framework of linear optimum control theory.

In the early 1970's the square-root method of implementing the optimum recursive filter had been gainting
in popularity as another method of overcomin problems of numerical conditioning. to 1975. 3Sisimen, an
active investigator In this field suggesteda a)8 that "the (square-root Information filter) SIX is7L a natural
method of dealing with biases," and developed a deriv~ation using this methodology. tn the course of this
development, several additional results and interpretations emerged. Ne showed the relationship between the
correction matrix V and the stestimetion sensitivity" and "consider covariance" matrices of Importance In
orbit determination, He also pointed out how the blas-separation method cant be used to compute smoothing
solutions.

A very rigorous development of the results of (4) for both continuous-time and discrete ties system
was published in 1978 by Mendel and Vashbura 16.7) based on Washburn's 1977 doctoral dissertation. The
development assumed the bias separated form of 1q. (6) and, like Agee and Turner. found the conditions under
which Sq. ($) to valid, In tit* course of this development they demnstrated that the estimation of the bias
using the residuals (Innovations) of the bLUa-tree filter to equivalent to extraction of a constant observed
In white noise. and used this property to apply wel.1-known algorithms in which the bias vector changes
dimension with ties.
Rztmasion _to Time-Yar~aa line-The original development of the bias-separated algorithm, as given in 14I.)
was confined to a constant bias, i.e., b - 0 , but it was remarked at that time that the extension to a
time-varying bias would be f-trly simple. The explicit extension was first presented by Tacker end Lee
(171 in 1972. Sterman eubeequeatly pointed out 1183 that the results of Tacker and Lee could be obtained
more directly by moting that it L bte ~)**(,) hr (,) is the state troanitiont
matrix corresponding to Z and hence the time-varying bias ash~mation problem can be replaced by the

problem of estimistift the initial state It0  of b(t)7*j Laxteasion to Nolna wt-Vew dynamic systems of practical interest are linear; Kalmen-lucy filtering
io ofteu used to estimate the state of such walinear systems . "ewrtheless. The standard technique usedfor nonlinear asyetin is the "extended Kalmasm filter." (a?7) in which the actual nonlinear equations are
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used in computing the residuals and for the dynamic model, but in which the correction due to the residual
is lInear. Specifically, for a continuous-time process

z- f(z) + u (27)

with observations given by

y - g(z) + v (28)

in which u and v are white noise processes, the EK equations are

-f(i) + Kr (29)

with • ,y - g(M (30)

The gain matrix K is computed from the covariance matrix P , i.e.,
K• PG IR-1 (31)

wt P-P + P - P' + Q (32)

in which F and G "to Jacobian matrices of f and g , respectively, evaluated along the estimated
trajectory, i.e.,

A F [. ,_L ,,
A

The covariance matrix P is computed. along with , as part of the EK? elgorithm.

In usny practical applications the W algorithm outlined above works quite well. In these applications
it would be worthwhile to develop a bias-separated for* of the EKF for the case in which the state a
includes dynamic variables and bi•ses, i.e., in systems in which the state vector a can be partitioned
into a dynamic state x and a bias b

and hoenc f(i) - f(xb) , g(a) - g(x.b)

The direct extension of the aeparated-bias form to the Ct? is not as obvious as It might eppear at first
glance, owing to the nonlitelr nature of f( ) and S( I • n particular, the Jacobian matrices that enter
into the covarlance matrix P of Eq.(32) are evaluated at the optimm estimate of 3 and b . #o that the

representation of the variance equation in the manner of 1q. (21) which lead* to the seirrted-bias •foar may
not bc valid. and this leads to some difficulty in deter/ining the Saint i end Kb to be used it the bias-
separated foar. It my be argued, with Agee and Turner (3], that the M Is not optimum snyvey4 end hence
any reasonable choice of gains might be acceptable. Adopting this viewpoint, however, dose not end the
matter. In OAs bias separated structure, for exaple, the bias tree residual is

r - y -Cx

The countaerpart of this in the nnlinear equation is

r - y - 5(6.0)

In other words the state used to compute the expected observation is x not t . This is counter to the
spirit of the EI Lan which the linearization te always made about the complete stote satiate. It the effeW t
of the bias on the estimated state is small, it may not mattet too mich whether the liaearisation is about
Sor ibout x . Uhen the bias is significant, however, the difference between R sad a may be enough to
affect the results significantly.

The generalization of the bias-seperation algorithm to nonlinear dynamics wee considered by SIMe and
Kshalanabie 1191 in 1972. They applied the results of (43 to partitioning the dysmetic state and bias
estimation equations. They considered both the discrete-tim and the continuous-clas case, but did met
eluaidate the problem of where to evaluate the requisite partial derivatives.

The special case in which the bias b emters Linearly lato the dynamics and observations was studied
carefully by Handel (201 in 1976. Considering only the discrete-time problem, he showed that the separated-
bias algorithm fits iate the W algorithm, except that the matrix V in the correction equation must be
recomputed after the bias-free state update in order to implemet the WU algorithm exactly. He does not
address the issue of whether the additional computer tism m•eded to compute V twice per time-update step
is justifiable in viw of the likelihood that the UP ts not optimal.

A mothod of possibly overcoming any problem that might arise because of nonlinear effects on thq
difference between 6 apd x is to reset the biam computation from time to tim, i.e., by setting a to
I and, simaulteneously b to tern. This operation merely resets the manm. It would be improper to reset
the covariance imntric"a, since the uncertainty in te bias is not changed by resetting the smam. The
resattinj operation can be performed whenever a suitable (ad boa) test reveals that the difference between
fsad a has a significant nonlinear effect.



filter. In the case of a continuous-time process with discrete-time observations, the state estimate
between observations is determined by

f - f(,) + P (34)

where L,. t afe . . .-a (35

vhere P is the covariance matrix. The state estimate is updated at instants t of observation using
;(t) - Z(t) + K(y(t) - (;(t)) (35)

where x(t ) is the optimum estimate of the state jult prior to the observation, obtained by integrating
Eq.(34) oývr the interval [ti,tj ] starting with (t_). The presence of the term 1/2(af/3l)'P in
Eq. (34) distinguishes the secondlolder filter from the ib.

In 1974, Shreve and Hedrick 1211 shoved that the covariance matrix can be propagated in the separated
form, as given in Appendix A, but that the fundamental state separation equation, Eq.(1), does not generally
apply unless the observation equations are linear.

Extension to Noise on Bias-By the manner in which the basic theory was developee in (4] It was apparent
"'hat it would be d-7i-icut to extend the bias separation result to the case in which b is a random

* p o.ess, i~e.,

whers C is white noise. The difficuty was cn•nmfrm* by the aforementioned 1972 analysis of Agee A0d
Turner (53.

Since an absolutely constant blas is a mathematical ide'liation--no physical biav is perfectly constant
for all time--an extension of the biav-separation algorithm, even s an. approximation, would be hiahly
desirable. The need for such an extension was recognised by Tanaka 122 who, in 1975, dv.0oOped an algorithm
for discrete-time system which retains soae of the features of the original Algoritzl but does not completely
decouple the bias calculations from the calculatioa of the dynamic #tate, The possibility of dropping terv*
in Tanka's algorithm whem the noise ou the bias io all might merit attention, but does not seem to have
bees expiored.

Worn t"cently. Iashburn and Mendel (231 have goenraliand the results of (A) in 6v"rel direertoas.
They considered the geniral proceso

a - AX + can u

a* Ca 4 Cox V

with r t M + cus + v

which, m €' reduces to two uncoupled systame in which the suhutate a Is not observed. Thty troaC4e
this problem by assuming the deired optlmum est"iate ; to be of the form

- + Vi (+)

This is a pS"eraliaat.ion of the best separated estimation ftosula, t4q.(I), owing to the oppearsrcv of the
matrix G and the correction term C . For the general cato of 1q.(34), the poorarlied separated
estimation foriela has scarcely say advantate over the cugftnted-statv form that would arise directly from
Sq.(34), tWhen is small. heaver, they Owe shown. twing perturbation oett-ode, that i subnptimsl wstlemtOr
of the totm of %q.(l) (i.., vith C-K1 and c0 ) can be foumd. These results were illustrated In (z23 by a
simple tample which, hawvetr, is not very convincl•gF perhaps it does *at show the results to their best
advantage. Another shortcoming of the 1teshbumm-ftmdeI analysis is that too many tarn are deleted when
r~o . There is no need to inoclud. c In front of I and N In 94.(14) since existlng theory alreadY
poralts the treatment of these tem Vithout the need fot s•pproximatton. Nevertheless. this amalylsi
suWgests the possibility of using perturbation methods as a general method of eXtendiug tho results of t6
separated-blms estimation algotitha.

4, AIILICATION TO FAILUI " TIONTE OI AND •TI"PATION

The difference between the actual obsorvation and its optionm Pstimate, knoon as the re. &dual r or
innovation process. haa known statistical Properties: Usealy

(a) 1(r) * 0 (sero msa)

(iM) Itr(O)r'(t)J - v(t-T) (Uhite nosle of spectral deeslty W)

iDviations of the empirical statistics of the process as obtained from operating data. may serve as
an Indicator that the actual process is not the s as the process for whici, the optimum filter wee designed.
If such deviations start mall but suddenly become largo. this could be evidence that a Change (t.e.. 0
fallure) has taken place in the system. The general use of residuals for fault detection and isoletioo was
suWested it 1971 by Mehra and Peachon (111. A number of investigators subsequentl.' took this suggestion
and developed techniques for estimating changes in bisa, and hence for detecting and correcting of system
failures that may be attributed to such changes.



In the context of failure detection, it is useful to drew a distinction between determining whether
or not a bias is present and estimating i;s size (i.e., magnitude and direction) given (or assuming) that
it is present;. Since an estimated bias b of zero is equivalent to no bias, it is reasonable to believe
that the separated-bias estimation algorithm can be used to advantage for failure detection and estimation.
In 1977 Bellingham and Lees have reported using essentially this procedure for detection of malfunctions in
chemical process control systems. The basic technique and some simulation results are given in (24] and
aad some experismntal results are presented in (251.

A significant limitation of the separated bias algorithm, as developed in 14], is that it rests on the
assumption that the bias is constant from the start of estimation forever after. The consequence of this
assumption is that the bias estimator gain matrix tends to zero (as l/t) and hence the capability of the
estimator to track a bias change that occurs after the estimator is turned on diminishes with time. Since
the theory was developed on the assumption that the bias does not change there is no reason to expect that
the bias estimator would have such a capability, but it does impose a practical itmitation upon using the
basic algorithm without modification. Oue obvious ed-hoe modification would be simply to prevent the bias
estimator gain from going to zero, by assuming, for example, that the uncertainty in the bias cannot be
reduced beyond an arbitrarily specified level. This assumption prevents the bias estimator gain from being
reduced to zero. As has been shown in 113] and [261 constant bias is estimated Vith zero steady state
error. This means that even if the bias changes after the estimator is turned on, if it remains constant
after the change, it will be estimated without error. In fact, if the bias is piecewise-constant, but the
intervals between transitions are widely spaced in time, the bias filter vill track the piecevise-constant
bis moderately well.

But preventing the bias estimator gain from going to zero is an ed-hoc remedy and it ought to be
possible to achieve better performance by using more sophisticated statistical procedures.

Oie procedure for failore detection which has recently been receiving a great doal of attention is the
"generalized likelihood ratio (WUt) technique" developed over the past two decadts on the basis of the
pioneering work of Abraham •ald on sequontial estimation. The direct application of the GCI technique for
estimating Jumps (Including, but in principle not limited to, changes in bias) in dynsele system was
proposed by Villsky avd Jones 127) in 1976. Thtey bowed that the resitual in case of bias change can be
expressed

where v is the bias change to be estimated, w Ia &Aro mean white noise, sod U is a tstri, celculated
in *he Mlt algorithm. And, reasoning from (36) thay establishad a cormetion equation of the fom

where N ' the estimate of x 4malr the hypothsis, of no failure

i t the MA satiate of V

0 , P are matric deflied by tte CLa algorithm.

The CLA stmate at is obtained by proc"ess•i the seque of reid"als. as exploaie4 ti1 2731,

These rmeolts appareotiv oare obta;nsd independent of the ptita results on his& sttmstioe. It tcme
clear eubasqauetly, \mwnr, that the mattln G is tq.(3) it equivalent to 4 it' 1q.01) above sad .44P i;
equivalent to V in t, l). ments a close relattiweht. between th "A method ada the earlier bias
estismation attod up be sect:t both tethots w.- the reidual, of th, bias-'tr filter to obtain an tstimate
of t0 bias ob or v ) sad bqth tes.tjh resultig elstimsat to corttcc the ties-troe estimate. The pracedurae
uaed to obtain tOw4 titate b or v arte 4ifferit, of course. Oto, to.:hq assumption tcht b it a constant
for all tieg. the esttmation equation for b tA liner, sad fairly sitple, vwhreas the CIA algorithm for
obr:aing v is noMnlnear and quits complea. ta cirtles in which the MIA auloritch is popular. it is
geerally felt that the addd coVsleity of the ziorictha gints it edvSAtmlst ti term of superior perfornmace.

Later Is 1176, Chien and Adam 128) pubtished mother fillute detection metho4 which aISo wan the
tesiduals of the bias-tees estimetor. this technique employs the sequetial probebility ratio tnet (Sn?).
which also •t•eves from the orltgil vork of lWid bat differs in moes of ice details from the MA ethod of
Villsky and Jams. C.ee•V ndA Adam observed several deficiencies of the SPIT, nam•ly that the latter did
not accnt for the ltk*A1eod of so failure ebem the estimator is first tor-ed on, and consequently that
a failure,. it it were to Occur, Wvoui octur later. They proptsed s e4 hot correction to the SPaT to overcome
thess defleincies, ad 4deostreted the sptiebhttty of the method to Inertial naVltetion System.

I 1979 (btug and Dum (12f1 returned to the Gil approach of Vilhlaky and Jons. They presented a recursive
aigotritm for implartiag the MA calculatioms sad showed that this aI4orttbm can be interpreted as being
those of a Kelmm filter for estimatig a caomets bias, starting at the tin of occurrence of the jump. The
relateionship between the bias separation method s the CIA oppreoch wee thee ade quits eplicit. (Wi
relticashp was r#eently comsid•e@r further by Cagtayas I 3Q0).

Another Woprseeh to the problem of detecting sad etimating the occurrc and megaltude of trasitions
I sa pieoewise content slign was Introduced by rniedlend In 199 131,321. he underlying idea is to
modal ecaps is the bias a the result of a highly Olamnastae nois itpoo. I.e.,

where v has a proebtility density fundtion that inelude. a delta funtcion at the origin to accost forthe finite prohbab~ity that so transittion In b takes plsca at may gives instant. Using Ivatlable theory

for maxim lihetlh td eastimatio with soegaussim notie, Friedas•a developed an approuimate recursive1algorithm for obtatnilg a maximu litelihood sati to of b . Than, asuing that the taterpretattoa of~~V1 ....... :'t+ ._ 0~ lost•JP tl Ij• l kto extraction of a constant buried to white noise) remitts



valid when the bias is not constant but only piecewise constant, Friedland and Grabousky 1 33] developed a
recursive algorithm for detection of failures in dynamic systems. This algorithm seem computationally
comparable to the Chang-Duan recursive implementation of the GLR algorithm, but a detailed comparison of
the two, which would reveal any signilicant differences, remains to be performed.

5. ADDITIONAL APPLICATIONS

Trajectory Estimation-Our work on separated bias estimation was motivated by our observation that there are
many problem in ihich there are relatively few dynamic state variables but a large number of parameters to
be estimated and that separation of the parameter estimation from the estimation of the dynamic state variabl-!s
would be colaputatiooally advantageous. This was borne out by the experience of Agee and Turner 151 vh,, used
the method in the program they developed for their BIT (Best Estimate of Trajectory) computer pi . _o. They
found, for example, that although there might be only nine dynamic state variables, there might be s iny
"as sixty-six constant parameters in an accurate moil of the sensors used on the White Sauds Missile Range
where the program would be employed. They examined several other techniq.±oa but discarded them because of
numerical difficulties or because they did not produce satisfactory estimates of the bias. They reported
using the algorithm, with the modifications discussed earlier, with both simulated and actual trajectory
data.

We used the bias separation teýdniqoe in our own work on orbit tad satellite mass determination [34]
which was reported in 1970. Although theri vera nvt a inlar naum~er of parameteis to be estimated, the
method was beneficial because our prograu V" t• l 1,e daveleped by modifying an existing program in which no
provision was sade for estimating theose pera te, and which was written in a manner that did not readily
land itself to inreoulug the dimeaiist of the state vector to accommodate the additional state variables.
but it was fairly easy to add the bias estimation capability to the existing program.

Aided-Inertial Navigation--When tl.v alman filtering technique is applied to mixing inertial data vwith other
navlgation date, it to~ Lhat many of the variables to be estimated are actually biases. These include
gyro aMd 4cc erokwtir V. ("drift rates") scale factor uncertainties, misalignment angles, and uncertain
parameters is zia,•viazzlou aid such as doppler scale factor and boresight errors. The bias separation
teschnlo xv herein woul•d b* a jopriate for this 4pplliatlon. Its use in this context is suggested
by Fier,41 [iTi and alluced to by Sash et al (36) in connection with testing of inertial navigation systems
and campoewts.

Calibratioo--Al*o in connection with inertial navlgationas. well as in other applications. it ts necessary
to th rin., ihe ia* vector bi to a system defined by Eqs.(3) and (4). AD c*paoumt estimate of the state
a is oft-atnot reguirod is such cases. It Is clear that the atructurl of Flo. 1 can be used to obtain 4n

* . optisum. eltinae b , and the correction term VS can be omitted if x it not required. This applicat ton
v wa deacribe4 by Friolamd (3?) in 1977 In which the mothod wvs ilhuxtrat#d by an example of the calibration
(i.e., datQVWinatioo Of drift ?Stt$ VWd S-depftdftt errOr C-OstfciVnta) Of a two-a~id tyro.

A by-product of the analysis of 1171 was an alternate represetatiott of the bias ewitimstion equation.
' .(I0). it was shown that the bias b can be expremesd as the product of the bAs eoveriAce astril Pb
as obtatind In to..(25) with a vector q Ahich is obtaload b-i integratW4 thr veighted rtsoduala, in
matsaeauaal tuger. it wet #how that

This Noe of the bias stiomation equation It rea4dly vtif ted by substitutilg thoe evsprilo for 6 and
its 4erivative into 4q.(10). taking lot* accimat that P to is Iive" by 1q.(M$).

This fare of the calibtratio equation is advantag•eus wVhf an estioate of 6 is needed only at the
"e4 of a timed ealibratio, taterval. to this t.oeos s aece"ary only to detuneMas tCh vector q , by
.UserIcal inte4ratioQ of the Veighted rT.1dAl U'E T- Then at th eW"d of the ptrdetermined calbratio0
time T the estlmato L obtainad by mltiplyinj q(T ) by the coverlaoce asirti Pb(T ) . It is thu
e.ot oec•t•ary to stoar P (or other Instants of tim. Thli results 1I a coptiderable redution in
computer *torage rtquireLe ts over what oilgt be r tuited to Compute 6 usig Z4.0(0).

hras sq.(25) it io readily determined that

b t

In the aboe of a prior& infotmatimon o b V( 0 sad Pb(t) M L .Iet L n t havan
levers. for ome value of t L1 order that b Is; be detrah d. in met case it Is 00ceesary to
istroduco motion itor the dymmeic sarest" I.e., to make C(t) 0m (t) time-varying so an to produce a
metrl, U(t) . deflnd by Eq. (12) which rsults tn a nonsingutar Li matri fot smoe value of time, It to
aftrid to I3?) that *i. Optimal choice of 8 would be suth that L(t) is a diag• al matrcL v•hch is a

t'aralteu orth omality requitemat ,am the alents of the matris a

S|oee4=Lk Q4*t•0-t .is ofte aecessary to deal with biase to clooed-loop syste-. Fortuately thebias-oepratloa teebmique Isa aplicble to closed loop systeaw a veil as 0e-icop rTt**,,. 1%is vat

deaonstrated by Tether, Lee. at al (11,17) in 1972, toa comectioo vith their studlle of ttorot u ted
electric power system. Sather mue of the separated-bias etimatioa te*4A4u4 in ecoc-tizo with
decemtrolitd control of power system was reported by Veekateaearlu and ahialsabis 138) in 1977. fte
use of this technique by ISlliegham ad Lots 124,.20 in commection with closed-lo control of chasisl
processes vas discussed above.
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CONCLUSIONS

The pervasiveness of Kalman-Bucy filtering theory in so many aspects of modern control and estimation
has motivated a great deal of research directed toward making the theory easier to use. The bias separation
method reviewed in this paper is a result of this type of research. One would hope that this, and others
in the same spirit, enhance the practical utility of the basic theory.

The bias-separation technique, originally presented in 1969, and subsequently extended in various
directions, has a variety of practical applications some of which were described here. But a number of
issues regarding this technique remain and merit further investigation. We have already remarked that thequestion of how the theory may be extended to cover the case in which the bias is not deterministic is not

completely settled; the negative result of Agee and Turner counters the formal separation property used
in the derivation presented in Section 2 of this paper. Another issue that is not fully resolved is the
proper extension to nonlinear systems.

Another area of investigation that might merit further attention is the relationship between the
bias separation method discussed in this paper to other methods of simplifying the Kalman filter calculations.
Some work in this direction has already been done. In 1974, Samant and Sorenson [39] compared the bias
separation method of this paper with an order-reduction method in which only a portion of the state-vector
is optimally estimated. Both the Samant and Sorenson algorithm and the bias separation algorithm are optimum
under the same set of assumptions and hence ought to give the same results. But there are differences in
computational efficiency as measured in storage and number of operations. Samant and Sozenson conclude that
their algorithm requires a larger number of operations, and is thus less efficient in terms of speed, but
that it may be more efficient in terms of storage. In 1977, Chang and Dunn [40] studied the errors caused
by omitting some state variables from the model used in the desin of theestimator. If the states ojitted
are biases then, by virtue of Eq.(1) the error is given by e - x - x = Vb . Since V and the statistics
of 6 arj known, the statistical properties of the error due to omission oý b can readily be determined.
Chang and Dunn, however, consider a more general case than is represented by our model as given by Eq.(3)ý
Additional studies of these approximation methods miaht be worthwhile,

Another investigation that might be pursued is to determine the implications of the dual of the bias-
separation algorithm in regaid to deterministic optimum control, The mathematical dualit7 betwaee determin-
istic (linear, quadratic) optimum contr•ol and Kalman-Bucy filtering is well kncon. Hence the bian-separation
method ought to have a dual in optimum control and this dual might have interesting properties with
practical application.

'With regard to applications, we see no reason why any problem in which biases are treated by augmenting
the state vector cannot be treated by the method of this paper. The algorithm is entively straightforward.
In preparing this paper, we have endeavored to review all the applications that have been described in
archival journals, but there was no feasible method of covering applications described in other literature
such as technical reports issued tuider government contracts, etc., except those that were brought to our
attention, such as the report of Agee and Turner [5], or a recent report by W. E. Hall, at al [41] deacribing
an application to rotorcraft parameter identification. We would be gr tefnl to receive descriptions of
additional applicationa that may be known to readers of this paper.
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valid when the bias is not constant but only piecewise constant, Friedland and Grabousky [ 33] developed a
recursive algorithm for detection of failures in dynamic systems. This algorithm seems computationally
comparable to the Cheng-Dunn recursive implementation of the GLR algorithm, but a detailed comparison of
the two, which would reveal any significant differences, remains to be performed.

5. ADDITIONAL APPLICATIONS

Trajectory Eatimaton-Our work on separated bias estimation was motivated by our observation that there are
many problems in which there are relatively few dynamic state variables but a large number of parameters to
be estimated and that separation of the parameter estimation from the estimation of the dynamic state variables
would be computationally advantageous. This was borne out by the experience of Agee and Turner [5] who used
the method in the program they developed for their BET (Best Estimate of Trajectory) computer program. They
found, for example, that although there might be only nine dynamic state variables, there might be as many
as sixty-six constant parameters in an accurate model of the sensors used on the White Sands Missile Range
where the program would be employed. They examined several other techniques but discarded them because of
numerical difficulties or because they did not produce satisfactory estimates of the bias. They reported
using the algorithm, with the modifications discussed earlier, with both simulated and actual trajectory
data.

We used the bias separation technique in our own work on orbit and satellite mass determination [34]
which was reported in 1970. Although there were not a large number of parameters to be estimated, the
method was beneficial because our program was to be developed by modifying an existing program in which no
provision was made for estimating these parameters, and which was written in a manner that did not readily
lend itself to increasing the dimension of the state vector to accomodate the additional state variables.
But it was fairly easy to add the bias estimation capability to the existing program.

Aided-Inertial Ueviuation--h'heo the Kalman filteving technilue is applied tu mixfng Inertial data with other
nwvigation data, it ts found that many of the varlablen to be esa .mated arc actvally biases- These include
gyro and oceleroemter tias ("%.rift rates") scale factor uncertaintien, aiaaltgnment angles, and uncertain
parameters in the nevigatior aid such as doppler scale factor and bore3ight errors. The bias separation
technoque described herein would be appropriate for this application. Itt use in this co.itext is suggested
b" Farrell (35] Pnd alluded to by Nash #t &1 (361 in cuumeccioo with testing of irertial navigation systems
and compoents.

Calibration--Also in cotaecrin with in.!rtial navigation, as well as in other applications, it is necessary
to determine the bias vector ', in a system defined by Eqs.(3) and (4). An optioum eto'-ate of the state
x is often not required in such cases, It is clear that the structur2 of Vig. I can at used to obtain an
optiLum estimate b , and the correction term Vb can be omt.:_ed if x ts not required. This application
was described by 7redland 1;7j in 1977 in which the method was illustrated by an e.,ample of the calibration
(f.e., detoraination of drift rates and &-dependent error cewfficlents) of a '-alis gyro.

A by-product of the analysis of 1171 was an alte.rnase r~preeontation of the b1as etfration equatiou,
Kq.(lO,, It W4s shown that the blue b can be epreossed as the product of the bi&- t.ovariancs %ocrix Pb
as obtained in Eq. (25) with a vector q which is obtained by lntetret iag the .wightad roidutals. In
mathematical terms. it was shown that

where - M'R'r (39)

This form of the bias estimation equation is readily verified by substituting the expression for • and
its derivative Lnto Eq.(10), taking into account that Pb i given by Eq.(25).

This form of the calibration equation is advantageous when an estimate of b is needed only at the
end of a fixed calibration interval. In this case IrI# necessary only to detemins the vector A , by
numerical integration of the weithted residual H'I r. Than at the and of the predetermined calibration
time T the atrimatn I's obtained by multiplying q(T ) by the eovarlance matrix P (T ) . It is thus
not neclsasry to store P for other Instants of tlwmc This resultt a coesiderablk rudtdtion in
computer storage requiremJunto over what might be required uc comute b using iq.(lO).

From ,q.(2$) it is readily determined that

•b(t) (Pi(0) + L(t)]

where t

L(t) - H'(T)t'H(T)dt

In the absence of a priori information on b P (0) -0 and Pb W C t) Hone L must have an
inverse for some value of t in order that b tan be deteranead. In mot cases it is neeeseary to
introduce motion into the dynamic system, i.e., to make C(t) and D(W) tims-varying so as to produce a
matrix H(t) , defined by Eq.(12) which results in a nonasingular L matri for som value of time. It is
argued in ( 37] that an optimal choice of H would be such that L(t) is a dislaoLa watrlx which Us a

, generalized orthogonality requirement on the elements of the matrim H

Closed-Loup Control--It is often nAcessary to deal with biases in cloued-loop systems. fortmately thrh
bias-separation echnique is applicable to closed loop system as well as open-loop system. This was
demonstrated by Tacker. Lee, at al (16,171 in 1972. in counection with their studies of interconnected
eleatric power systems. Another use of the separated-bias estimation technique in connection with
decentralized control of power system vas reported by Venkateeswarlu and Nahalenabia 138) in 19M77 The
use of this technique by Bellingham and Lees (24,25] in connection with closed-loop control of chemical
processes was discussed r.bove.
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APPENDIX A
BIAS SEPARATION THEORY FOR DISCRETE-TIME SYSTEMS

Process and Observation Models

x(n+l) = *(n)x(n) + B(n)b + u(n)

y(n) - C(n)x(n) + D(n)b + v(n)

where b - constant (to be determined)

E[u(n)u'(k)] = Q(n)6k E[v(n)v'(k)] n Rndnk E[u(n)v'(k)] - 0

Bias-Separated Filter

x(n) = x(n) + V(n)b(n)

where x(n) - optimum estimate corrected for bias

x(n) - bias-free estimate after processing observation y(n)

b(n) - optimum estimate of bias

Bias-Free Filter

x(n) - i(n) + (n)4F(n)

where R(n) = ((n-lxn-l) - predicted state of bias-free filter

i(n) = y(n) - C(n)i(n) - bias-free residual

K(n) = bias-free filter gain matrix

Bias Estimator

b(n) - b(n-l) + Ib(n)[r(n) - H(n)b(n-l)]

where H(n) - C(n)U(n) 4 D(n)

Kb(n) = bias estimator gain matrix

Matrix Propagation Equations

Bias Free Gain: K(n) - P(n)C(n)[C(n)P(n)C(n) + R(n)]

Prior Covariance: P(n+l) = *(n)P(n)0'(n) + Q(n)

Posterior Covariance: P(n) = (I - K(n)C(n)]P(n)

-1
Bias Gain: -(n) M(n+l)H(n)R (n)

Bias Covariance: M1 (n+l) M-l(n) + H'(n)[C(n)P(n)C'(n) + R(n)]-

U(n+l) =(n)V(n) + B(n)

V(n) W U(n) - K(n)H(n)
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COMPARISONS OF NONLINEAR FILTERS FOR
SYSTEMS WITH NON-NEGLIGIBLE NONLINEARITIES

by

Dr. D. F. Liang
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SUMM(ARY

This paper examines the structural differences and performance characteristics of several distinct
estimation algorithms, as applied to some practical continuous and discrete-time state estimation problems.
The extensive simulation results presented, indicate that when noise inputs are not "too small" and
appropriate a priori estimates are available, the extended Kalman filter can be expected to perform
satisfactorily. When nonlinear effects are significant, the realizable minimum variance filter is
remarkably superior to any other filter investigated. When the level of noise inputs are large enough to
effectively cover the effects of nonlinearities, no particular filter can be said to be consistently
superior to any other filter.
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SECTION 1

INTRODUCTION

One practical problem of great importance in control theory is the estimation of the state of a
physical system, on the basis of noisy measurements. For linear systems with additive white noise the
procedure for obtaining optimal unbiased minimum variance estimates was first formulated by Kalman and
BUcy [1], and it has been successfully applied to numerous engineering and scientific problems.

In contrast to this, truly optimal nonlinear estimation algorithms have not been practically
implementable, since it requires an infinite dimensional system to realize. Therefore, considerable
attention has been devoted to methods of approximating the a poster.iori density functions based on
perturbations relative to a prescribed reference. The majority of these techniques (2-4) employ the Taylor's
series expansions of the dynamic and measurement nonlinearities, neglecting second or higher-order terms.

As long as the second-order (and higher-order) terms in the perturbation equations are negligible.
the application of first-order extended Kalman filters (Wyp) has been found to yield valid and satisfactory
results. If nonlinearities are significant, however, first-order approximations of the system equations are
inadequate and the ZKFs tend to be unstable and exhibit divergent behaviour. In some 'of these cases,
Kushner (51 and Athens at al (6] reported that filter performance can be substantially improved by local
iterations or the inclusion of second-order effects. On the other hand, Schvarts and Steer (7] on the basis
of their simulation study, concluded that the added computational complexity of several second-order filters
may not provide useful improvements relative to the ZK?. In Kushner's simulation (5) of the Van der Pol's
equation, he reported that the implamentation of a modified Gaussian scond-order f e.
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filter from diverging. Jazwinski (8] in his textbook, stated that it is questionable whether higher-order
approximations would improve performance in cases where the extended Kalman filter does not work at all
(diverges).

Attempting to alleviate some of the difficulties of the Taylor series expansion approach,
Stinahara (9] proposed to replace nonlinear dynamic functions by quasi-linear functions via statistically
optimized approximation. His results and also those of Austin and Leondes (10] indicate that this approach
may be more accurate than those of Taylor series expansions.

Recently, Liang and Christensen [11] derived a realizable minimum variance estimation algorithm
for nonlinear continuous systems using the matrix minimum principle together with the Kolmogorov and
Kushner's equations. They also applied the matrix minimum principal to derive nonlinear estimation algorithms
(12] for discrete-time nonlinear time-delayed systems with measurements corrupted by white noise and non-white

F' noise processes. They noted that for systems with polynomial, product-type or state-dependent sinusoidal
nonlinearities [13], their proposed minimum variance algorithms can be practically realized without the need
of approximation under the assumption that the estimation errors are Gaussian.

Since it is difficult to theoretically assess the virtues of any one nonlinear filter vis-a-vis
the others, it is necessary to conduct extensive numerical simulations and tests to provide meaningful
comparisons between the performance characteristics of the filters. Simulations of various nonlinear filters
not only could provide considerable insight into the stability behaviour of some of these filters, but also
provide ad hoc guidelines to establish situations in which specific nonlinear algorithms would have
demonstrable advantages.

Li In Section 2, we deal with state estimation problems of continuous-time nonlinear dynamic systems.
Various structures of dynamic coutinuous-time finite dimensional nonlinear filter are tabulated. Two types
of dynamic systems with non-negligible nonlinearities were selected and simulated on a digital computer.
Extensive simulation results accompanied with discussion, are presented to compare the performance behavior
of these filters.

In Section 3, we deal with state estimation problems of discrete-tim. nonlinear systems. Section
3.1 presents a brief sumary of Liang and Christensen's nonlinear discrete-time filtering algorithm (12].
Section 3.2 applies their minimum variance filtering algorithm (NVV) to a general class of discrete-time
state estimation problems, where the measurement model and/or system model contains scond-order
nonlinearities. Simulation results accompanied by discussion are presented in Section 3.3 to compare the
performance bahavior of the MVP and EKF.

SC1TION 2

COPARI QNS o fCO-NTNMuoS-TI(E

2*ývw!A 1ILTERS

2.1 INTRODUCTION

Consider a class of nonlinear systems described by the stochastic differential equation ($I

! -U- (t), t1 * OWx(t), t1 w(t) (2.1)

with measuraent given by

2(t) - hlx(t). t) * v(W) (2.2)

Where x(t) and t(t) are the n-dimensioal stat* and 0-divonsional measure•ent vectors, f aMn h are,
respectively, o- and s-dimeusLonal wocliner vector valued functions, and 0 1s a vector valued matrix.

The random vectors w(t) sad v(t) are statistically independent ar-omean white Gaussian noise
processes such that for all t, A t°

Covyw(t), W(M)) YW(t) 6(4-0)

Cov(v(t), v() - fv(t) (t-O)

and C"M(v(t), V(M)I - 0

Where d(.) is the ODItc delta ftACCaLO&, Id the Verianca. t) w(t) sad Y,(t) atre WoD-C tiV* defiit* sad

positive definite, respectively.

The itiaitl state vector %(to) - ° isa sro-asa Ga4ussian rcmdm ptro, Ladapendat of w(t)

and v(W) for t > to with a positive defontat variance matrix

Var(aWot), *(to)} - V lto)

tI the desimL of soilinar Uilter., a mber of differest oeAct mad approxmalte mialimear state
Ad errot-variaMe d qUmAtosV have bes proposed is the literature (rt ,co1I. ]. I• aritive "Art*os.

ve"tow structueis of these amlinemar tltatte *oe taoblated 1A Table 2.1.
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TABLE 2.1 VARIOUS EXACT AND APPROXIMATE NONLINEAR FILTERS

Message Model: i(t) - f[x(t),t] + G[x(t),tNw(t)

Measuorement Model: z(t) - h[x(t),t] + v(t)

FILTER NOMENCLATURE FILTER DYAMICS ERROR-VARIANCE EQUATIONS

Extended KaNman Filter i - f(R,t) + V h aT(2.0 M - t) a T 9- + G[Vtl ~G T 12]0x 32 at x 32 w

IV-t' -h (A")( -(t ) - V (2t) -1 (h(-,t) (
at v at '

Modiiedmintuftf(2,) +1 a f_____Modified Mini 2 "f(2,t) 2 -- Right-hand-side of equation (B)
Variance Filter at

v +

- h(gt) 2

Trunicated Hinia Sow as equation (C) V Right-hand-oide of equation (5)
Verlance Filter -1'

"QuauI-momeut mintam Same equation (C) V - Itight-hand-side of equation (3)

Firlter filter)lt~ ~t ~i~4R~)1

- ,(CT t, t( ,I T av h - v*)}-(

*2t hT a G i. tT 'I

h 0 5420t t9tre*.r C~uattou tang I Vo

(V,2i (IE r r~

2 ~2it 2
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filters, the only difference is the error-forcing term that appears in the error-variance equations. In
the quasi-moment filter it enters with a plus sign, in the truncated filter that term enters with a minus
sign and a factor of one-half, and the modified minimum variance filter is a compromise betweun the
truncated and the quasi-moment filters. In comparing the stochastic linearization filter with the minimum
variance nonlinear filter, the later has obviously preserved the error forcing term. On the other hand,
comparing the first four linearized filters with the last two filters, the essential differences are due to
approximations made of expectations of f(x), ih(x) and h(x). It is also noteworthy to mention that when
h(x) is linear, the modified, the truncated and the quasi-moment minimum variance filters are identical,
and the minimum variance filter is identical to the stochastic linearization filter.

In order to compare the performance characteristics of these nonlinear filters, two different
types of dynamic systems with non-negligible nonlinearities were selected, the stochastic equations were
transformed to Straconovich's forms [8] and then simulated on a digital computer. The integration scheme
was performed by the minimum-error-bound fourth-order Runge-Kutta method [141.

2.2 NONLINEAR FILTERS FOR PHASE-LOCK LOOP

In this section, we deal vith the design of nonlinear filters for a two dimensional phase-lock
loop. This phase detection problem is of major technological importance and widely knowm in satellite
communication. The dynamic model selected consists of phase and phase rate with all the plant noise
additive to the phase rate only. Naely:

-x1 2

the measurement model is represented as:

I -Cos x v1

82 $ in X1 + V2

Whr V. V and v are zero ýean white Gausaian noise procesves, vith vartant"a 7V and 'F respectively.

Filtering equations for the exteaded Kaloav filter (W), stochastic lineariastiou filter (SWI)
and steimum variance filter (1VF) art presueted aa follows:

V gntended Kalsao F~ilter

-'1
.Z vc o 11 V I.l (f 1

2 • V12 aim (a coo V coBo) ( 0 1a

12 1 ea E 2  v ¥- 1os2*

sIt 1 V222 Vi V 12 V 1  1 ii V2 v *k 1

It1 1 12 ~ 1  1~ Vi~ It V- Cos I
V1W0 - 1p252 V

•-tz a cas t (a• Zl et i o x ~
v 4e (as K Cos Io t (S a-t&

2 l V 12 V s 1 9 I V et V 11) t Vw C"

2 -1 2 2

It " VI -: V is V 2 9 116 V1 V- U a-

-1 $•is ! -Vl I2 • g'e 2 -tC

UVl"V•I, 12V• VL, IS V;LL In "LI V12I -v •e

v2



Minimum Variance Filter

The equations for 2 and are identicel with those of the S.L.F., whereas the error variance
1 2

equations have the following terms in addition to those of the S.L.F:

For V d ad-V 2 EF

For 12dd -V V E F where F- Tf1  ( + 1-icos X1 (z1- E cos 2 l) vf sin2
R (z2 - E sin 2

9)

12r add 2v 1 2 1v12

•2
For V2 2 add -V E F

22 12

A careful examination of these equations indicates that the major difference between the EKF and
SLF is due to the approximation made of E - exp (- V11 /2). The effect of this term is accentuated when the

me,-surement residual is significant, and the error variances are large. The major differeuce between the
SLF and HVF is due to the error forcing terms which appear in the error variance equations. The effect of
this term in proportion to all the other terms is accentuated, when V is small and the measurement

residual is significant. The measurement residual is significant when the a pr•'.ori state estimates are
significantly different from the true values. It is also affected by the level of noise inputs.

To compare the performance characteristics of these three filters, their filtering equations were
simulated on a digital computer. Each AV/rutput response presented in Figures 2.1 to 2.8 represents the
average results of 5 simulation runs, that are representative of many other simulation runs not presented
in this paper.

Figures 2.1 and 2.2 show the effects of initial state estimates for the following two sets of
prior statistic.:

Figure 1: 5•(O) -(O) 20. V- V 0.01, V11 (0) V• (0) 6.01 and V1 ,(O) 0
F i u r i t( 0 -i O 2 v( 0 ) 1 .12

Figure 2: N(0) X(0) - 2.0. v VV 0.01, and V (0) •0 ) 2(0) - (0) 1,0

Whe V and Ya re increaedW to 0.1. imulsation results for sliptlAr ciontttoAs uere obtainod and prQesnted

in Fitur00 2.3 dand 2.4.

From Figure. 2.1 and 2.4, it io apptrovt that the pvrforvsnce of the F•K and Wi. are aloost
ident (irA to that of the XMT for small oise varaa,•eo vith large error-variance and %+" . prtp'p state
estimate* are c~lose to the true values. Utisvtter When fr.2 OtAte pstteatoo are oigtitfianfly d-1f1#?*Tq
from the true values, aNd ihitial Orror-veria s are ovor-ottkilktic• , the perforwAnCe vht4 .r tottiics of

both the EKY and SLY Are significantly inferior to thoge of tho 107. ThPewav iuna resulta aegee well-
with wha•tV40 thIecetrally eseted. It it Also Clear thAt the NVY itsi(gnifit"atly v.'re leeqso#1iivt to
the selectio of 't't;4r etate estitates nd initial .error-VarTioae.

Nor ftise variancee of One o it.•qootpts of the*e three filter* are preetd tn rlguoe- v ,e
and 2.6. It it laterestiog to obverve that uhe the #oltte inot lowevl are relatlvoiy high o&Pard to. the

ffsecto of nliearties. the VAF is as Rood as aay other #NInAr fitlter inv#stIttatdo. "d no partti-alar
filter Ca4 he said to be conis0tently spePrior to say other nonliner filter. This app4ts to be ltatttueMly
okbvie.. boemalto lirge noise imput'. can effectively 'rowor" qwegletted oolnaii

On the other hand, vhen the roise variancos are reduved to 0.001. both the MYv, a4d •LV divtoer-d,
S wil tht IY can troek the ttrval esI. of the pha** "1 phase rate sLasaingY well. TPIcel salisotia

* results (of scate of these runs areV presented In 1plguto~o 2.? 4an 2.4. uawevetr it 44"14 * ae ntfd that if
the initial *rror-varianee" are 1.0, the noise varttes are furth" reduced to 0.dk.h. nd U"n the Initial.
state estliatsoa are fat from the ttw vatl** of tCh 4ysto. states. even the AVY Wuld diverge as Ohets h".
done so Wh soe•tr. ft It one were to drstically reduce the initial vrtiances4 O"Kationslly the W4VC
and also the UTV and Wi vmold all be stable agoin, with the MIT still Vp foMIr4J ht-tler than thf otuhers.
this iladi-ates that in soe ppltcations of noolteor filters, the sVstem desilget east be 4eAutiop n .ot
to s.viet the tfltl1 var~aaces to be too l•rgi.

2.3 ) so •t .. iltet. fr (t .. ert Pol'e 0s.sCI3..tg.

CnlId&n a *tetet atiatJ VrOproblet of the V&# doft t0l 'S OIK If lao desCribed by

2 2

with Samrmtet ilas by

.1 1 P. .

This e*maIse as .. lected set only bWnauas of its ttlrdmotdetr botliaarittiee, but also that

guabmar had prtvtously shown that fot this stAte estimatiOn pr PtO1 eOeW Vith a linear massurems"t Well
the listarited filter Vas eatrasely unstable amd Uea ct"etely ue*less Vithir a fraction of a time unit.
tas the impolamntAtlloa of a Causaels secomd-ordat filtet pioved to be unstable, Ithrofore. In thWe study.
uw are msly Coacegrad with the ""arlsoo of a talin variarnc ter vith a stochastti li4marisatlio
fllt.t, ,



The structural ul .erence between these two filters is mainly due to the preservation of error
forcing terus in the W"~. Namely:

2 1
ForV the additional term is -. 6 V i T_ fz -

1111 1 v

For V the additional term is -0.6 V 2 R _I [z-2
22 12 [1

For V the additional term is -0.*6 V V R T -[z E12 11 12 1 v

whedre f-2 -0.1(9' + U V

Therefore, it can be expected that the difference hetween the SLF and MV? will be accentuated whenc-ver the

values of initial error-variances and 2 are increased and also when the measurement residual ia significant.

To verify this, some typical results of extensive simulations are presented in Figures 2.9 to
2.13. Here, we have

21 ()- x 1(0) -2.0, 2 2(0) -x 2(0) -0.0 and V 12 (0) - 0.0

2.12 illustrate the effects of noise variances and initial onerror-variancts on the rerformance- of the SLF
and MV?. From these, it Is evident that when initial error-variances are very small, and the
a rzfr' estimates are reasonably accurate. the performance characteristics of the SLY and 14VF are almost
id entical, with the SLY having a slightly smaller phase-shift. However, as expected from tjieoretical
c.onsiderations, for Increusing values of initial errov-varieonces and noise variances, the difference
between the performa~mce of the SLY and NVF becomes more alguificatnt. Here, quite :onaistenitly. the XVF to
far more capable than the SLY tit tracking the true values of the states and the former io also such less
"aseitive to these velectioos of Initial error-variances.

To further illustrate the difference In filter response.*. Figure 2.13 present& '.he filter state
e#tieates, tfe errors of state estimates end their onet sigaw error boun"s for the following statistic*:

Vv- 0.1. V11 to) - V 2 - 0.S ndV 2 0 - 0

The PoOrer per~ooisaue of the SLY to evidently due to its sjptimistic estimation of error bourds.

Figure 2.14a to prowonted to demonstrate the sevore effcrt* of initial *tate Oestimatos artd
* rrar-variancoa on the performArice of the $IF en4 XV?. It 1~A quitev evident th~at thew iystem 4esigneor must
be Careful in his selectloftoof appropriatit 11tial ero-aine. Tho vuorisive simulation eaptrie"VV
of tho author sUggests that in %h# d~ssig of tho SLY su4 MVP for iiynsolc systems with nonalil

* ~oftliooaritistflAt Us important not to use oel-vsmtIe nitial farror-vartamcevs Siinceto r-~tne
that wee. too lefrge 1coed tutsoiselvy da"W the *Yatem dyMMIini and KAI&" "ain matrix to rojiet $JAW of
tho valtable feaaurimmat data. tapt*.

a * 1)-tql).h *ts(h), klv(k)(3)

v~ek m.6~temmteeapemetam by00k - hts(h), &I *~h VW.

wheT, the #tat* a so 00 a-V*ttor; the 06saaresbt a an in-Vattar; the stAt. Wnite SeqUIeme V a* r-"eCtot;
the 0esAsursst tWise V " Z-w~eear; 12 Is a a-inse atst*-44POmdut t, a r isattrls t MWd b are.

IMe tabLce weetoresV sSAW and o() re lad"Qaa t e.-. Whitot cawealne ."esuee . tat %*Icb

yvw"'(w- V~Ch w o&j03

(V (35) p)-VVk

%1 (v(h)V Wj) - 0 M

tot el*11 ee 1 t "ad JS Owner t~. alse the WWp~ttetift OpfertID CoaditlOmad em1(h) - X(0)), g(1),
010 (S). low 444 V' s.tie nI deI; t-aPositive deflulte matrices, respoetlwely.

Ath discrete-tine ?tleabl'sb Minimum vartsnce Uffbika~d cetint.t it~h a Ilk * 1) a1te sW tate
vectar a(k * 1) Ual he.. derived by Lia ad Chtistemeea 112). Stiuca tbathear inte will he repantedly

peed throughesut tils sager, they at* stated bgre tat quick trefereace.
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Lama 1: The minimum variance estimate of x(k + 1) is given by the following set of equations:

R(k + i/k + 1) - R(k + I/k) + K.,÷ {z(k + 1) - h[x(k + l),k + lik)f (3.6)

where we have:

- (k + I/k) - f(x(k).k/k] - E. 5(f(x(k),kI/k} (3.7)

Kk]., - ,kR(k l/+,)hj[x(k - l)/kl}(*v (k + 1) + Ekthfx(k + 1)/ki T(x(k + 1)l/k))-1 (3.8)

V5(k ÷ l/k) - Ek(i[x(k) k/k jf T( x'k).k/k]} + G(x(k),kh'f(k)GT[x(k),k(

and
V-(k * Ilk + 1) - V-(k + 1/k) - Kk÷I Ek(x(k + W)/k xT(k + I/A)} (3.10)

X X
In order to provide an insight into the structure of Liang and Christensen's realizable nonlinear

filtering algorithm, in the next section their filtering algorithms will be applied to estimate the states
of a specific class of -nlinear discrete-time systems.

3.2 Nonlinear Systami with Quadratic Measurement Nonlinearities

In the special case ol the state estimation problem. for discrete-time dyzamic systems described
by equation (3.1) with measurements represented by(

where represents a set of m svwwtric a x n matrices. '1. 1).. .... 4 denote the natural basis vectors:

jI" LI' •" -!...Jn" (3.12)
fI°10

Then eqlatioas (3.6) to (3.8) can easi tly be to be:
*¢.zk ) e• zw.•z•k ) (•• 4 • I(k* l/b)r3  1•(k * 1/k)

.k Ilk 1) Aik I/k) , a(k * '1)- a Tk " 4(k 14)
1-1 0.13)

' I i <

2k Ilk) -ftx(k). k/, : (

Vk ""%-l

l .... .t I R (k I

I/k)kUIlk)( 2 0 Q (k Ilk

I-I
C --1

gfet 4 V,(k 46( Ilit.)1 a'

V*t 1)- - .16)

41 91 1k l

rt*6"s .aa-st . faarwvtf.M Mtao

Iba qClf (34 §£19 4 tr~tV1.Ntf l.CdW
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and n
V( Itk) - if, + 2 Z 0i 1T(k/k)C•jVj(k/k)-

X k 1-1

T .[0 k + 2 q w Tkk~l vk
q- I q

E 2 trace [C V(k/k)Gý V (k/k)]O
iq-I q

It should be noted that for state estimation problems with measurements containing quadratic
functions of the states, the realizable nonlinear estimation algorithms pre.ented here are numerically
stable. In the special case chat both the message and measurement models consist of some quadratic
functions of the states, the results presented here are identi sl to those derived by H.W. Sorenson [15].

3.3 Simulation Results and DMicussions

3.3.1 State and ?arameter Estimation with Quadratit Measurement

In order to test and compare the performance characteristics of the mininum variance estimator
with those of the extende,1 Kalman filter, two simple state and parameter estimation problems were selected.
The first one considered here is repreiented by the following equations:

x1 (k + 1) x X1 (k) - XI(k) x 2 (k) + wI

x2 (k + 1) x 2 (k) + w2

z(k) x-IX(k) x 2 (k) + v

where noise variances of v , vw and w2 are respectively, T , T and 2

The dynamic structures of the minimum variance filter and the extended Kalman filter are

represented in the following equations:

Extended Kalman Filter Additional Terms for MVF

I. 1 (k + 1/k) 1 1 (k) - i 1 (k) i 2 (k) - V12 (k)

2. 22 (k + 1/k) 2 2 (k) None

3. V(k + 1/k) - (k + 1/k) V(k/k) $T(k + 1/k) + Q + JGM

where( + + 1/k) -91(k + l/k) where 1 f and J - V 2 (k) + Vll(k)V2(k)

-• 4 K M ~ + 1/k)l G-M -No2 2

T 0

and Q -

0 F
w 2

4. K -V(k + l/k)H T W-1  Noiie

where i- [92 (k + 1/k) 91 (k + 1/k)]

5 W- H V(k + l/k)HT + F + V 2(k + 1/k) + V (k + i/k)V2(k + 1/k)
S12 U 2 22

6. V(k + 1) - (I - KH)V(k + l/k)(I - KH)T + K T KT + K[V 2(k + 1/k) + V (k + 1/k)V2(k + 1/k)IKT
LV12 k V11( l) 22(

.:-7. 1- II(k + I/k)12 (k + 1/k) + V1 2 (k + l/k)

8" 's (k + 1)- ((k + I/k) + K(s - ) None
2+

It is apparent that the major difference between the Eli and 14VF is due to the terms V2 + V 1 V22

and V 12  : Tht'-efore it can Le e~rpected thaL the performance characteristics of these two filters will be

greatly affected by the seleocions of initial variances, in particular, the choice of V1 2 (0). In order

to compare the performance of these two filters, some typical results of extensive simulations are presentod
in Figures 3.1 to 3.6. Here, each of the graphs presented repreients the average results of 150 simulation

Figure 1 shows the 4V~filter output responses for perfect a prioyi initial state estimates, with
,uall noise variances and initial error-variances. For this particular case it is obvious that the MVF is
only marginally better than the Z1F.

Figure 3.2 shows the tefqcts of initial state estimates on filter performance for

x'(O) - x 2 (0) - 7.0, V1 I(0) - V 1 2 (0) - V 0.01, and Tv - Tw - 0.01

When the initial *rror-variances are increased to the value of 1.0, simulation results for similar conditions
are shown in Figure 3.3, while AItu,• 3.4 shovs their estimator errors and one saigm error bounds. When
4iaulation results of Figures 3.2 and 3.3 ae compared with the outputs of the true states presented in
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Figure 3.1(a), it is evident that the W.T is much more insensitive to 'he choice f Initial stere
estimates. Moreover, it is observed that when the appropriato !,. lue' of It ate e%.•imatt, are made

* available, the EKF is slightly better than the XVF. But whet; the a ":'..,r; state estimates are far
different from the true values of system states, the )VF is -uch superior than t',e 4Y7 for toth large
and small initial variances. However, when the noise variances are' increase4, the gap betueen the MVF and
LKF gradually diminishes. For these cases, the EUr ýerforms aLnst as w•r1 is trie MVY.

Figures 3.5 and 3.6 further demonstrates the effects of initial va-ianý-es VIII V2 2 and V12 on

the performance of the two filters. It is apparent that the Nelection of initi& V,2 Is as important as
the selection of V 1 and V2 2* it seems that the selection of an inappropriate V 2(0i'ay have more signifi-

cant effects on the stability and performance of both filters. From the author's simulation experience it
Is noted that in the design of the W-U for syst,=s with non-negligible nonltntaricies, the designer should
be careful in not using overly-optimistic initial error-variances. For the MVi, the designer should be
careful not to use overly-pessimistic initial error-variances, since error-variances that were too large
could excessively enlarge the added measurement variances. As a result. valuable masuremaent data could
end up being rejected.

3.3.2 State and Parameter Estimation With Linear Measurement

Another simple numerical eyample that vas investigated assumed the system model of Section 3.3.1

with ieasurement given by

z(k + 1) - xI(k) + v(k)

Numerical results preseoted iu Fig.tres 3.7 to 3.10 were all obtained from 150-run Monte Carlo
simulations.

Figures 3.7 and 3.8 show trL effects of initial state estimates on the filter performance for the
following set of prior statistics

Tv• - V 0.01, V11 (0) = V2 2 (0) - V1 2 (0) - 1.0 and x1(0) - x 2 (0) - 2.0

The results presented bere are quite similar to those prt ented in Figures 3.3 and 3.4. Therefore, the
author's ctaments on Figures 3.3 and 3.4 are also equally applicable here.

To further demon-.ate the effects of iritiaý variances V1l, V2 2 and V1 2 on the performance of

the MVF and EKF, Figures . 310 are presented assuming

i 1 (0) - 2(0) - -2.0 and x1(0) - x2(0) = 2.0

Where Figures 3.9 and 3.10 assumed noise variances of 3.01 and 1.0, respectively. It is apparent that the
performance characteristics of the MVF and EKF are quite similar to those of Figures 3.5 and 3.6, where the
MVF is significantly better and more insensitive to the selections of error-variances than the EKF. Various
comments that were made in Section 3.3.1, are equally applicable for this subsection.

SECTION 4: CONCLUSIONS

This paper has presented a brief summary on the comparisons of dynamic structures for various
finite dimensional filters. Extensive simulation results accompanied with discussions, were presented to
compare the performance behaviour of some of these filters.

From the extensive numerical results obtained one can derive several conclusions, some of the
most important are stated here.

1. When the level of noise inputs is large enough to effectively cover the effects of
nonlinearities, no particular filter can be said to be consistently superior to
any other filter.

2. When the noise inputs are not "too small" (relative to the effects of nonlinearities),
and as long as the a priori estimates are available, the extended Xalman filter can be
expected to perform as well as any other nonlinear filter.

3. When nonlinear effects are non-negligible, the performance of the realizable
minimum variance filter is far superior to any other filter investigated, it is
also much more insensitive to the choice of a priori estimates.

4. In general, in the design oý the EKF for dynamic systems with non-negligible
nonlinearities, the designer should be cautious not to select overly optimistic
initial error-variances. But in the design of the NVF, the designer should be
cautious not to select overly pessimistic initial error-variances.

It should also he noted that for nonlinear systems with polynomial, product-type and sinusoidal
nonlinearities, the derivation and implementation of the MVF would only be slightly more difficult than the
EKF or the SLF, etc. But the MVF could sometimes be much more accurate and stable than the other estimators
investigated.

,I
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FIGURE 2.1 PHASE-LOCK LOOP SIMULATION; AVG OUTPUTS OF XI AND X2 (5-RUN AVERAGES)
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FIGURE 2.2: PHASE-LOCK LOOP; EECTS OF X(o., WITH SMALL AND LARGER V
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FIGURE 2.3 PHASE-LOCK LOOP SIMULATION; $ks41 ?,DUTPUTS OF X I AND) X2 (5-RUN AVERAGES)
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FIGURE 2.4 PHASE-LOCK LOOP SIMULATION;AVr OUTPUTS OF XI AND X (5-RUN AVERAGES)
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FIGURE 2. 5:RMS OUTPUTS OF PHASE-LOCK LOOP WITH LARGE T
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FIGURE 2.6,e.to OUTPUTS OF PHASE-LOCK LOOP SIMULATION
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FIGURE 2.7 PHASE-LWOK LOOP SIMULATION: OUTPUTS OF MIN. VAR. FILTER (5-RUN AVERAGES)

v 11(o) -v 2 2 (0) -v 2 (o) -1.0 T TRUE STATE

xi(0) -- 2(0) 1- I(0) - 2.0 V MINIMUM VARAINCE FILTER

Tv 'w- -0.001

-4-

"• I I| 'I X2(0}- 4"0

3

-36-

so-

CoO) 2 0

V 1WV

100S

0 S'."-1--i- ,-i-) * o (e)

to -2-0

r. 

-.

0

IV

I.. -I. O -- .2.0__

i "t iz J l lA'l
TIME (SEC) TIME (SEC



16-18

FIGURE 2.8 ERROR BOUNDS FOR MINIMUM VARIANCE FILTER
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FIGURE 2.9: VAN DER POL'S OSCILLATOR; EFFECTS OF Y ON FILTER MEASUREMENT INPUT
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FIGURE 2.10: VAN DER POL'S OSCILLATOR* EFFECTS OF T WITH VERY SMALL V

x1(O) - 1(0) - 2.0 --- TRUE STATE

X2 (O) - (0) - 0.0 MINIMUM VARIANCE FILTER

V1 1 (0) - V2 2 (0) - 0.01 ----------- STOCHASTIC LINEARIZATION FILTER

V 1 2 (0) -0

12~~

-, I. . dealt" .. m 0 . ..1........ . ..... .I. . ........ ....
2--.5 - .

(•,) (d)

e, 43 , e S 7,6 1*$ l- t s .e 04, 1-$ S,, $,s ,& . It.# *1, is,*
~ tW*•Vm 0,40a, 1%*0 _.0 11-060104,*4 041"w .- NotW itk* 14 t

S".. .. . .......... .... .... .. ...... *-~ r , - -........ -

Y~t T 1.01

~51 7

, I

A•As

*- ,,--- ... -,-.. ,..

S I

1 I
*I•4I

0. IS t. . 00 I. I$00 - . o4 15 t-

to (Sac.-

(c) (O

0.0 1.1 1.0 7.$ ISI 11.1 Ig'.0 0. .1 5- .0 1.$ I,.. tI.5 I5.0

TI"S dsE,.)



16-21

FIGURA 2.111 VAN DER POL'S OSCILLATOR: EFFECTS OF T WITH SMALL V

- X 1() - 2.0 TRUE STATE

£2 (0) "- X2 (O) - 0.0 MIN!MUM VAR. FILTER

Vit(O) - V2 2 (0) - 0.5 ---- STOCHASTIC LINEARIZATION FILTER

v1 2 (0) - 0.0

VANDERPOIL'S EQUArIONS, ACTUAL FILTER OUTPUT -STATE Xl VAyNPOL'S EQUATIONS, ACTUAL FILTER OUTPUT -STATE X2

o- o.S- ----

-6 '

.3- - - - - -- - , - .

((8)

3 1... .. . .1... - v. 14.1 1 0l TV T v.. .. ty w.....

9 1 .-- f.0
I,

1- -.-- I,

ft rli -m ak

I --/ -- /---- . .. .,e ..........
I | "

I ii I I ll

: -'" - .. ..- 7

0.99 (su.S I,.i .I

I

\ Ii

' (tI

0 .i 1 .I 5 .6 ? , I 1O .9 i ,. I t , O 0 . 0 0 . 9 5. O 3. 5 1 0 .0, 1 8. 1 :t , O



16-22?

FIGURE 2.12: VAN DER POL'S OSCILUAZOR; EFFECTS OF ' WITH LARGER V
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FIGURE 2.13, OUTPUTS OF VAN DER 'OL'S OSCILLATOR WITH "REASONABLE" INITIAL ESTIMATES AND T
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FIGURE 2.14: VAN DER POL'S OSCILLATORý EFFECTS OF IN.ITIAL STATE AND ERROR-VARIANCES
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FIGURE M.A VG( OUTPUTS OF DISCRETE CASE WITH NONLINEAR MEASUREIMENT; SHALL T AND V

- 2 (0) 2.0 MEASUREMENT MODEL:

41 (0) X2 X(0)=2. 0 z x x +V
~~1 2 1

V11 (0) -V 22(0) V12(0) =0.01

TV - 0.01 ocl av MSTTSA0 2

-5-

II

A A

(b)-IT-I I (C)

'7i- 1-i mitl mn iI s a 4 It Is. -. * ~ -

atmt5-oDo 11AW t TT tm

j I , -

xWE

S -r-i-1-rrr--(d)

TUME (SEC.)()



1 6-26

FIGURE 3.2: DISCRETE CASE WITH NONLINEAR MEASUREMENT; EFFECTS OF i(O) WITH SMALL TI AND V
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FIGURE 3.4: COMPARISON OF ERROR BOUNDS; EFFECTS OF SMALL T1 AND LARGER V
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FIGURE 3.5: COMPARISON OFAv.• OUTPUTS; EFFECTS OF INITIAL V WITH SMALL Y
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FIGURE 3.7: DISCRETE CASE WITH LINEAR MEASUREMENT; EFFECTS OF X(O) WITH SMALL T AND LARGE V
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FIGURE 3.8: DISCRETE CASE WITH LINEAR MEASUREMENT; EFFECTS OF X(0) WITH SMALL fV AND LARGE V
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I ~FIGUPE 3.9: COMPARISON OPAV%1ýOUTPUTS; EFFECTS OF INITIAL V WITH SHALL T
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FIGURE 3.10: COMPARISON OF OUTPUTSi EFFECTS OF INITIAL V WITH LARGER '
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KALMAN FILTER SATELLITE ORBIT IMPROVEMENT USING
LASER RANGING MEASUREMENTS FROM A SINGLE TRACKING STATION

K.F. Wakker and B.A.C. Ambrosius
Delft University of Technology

Department of Aerospace Engineering
Kluyverweg 1, Delft, The Netherlands

SUMMARY

Modern satellite ranging lasers emit short pulses at a low oeam divergence and
therefore require accurate satellite posilion predictions. This paper deals with a study
to investigate the possibilities to use the laser range observations acquired at only one
tracking station to provide real-time position prediction updates during a pass, and also
better predictions for subsequent passes over that station. A computer program, called
SORKA, has been developed, which is based on an extended Kalman filter scheme. The
computational approach adopted in SORKA is described in some detail. In particular, the
methods to compute the state-transition matrix and the state-noise covariance matrix are
empha3ized. Typical divergence phenomena arising from processing accu'rate range-only
measurements are discussed and the effectiveness of techniques to reduce these
Instabilities is demonstrated. Laser range measurements acquired during 8 successive
passes of GEOS-1 over the Kootwijk groundatation have been processed and some results are
presented.

1. INTRODUCTION

Since August 1976 the Department or Geodesy oa Del't University of Technology operates
a satellite laaer ranging system at Kaotwijk In the Netherlands. Prom there, the Working
Group tor Satellite Geodesy (WSG) acquires on a routine basis day and night ranglag data
oa geodetic satellites. Within the period 1976 to 1979 move than 49,500 observations have

* been obtained at Kootwvjk during 1108 passes or BEACON-C, GEOS-1, OEO3-2, GEOS-3, SEASAT,
STARLRMFI and LAQE0S (Ref. 1). All these satellites encircle the earth in near-circular
orbits between 800 km ani 2300 km altitude, except fox LAOROS whose altitude it about
5900 km. In 1980, about 13,500 observutiona were acquired during 370 pasaes of QKOS-3.
STARLMTTE and 4A0KOS. The ruby pulse-laser system consists or a multi-mode Q-3witched
oscillator, a spark-gap activated pulse chopper and two amplitier stages (Rers. 1, 2).
The output energy In routine operation is I to 2 J, with a maximum of 3 J. The
transmitted laser beam has a diameter of 19 c= and the divergence is adjustable from I to
20 srcminites. Untill autumn 190. the system generated 4 nm wide pulses at a *axkM
rate ot 15 pulses per minute, producing measurements with an 4ocuracy of about 75 cm
root-mean-square. Recently, the aoouracy level has been Improved to abokkt 15 tm, by
reducing the pulse width to 2 no. In addition, a new range-gate generator h4a been
Insalled, having a manually adjustable time vwidow with a mtnimum halr-width ot 0.1 4a.
This will poooibly g8iv the capat'illty of rangrim4 also to LAOM)S in daytime.

Por m4ny yearn thtre extsts a clooe coopetrtton between W234 and tht Section Orbital
echsn..cs (sox) or the Department of Aerospace EngineerIng Of or lt University or

Technology. This Section cupporto 1%1 In the ftield at orbit conputatioas toe the good~etic
satellites used In the laser ronging activities. The aupport ranges 1rrc satellite
position predl~tions, needed for the automtic poitinttg or the laser, to orbit
determsingticn And rgeophyaical parmetor ea#tImrtion from lAee obnervatlons acqulred at
Kootwijk and other laser ratging stations. To increa9se the accuracy or the laser
politings, it was decid0e tn 1978 to tnvestigatt the posalbilitioa to u4.e laser
observatiorn fron Xootvtjk In a (se•i-) real-ttme mode. Thia paper describes the
preliainary results or that study.

For the routine operations of' pointing "he laser at a sa-ltlite, at present use is
made or the AIMLASER computer prograg, dovoiop#d at the Saithsonian Astrophysiet.l
Observatory (SAG). Cambrtdge.. ,asachuaetts. This progmam has been vodified by SO* to
satitay the spetific needd of VSO and is regularly lmproved and updated. This Delft-
version of AIMLAS•Nf (her. 3) Is also to use at a number of other European laser stations.
1he input for the orbit prediction pr'gsram coistets or a set of mean orbital eltents,
distributed weekly by .SAO. theso paraueters are determined by SO from the socAlled
quIcI-look laser ranging data as returned to SAO by zany groundstationm distribute4 all
over the wo!ld. Ezperience has shown that quite often the ,atelltte position predictions
on basis or "'tose SAO etemantm and uvlng the A114IAM progra* reach a ievel oa insc.uracy
which is incoopathble with lasers eaitting a low-divergence beam. To give an indication
of the accuracy needed, consider a satellite which passes over XaotvIjk at a distance of
1000 km. When the beaa divergence Is 2 areainutes, the diameter of the beam At the
altitud* or the satellite is 580 a. •o, in this case a position prediction accuracy orabout 300 a it needed in order to guarantee that the satellite Is hit by the laser pulse.

To correct for position prediction errors, the Kootwijk laser system has been equ-pped
with a manually controlable ftirltg-time adjustment switch. During nlghttme passeso, It
the satellite Is sunlit, the operator may look through the laser telescope In order to
estimate by that &aount the ftiring tine has to be delayed or advanced. This is possible
for satellites jp to a visuai magnitude or" *13. Usually, however, it at the beginning of



a pass no return signal is received, a systematic variation of the time adjustment is
applied intil returns are being registered. Sometimes, the adjustment can remain constant
during a pass, but on other occasions re-adjustments are necessary. By this technique,
the operator in fact corrects for position errors in the direction of the satellite's
path across the sky. It has been found (Ref. 4) that a considerable improvement of the
score of laser returns is obtained by this manual control of the laser firing time.

One of the main disadvantages of this technique is that it corrects for in-tra2k
position errors only, while errors perpendicular to the satellite's path cannot be
correcte, for. It actually has occurred that the observer saw through the telescope that
the satellite was too far from the predicted track without being able to apply
corrections. Therefore, a neel exists for more-precise position predictions. This need
becomes even morc stringent with the development of more-advanced laser systems operating
with a smaller beam divergence. But there is still another need for more-accurate
predictions. To minitize the chances of false triggerings by noise pulses, a laser system
usej a range-gate generator, which determines the time window in which the return signal
is expected. For daytime ranging to distant satellites, like 7AGEOS, very short windows
of up to 0.1 gs are required. But this implies that the radial distance to the satellite
has to be predicted with an accuracy of better than 30 m.

To increase the accuracy of the predicted satellite positions a number of
posribilities exists. For instance, it would be possible to replace the SAO elements by
more-accurate orbital parameters and to use a satellite position prediction program that
is more accurate than AIMLASER. The primary reason for the SAO elements being sometimes
inaccurate is that they are based on the quick-look ranging data, which may be rather
sparse durin- some periods and which may contain systematic or gross errors. Therefore,
an approach may be adopted as applied by the University of Texas at Austin 'or the
prediction of LAGEOS. In that case, several weeks of laser observations from a number of
groundstations are used to determine the orbit of the satellite very accurately. From
this orbit determination an extremely accurate orbit is extrapolated for a long time in
advance to yield one or more state vectors for each day. From these state vectors, the
station generates its own laser pointing angles and computes the satellite's distance by
numerical integration of the equations of motion. At Kootwijk, research is going on along
this line to improve the predictions for LAGEOS. It is doubtful, however, if such a
technique wi.Ll yield prediction accuracies for satellites below 1500 km altitude that
satisfy the needs of the narrow-beam laser stations.

Therefore, it is felt that it would be attractive to process in real time the laser
range measurements regi-tered during a pass over a station in order to increase the
accuracy of subsequent laser pointings and window settings during that pass. This means
that all computations have to be performed on an on-line computer within the period
between two successive laser firings. To start up the process it is required that at the
beginning of a pass observatione are actually acquired. Fortunately, at low elevation
angles the slant range to the satelý5te is large so that there is a good chance that the
satellite is within the laser beam, even if the position predictions are relatively bad.
After the first observations have been processed and the accuracy of the position
prediction has increased, the beam divergence and the time window setting may be
narrowed. In case the predictionj are so bad that no returns are received, a systematic
search procedure may be executed at the beginning of a pass. This type of closed-loop
tracking is primarily applicable to stations with medium- to high-power lasers, since
only then sufficiently wide beams can be used to guarantee laser returns.

Recent observations from a station can also be used in an off-line mode to improve the
orbit and by that the laser pointing angles for subsequent passes. This also makes the
station less dependent on a distant large computing center. This aspect could be of great
importance for the mobile laser ranging systems. These systems, however, are designed
around low-power lasers (about 10 mJ per shot) operating with a betm divergence of about
0.5 arominute and a high repetition rate of about 10 pulses per second. Signal levels are
on the average below one photoelectron per shot for LAGEOS and in the order of ten photo-
electrons per shot for satellites in lower orbits. As a result, large numbers of false
returns are recorded which need to be ide.Ltified in order not to upset the orbit
improvement scheme. Whether this identification will be possible during a satellite pass
o~rer the station still has to bo investig.ted.

The main objective against the real-time laser pointing update approach ia the fact
that from the orbital mechanics point of view, it is very precarious to use range
measurements from only one groundstation to improve the satellite's orbit. It is evident
that from such observations during one pass very little information is gained on the
orientation of the orbital plane. Therefore, the basic scheme presently envisaged is that
previous range measurements obtained during several passes over the tracking station
yield the orientation of the orbit to such a level of accuracy that during the next pass
the range measurements can be used in real time mainly to improve the predintion of the
satellite's position in tne orbital plane. During the very first part of a pass the laser
mount's angular position read-outs can possibly also be used as observation quantities.
Though these angles will, in general, contain systematic errors, the inclusion of these
quantities for the whole tracking period as quasi-observations with a relatively low
weight might also be attractive to stabilize the orbit improvement process. Nevertheless,
it is anticipated that, periodically, after long observation gaps, additional orbital
information will be required which is derived from tracking data acquired at other
groundstations.



3. THE EXTENDED KALMAN FILTER

It is well known that, basically, there exist two methods for processing satellite
tracking data to estimate the orbit of a satellite. The batch processor, which yields the
estimate at some reference epoch, requires that the entire sequence of observations be
processed before the estimate can be made. On the other hand, the sequential orbit
determination procedure processes one observation at a time and produces an estimate of
the state vector at the observation time. So, this sequential procedure suits best the
requirements for real-time orbit improvement, although it can also be used to predict the
next satellite pass over the station. While the formal mathematical equivalence between
the sequential estimation algorithm and the batch estimation algorithm can be shown, it
is known from practical experience that the sequential process is much more sensitive to
errors introduced by linearizations, which may result in estimate divergence problems.

The technique selected in this study is the extended Kalman filter, which is described
in many textbooks (e.g. Ref. 5). An interesting geometric derivation of the Kalman filter
equations is given in Ref. 6. Applications of the extended Kalman filter to orbit
dynamics problems are discussed extensively in Refs. 7-14. For this study a computer
program, called SORKA (Satellite Orbit Refinement using a KAlman filter) has been
developed, which at the moment functions primarily as a test program. Therefore, it
contains at present different options and alternatives to investigate in detail the
Kalman filter characteristics for this application. It is emphasized here that the aim of
SORKA is not to reach the high accuracy level and the extensive capabilities of computer
programs like GEODYN (NASA) or UTOPIA (Univ. of Texas), but merely to satisfy the
accuracy level needed for laser pointings and to be compatible with small local
computers. Until now, SORKA runs on an IBM 370/158 computer, but in the design of the
program precautions have been taken to make the implementation of a stripped-down verrion
on a small local computer possible. To elucidate the description of the computational
approach adopted in SORKA, a brief outline of the filter scheme will be given.

The satellite motion can be described by the set of equations

X F(x, t); x(t 0 ) (1)

where X denotes the state vector. When *o is specified and F is known, the orbit of the
satellite, and thus its state at a later time, can he obtained from integration of Eq.
(1). in orbit determinations, X is not known perfectly and therefore observations of the
motion must be proces ed to obtain a more-accurate estimate of the state vector. Assume
that a best estimate X of the state at t is known with an accuracy represented by the
covariance matrix f In the time-update &ep, Eq. (1) is integrated to yield an initial
state estimate at the time of the first observation tj : X. Its covariance matrix, P1,
is computed from

S410 o 1,0 * Q1.
where is the state-transition matrix, used to map the state from to to tj andd pflned 

t' 

1 0 ")'1 *l,o "

and Q1 0 is the state-noise covariance matrix, representing errors occurring during the
state ector integration. These errors, which are assumed in this study to be Gaussian
distributed with a zero mean, include such effects as deterministic model errors,
numerical Integration errors and random process noise.

In the subsequent observation-update step the Kalman filter adds the information 9f
the observations , at t to the initial estimates, yielding more-accurate estimates X
and 0 . For this, in iORKA the general non-linear relations between the meaeure-i
quantities and the state vector are used:

a- o(Q t) + V(2)

where the stochastic vector V represents Gaussian distributed measurement errors with a
zero mean and a covariance mairix R. The observation residuals at tj : .E, are defined by

where Ze denotes the predicted observations as computed from Eq. (2) and the initial
estimatf Xl1

S0(1. t 1 )

The new estimate .j ia Liven by

'l a &- + K 1
where K1 is the Kalman gain matrix, satisfying

1I " ŽI HIT(HI P, HIT + 8 0'N (4)



and HI is the observation matrix, defined by

H,

So, the matrix H is evaluated for the most accurate state estimate available at this
stage: the reference state X1. The state covariance matrix at tj corresponding to the
optimal state estimate can be-found from

(I (I- KI H1 ) P1

where I is a unit matrix of appropriate dimensions. Once X_ and P1 are known, the same
process is repeated to compute the state and the state covariance matrix at the time of
the next observation. In this way, the best estimate at any time contains the information
of the last and all previous observations.

The scheme given above holds for all types of observations. In this study, the
observations are ranges from the laser to the satellite, but SORKA has been designed such
that in the future also azimuth and elevation observations can be dealt with. As a
reasonable assumption, rar.ge, azimutih and elevation can be considered independent
observations. Then, a computational simplification is possible, permitting the individual
observations at each observation time to enter the algorithm one after another as
scalars, In that case, the term in brackets in Eq. (4) reduces to a scalar. So,. the
inversion of this term reduces to a division by a scalar, which avoids numerical problems
which may occur in matrix inversions.

For each time-update step, the function F, the state-transition matrix, *, and the
state-noise covariance matrix, Q, have to be. evaluated. For the integration of the state
equations, Eq. (1), a relatively sjmple force field has been adopted. During a pass onlythe first five zonal hhrmonlcs (J2 to J) a�nd the first tesseral harmonic (J2 2) of the
Legendre seriec expansion for the earth's gravity field (geopotential) are accounted for.
For the state integration between subsequent passes a more-extended gravity model is
used, inc luding terms up to J 6. The dynamical equations are integrated with a fourth-
order Rinne-Kutta method. TWe stepsize depends on the time between subsequent
measurements and has an upper limit of 40 s. Tho computation of the state-transition
matrix and the state-noise covarlance matrix is descrioed in the following Uectione. In
eachkobservation-update step, the function G and the matrices R and H are required. Me
measurement-noise covarlance metrix is assigned the values of the known measurement noise
variances. The observatlon matrix is evaluated at a reference state, usually taken as X.
-n eetion 6 an alternative for this reffitenoe state will be Introduced.

4. 111E §VAgE-TRANSITrON MATRIX

Prom F. (1' a differential equatioti can be derived for the state-tr(nAitinn 'mtrix:

Thes so-a0 lld tO ; 00 I (5)

These so-called variational e.uati(tis can be Irtegrated numerically, together with the
state equations. An alternative apvroach is to avoid the use of * and to directly
integrate a matrix Hiccati differential equation in P (Refe. 9, 10). Such a direct
numarieal integration providos a mathematioa~ly rigorous selution and is readily
applicable in th* presenoe of all types of isturbing forcesa The method, however,
necessitates the simultaneous integra-4tot or a large set or. differential equations, thus
making the procedure time consuming. As SORKA il designed For rea-l-time operations, it
was therefore deoided to compute the state-transitton matrix in aome approximating
analytical way. It ts reallted that this approach may entail u6ttle but important etfeot
which Impair the acoracy of the re•Ults., It% porticular when the analytical exp"essions
for the eomputation of s require a simplifriation-oe the roroe field, whi$1ti for the state
integration a wre-extensive force field is sed. 41owever, stvdies described in Refs. 15,
16 hint that, in general, a truncation of the roroe Cield ic pervelesible, provided at
least J is explicitly included in tbe 'variationsl equations. For SORKA, two alternative
anolytical techniques have been expiae4.""

The first method can only be applied if 'tfe pariod Mtween Nucoessive meadu;'ements ls
relatively ahort. It is based on the. assumption - that the expreeasions for the gradlent of'
the geopotential can be linearited over the time tnterval between sucoessive
measurements. Then, from Eq. (5) the approximativ0 relation

4 ,o (6)* ..
can be derived (Ref. 17), where the matrix N can be pr~tttioned into rour sub-matrices:
two being a 313 null matrix, one a 3x3 unit matr4x ard o,•e a 3x3 matrix containing the
-acond-order partial derivatives of the geopotential with resptot to the X, Y and Z
components or the state vector. integratiOn or Eq. (6) leads, to aW exponential function
which can be approximated by the series expansiont

I + at + (N at)' + (M At) 3 
.-

where At = t1 - tO, Analytical expressions have been derived (Ref. 4?) for the second-
order derivahlveas of the gs•poteniial where the effects of the zonal harmonica J2 upWo J6
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and the first tesseral harmonic J2 2 are accounted for. These expressions, as well as the
expressions for the first-order 'eartial derivatives, which are required for the state
integration, were composed by applying the REDUCE formula-manipulation computer program,
which is available on the DEC-10 computer of Twente University of Technology. Though this
analytical technique of computing * has been implemented in SORKA and has been tested
extensively, for the computations described in this paper a second analytical technique
has been used exclusively, since it consumes less computer time.

This second technique was developed primarily for the computation of the state-
transition matrix for longer periods between two successive measurements, such as between
two different passes. The analytical expressions for the elements of the state-transition
matrix are obtained by applying the chain-rule to the relations that exist between the
state vector and the orbital elements at any time, and to the relations between the
orbital elements at a time tI and those at to:

Sosc 0oc

D 1 -1 
( 7 )

where £08c denotes the vector of osculating orbital elements. The matrices in brackets
can be derived easily from the geometrical expressions describing a Keplerian orbit
relative to the non-rotating geocentric reference frame (e.g. Ref. 18). To avoid the
classical problems for orbits with very low eccentricity or inclination, in principle the
use of non-singular orbital elements is preferable. It was demonstrated in Ref. 19,
however, that in practice, if the computations are performed on a computer with a
reasonable word-length, the problems occur only at extremely low values of eccentricity
or inclination. For a word-length of 64 bits, for example, the classical elements can be
used if e and sin(i) are larger than 10-ý . For simplicity, therefore the classical
elements were adopted in SORKA to compute the state-transition matrix. To guarantee that
singularity problems will never occur, a simple engineering meas rae has been introduced
which precludes that e and sin(i) can take values smaller than 1 0 -V.

It has 0 •ceen 0•own in Ref. 19 that, for the application described in this paper, the
"matrix a /8P can be computed with sufficient accuracy by neglecting short-periodic
i and long-?eriodic perturbations in the osculating elements, and by taking into account
only the secular perturbations due to the oblateness of the earth (J ). If the orbital
altitude is less than 400 km, which is very unlikely for geodetic saiellites, also the
secular perturbations due to atmospheric drag should be accounted for. Analytical
expressions were derived to compute the matrix when only these two types of perturbations
are considered. In SORKA only the J2 secular perturbations are taken into account when
computing the middle matrix in Eq. (7). A further simplification was introduced by
substituting mean instead of osculating elements in the expressions for the matrices.
These mean elements are obtained by subtracting the short-period J2 contribution from the
osculating elements, according to the non-singular elements conversion technique
described in Ref. 20. So, the computation sequence is as follows. From the state estimate
at the start of the filter process, t , the osculating elements are computed. These are
converted into mean elements. The vapues of the orbital elements at the start of the
first pass, tl, are computed by adding only the secular perturbations (e.g. Ref. 21) to
the mean elements at tO. Next the matrix p. /OX is computed, applying the usual
transformation relations between (osculating) or ita- elements and position and velocity
(e.g. Ref. 18). Subsequently, the matrices &AP/bD,, and 8Xl/p are computed. Matrix
multiplication finally yields OX X X. For subs que t gaps between passes, the same'
process is repeated, but then tol •% th time of the last observation of the previous pass
and ti becomes the time of the first observation of the next pass. If this technique is
applied for the computation of the state-transition matrix during a pass, tl simply
becomes the time of the next observation. AVthough there are numerous approximations in
this approach, it was found (Ref. 22) that they hardly affect the results.

5. THE STATE-NOISE COVARIANCE MATRIX

It is well known that Kalman filter applications often suffer from state estimate
divergence problems. In principal, these are a result of non-linearities, errors due to
an incomplete mathematical model and to a lesser extent also of computational truncation
and round-off errors. Physically, the state divergence can be explained as follows. When
during the observations processing the state estimates become more accurate, and hence
the covariance matrix becomes smaller, new observations, which reflect the true state,
will yield progressively smaller corrections. If there are too many gross measurement
errors or if there is any error In the dynamical model that is not accounted for properly
by the assumed model errors, represented by the state-noise covariance matrix Q, then
successive estimates of the state may tend to follow an erroneous course and to diverge
from the true state. Consequently, the estimated state covariance matrix fails to
represent the true estimation error.

Ii, the time-update step the state vector and its covariance matrix are integrated.
Dur~ng this integration, errors will be introduced due to dynamic modeling errors and
integration errors. Generally, the errors will be non-random. Methods have been developed
(e.g. Refs. 8, 9' 11, 12, 23) to acdount for the model errors in some way. For
computational simplicity, in SORKA the crude assumption has been made that the errors are
random and can be handled by a proper choice of the covarianoe matrix Q. A suitable
choice foe Q that prevents filter divergence has to come from experience gathered during



tests on the filter performance. In SORKA, two methods are used to compute the state-
noise covariance matrix.

For the short time intervals between successive laser observations during a pass, the
computation is based on the assumption that the unmodeled forces acting on the satellite
yield accelerations that have the same root-mean-square value in all three coordinate
directions. At present, a value of 2.5 m/s/day is used. From these accelerations, the
standard deviations of the velocity errors after a time-update step are found by
multiplying the acceleration by the length of the time interval. These three standard
deviations of the velocity are the only components of Q that are used. The standard
deviations of the position error after the next time-update step evolve from these
components through the state-transition matrix. It can be argued physically, and it was

S demonstrated by numerical experiments (Ref. 22), that model errors are of minor
importance during passes. The filter process was shown to be rather insensitive to
relatively large variations of the values selected for the unmodeled accelerations. This
is due to the fact that force model erLvors cannot build up large effects during a pass
and that non-linearity errors mostly dominate the state estimation (Section 6).

For the integration interval between successive passes, a different approach for
computing Q has been selected. Since the state errors are mainly due to the truncation of
the gravity field model used for the integration of the state vector, an upper bound for
the magnitude of these errors can be estimated. In the current study, where observations
of only one tracking station are processed, these errors will be considerably smaller
than indicated by that upper bound. This is because in that case the satellite traverses
during the passes always (nearly) the same spatial region, of the gravity field, and only
a fraction of the total, mainly periodic, variation of the orbital parameters due to
unmodeled gravitational forces has to be accounted for in Q. After a number of tests for
satellites at altitudes of 1000 Ian to 2000 ki, fixed values were selected for the along-
track, cross-track and radial position and velocity errors equal to 20 m and 2 cm/s,
respectively. In addition, a few dominant correlations have been introduced in the state-
noise covariance matrix in cross-track, radial and along-track components. Finally, an
orthogonal transformation is applied to obtain the corresponding matrix in X, Y and Z
components. The Q-matrix is then added to the state covariance matrix, P, which has been
integrated in one step over the complete time interval between the passes, using the
analytically computed state-transition matrix.

6. EFFECTS OF NON-LINEARITY ERRORS

The Kalman filter technique has been developed for linear systems. When the filter is
applied to the highly non-linear equations encountered in orbit dynamics, approximations
linearized about a reference state are used. Because in SORKA the full equations of
motion are integrated numerically and the general non-linear relations are used for the
computation of the measured quantities from the state vector, linearizations only occur
in the integration of the state covariance matrix, P, and in the Kalman algorithm for the
observation-update step. In Section 4, it has been pointed out that the filter process is
not very sensitive to the method used for the integration of P. So, linearization errors
will mainly be introduced in the observation-update step.

During testruns with simulated laser range observations of GEOS-3 (Section 8), it was
found (Ref. 24) that after the first few range observations had been processed,
excessively large state corrections occurred, although the initial residuals were found
to be relatively small, while the data were known to contain no gross measurement errors.
Normally, one would expect the state corrections to decrease gradually as more
observations are processed, because the state estimates become more accurate. The
testruns were started with an input state vector corrupted with noise of 500 m standard
deviation for the position components and 0.5 m/s for the velocity components.

To investigate why the state corrections did not decrease gradually, the behavior of
the Kalman gain matrix, K, was studied in more detail. Since the initial residuals were
relatively small, only this matrix could cause the large state cor-ections. As the
linearizations introduced through the observation matrix, H, were suspected to be
responsible for this filter behavior, a test was performed in which the effects of
changes in the reference state on the gain matrix were studied. As only range
measurements are processed, the observation matrix and the gain matrix reduce to a row
matrix and a column matrix, respectively. This simplifies the interpretation of the
results. The predicted state vector and its covariance matrix were extracted out of a
SORKA simulation run at the time of the fourth observation, when problems first occurred.
Then, the position elements of the state vector were varied systematically by applying
changes which were proportional to the state correction vector Kz_ as computed by SORKA
at that observation time. This was done to insure that the applied changes of the
reference position vector were in the same direction as the nominal position correction
computed by SORKA. The velocity components were not considered in the evaluation because
they do not appear in the matrix H. Each new state vector thus obtained was used as an
alternative reference state for which a new gain matrix was computed. Plotting the
individual elements of these column matrices against the total change of the reference
state, finally yielded an indication of the dependence of the Kalman gain matrix on the
reference state. In Fig. 1 the results are presented for the two elements of the gain
matrix that affect the X and Y components of the state vector. It is clear that K is
strongly dependent on the reference state and even shows a near-singular behavior. These
high gain values lead to large state corrections, which may result in considerable
linearization errors and may cause divergence. In this test the noise level of the

..........
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Fig. 1: The dependence of the gain matrix on the reference state.

simulated observations was 1 m. Additional tests proved that smaller measurement standard
deviations further amplify the near-singular behavior and that a larger measurement noise
lessens the dependence of the gain on the reference state.

Physically, this peculiar behavior of the gain can be explained as follows. At the
start of a pass, the accuracy of the measurement is much higher than the accuracy of the
state vector. In Fig. 2a this is visualized by a position variance ellipsoid and a thin
slice representing the first range measurement and its variances. After processing the
first few highly-accurate range measurements, which are all taken in nearly the same
direction, the position variance ellipsoid will be flattened considerably in about the
direction of the observations (Fig. 2b). The information content of only a few
observations is generally not sufficient to yield a good approximation of the real
satellite orbit. So, the next observation may lie relatively far outside the error
ellipsoid. In combination with the extreme flattening of the error ellipsoid this causes
the filter to try to cure the situation by producing a large position shift vector. This
vector points in a direction that is governed mainly by the orientation of the major axis
of the ellipsoid; its magnitude can be much larger than the state standard deviation in
that direction.

For visualizing the filter process for the case illustrated in Fig. 2b, further
simplifications can be introduced. The strongly flattened position variance ellipsoid is
approximated by a plane, which is about perpendicular to the observation vector (Fig.
3a). The range measurement variances can be approximated by a plane perpendicular to the
range vector as computed from the reference state. Using this representation it will be
clear that the observation-update step will yield an optimal state which lies on the
intersection of the two planes. The state correction is dependent on the range residual,

(a) (b)

observation K
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position
error
ellipsoid
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station

Pig. 2: Sketch of the state correction at the start or a pass (a) or after the first few
highly-accurate range observations have been processed (b).
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Fig. 3: Simplified diagram of the state correction after the first few highly-accurate
range observations have been processed, as provided by the pure Kalman filter (a)
or by the filter with the reference state iteration modification (b).

z• and the angle a between the two planes. Comparison with Eq. (3) shows that in this

simpified diagram the magnitude of the Kalman gain corresponds in a first approximation
to i/sin a. This explains the behavior of K as showa in Fig. 1. When both planes are
nearly parallel, small changes in the reference stale along the position variance plane
will cause large variations of a and thus of the gain matrix. However, if a becomes zero,
the approximation of the state and measurement variences by two (parallel) planes fails
and the gain matrix becomes very small.

Large state corrections will certainly introduce appre liable non-linearity errors in
the state estimates. This is illustrated in Fig. 3b, from which it may be concluded that
the initial (linear optimal) state estimate (3) does not coincide with the observation
sphere described by the range observation. In order to force the state estimate towards
the intersection of the sphere with the position variance plane, representing a more-
realistic approximation of the true optimal estimate, an iteration scheme has been
derived (Ref. 24) that also reduces the magnitude or the state corrections, and that
yields improved filter performance. During the iterations the values of P1, R and.&, are
held fixed. In the first iteration stop uhe initial state estimate, X1, is used as the
reference state. In the next iteratiqn step, ýhe mean of the initial reference state and
the first updated state estimate, Xl, is used as the reference state. For this new
reference state, new values of H an; K are computed. Using this new K value, P, is
recomputed and a new state correction Kza is computed, which is added to the ini'cial
reference state, .I- The iteraaive process stops if the computed values for the reference
state have converged (Fig. 3b). Sometimes, however, the process does not converge at all.
This may happen, for instanc, if the state variance plane lies outside the observation
sphere. To cope with this poblem the measurement standard deviation may be increased,
but from a theoretical, poirt of view this is a precarious measure, since it will also
allow erroneous observation.- to enter th) solution.

Although the iteratici scheme improves the stability of the filter, errors will
inevitably build up during the processing of tho first few observations when the
iterative process is not yet effective and may still cause filter divergence. Eventually,
a simple engineering Polution has been adopted (Ref. 24) that proved to be highly
effective. Before each observation-update step the diagonal elements of the state
covariance matrix, P, are multiplieO by a number slightly greater than one. By this, the
relative magnitude of the corrulation coefficients, which, in general, describe the
flattening of the error ellipsoid, is implicitly reduced and a less flattened ellipsoid
will result. Therefore, the multiplicative factor has been called the correlation
correction factor, I . Only in the rare cases that the minor axis of the error
ellipsoid happens to 0fe along one of the coordinate axes no appreciable reduction of
the flattening results and the method breaks down. Figure I clearly shows the reduction
of the aensitivity of the Kalman gain matrix to the reference state for increasing values
of the correlation correction factor. In the near-singularity region, a 0.01 percent
increase of the variances has a tremendous effect on the gain matrix; outside this
region, the gain remains almost unchanged. It proved that the application of a
correlation correction factor is a most efficient way to stabilize the filter, and is
more effective than the iteration process.
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In SORKA, both the reference state iteration schene and the correlation correction

method are applied, while the possibility to increase the measurement standard deviation
has also been implemented. Before each observation-update step, the diagonal elements of

S the state covariance matrix are multiplied by the correlation correction factor (default
1.00001). The numerical tests have shown that the iterative process then usually
converges immediately. As a matter of fact one should be suspicious if this does not
occur, because it may indicate that an erroneous observation is being processed, which
can upset the filtering process.
teThe presence of these bad observations is an additional problem, which may complicate

teabove mentioned divergence suppression methods. Gross measurement errors will corrupt
the state estimates, especially when they occur at the beginning of a pass where the
state variances are large. To reduce the effects of bad data, a statistical technique has
been developed in Ref. 25. It is based on the introduction of a reliability criterion ,for

* bounding the propagation of non-detected measurement gross errors into the state vector.
The state covariance matrix after the observation-update step is computed such that it is

•' not only a measure for the effects of random errors but also for the effects of a non-
S detected gross measurement error. So, the filter is forced to make a balance between the

precision and the reliability of the updated state vector. This goal is reached by
computing the updated state and state covariance matrix according to

1 Kz

1-01(8)

-242

PDET (I - KST l) DL + S K1 NP

(1 + a) KHP

S The factor is a function of some statistical parameters and the ratio R/NPHT. At the

S start of a pass, the state variances are large and a takes a relatively large value.E- Consequently, the addition of the a-terms on the right-hand sides of Eqs. (8) will yield

a smaller state correction and will blow up the position error ellipsoid in the direction
hof its minor axis. Thile is also favorable from the viewpoint of limiting the

linearization errors and preventing divergence. As more observations are processed and P
becomes smaller, m decreases and the process more closely approximates the optimal Kalman
filter scheme. This alternative technique has also been included in SORKA as an option.
Tests where only screened data were processed yielded similar results as obtained with
the application of the correlation correction factor.

7. DIVERGENCE MONITORING
A proper use of the techniques described in the previous Sections will, in general,

lead to a stable Kalman filter behavior when processing laser range observations.Nevertheless, sometimes divergence of the filter may still occur, which results in
incorrect and useless state vector estimates. In simulations, divergence oan be detected
very easily. In those oases, divergence is recognized if the estimated state vectors
deviate considerably more from the simulated state vectors, from which the simulated
observations are computed, than the estimated state vector standard deviations given by
the state covariance matrix. If real observations are processed, such a comparison, of
course, is not possible. The only way to detect divergence in real observations
processing is to study the history of the observatics n residuals, a l. The observation
residuals relative to the predicted state vector at the time of an observation are used
in the observation-update step. The covariance matrix of the residual vector is used in

the computation of the Kalman gain matrix. Thus, for divergence detection there is
available a sample of a stochastic variable (the r,•sidual vector), which, under the
assumptions made, has a Gaussian distribution with zero mean and known covarianco matrix,
and which is not correlated in time.

The two divergence monitoring methods implemented in SORKA are based on testing the

str of a, pa,,ss,,.,•'. the stat vaiace ar ag n tksarltveylrevle



validity of the residual covariance matrix. Therefore, the squared residual is weighted
with the covariance matrix. This squared weighted residual is a stochastic variable which
should have a chi-squared distribution, with, in case of range-only measurements, one
degree of freedom per observation. A method can be developed to test, with a given degree
of confidence, if the sum of n squared weighted residuals corresponds indeed to a chi-
squared distribution with n degrees of freedom. However, as after a number of processed
observations this method will become very slow, in SORKA two faster divergence detection
techniques have been included. One method is based on a fading-memory filter, in which
the most recent residuals have a greater weight in the sum. The other is based on the

* digital low-pass filter technique described in Ref. 26, which also results in a test
* which is more sensitive to the last measurements. Both methods are handicapped if only a

few observations during a pass are available, but were found to work satisfactory if many
observations are processed. Presently, the methods are only used to monitor if divergence
occurs. In the final version of SORKA one of the methods will be linked in a closed-loop
mode to correct for divergence as soon as such a tendency is detected.

8. RESULTS

To investigate the capabilities of SORKA in processing range observations from only
one tracking station, many simulations have been performed. In these tests simulated
observations of GEOS-3 (Table 1) were used. The results of the simulations are treated in
detail in Refs. 24, 27, 28. After it had been demonstrated that SORKA is capable of
yielding accurate state estimates, numerical experiments were done (Refs. 22, 24, 25, 29)
with actual observations of GEOS-l (Table 1). These laser range observations had been
acquired at the Kootwijk tracking station. The data arc, with a length of 54 hour,
comprises a total of 611 measurements, distributed over 8 passes during the period July
11 to July 13, 1978, in which GEOS-l completed 27 revolutions about the earth. In Fig. 5
the sub-satellite points at the times of the observations are plotted. The general
direction of the satellite's groundtracks is from west to east. The same observations
have also been used in studies described in Refs. 30, 31 to estimate from laser range
data acquired at Kootwijk and Wettzell (Fed. Rep. Germany) the orbit of the satellite and
the coordinates of the Wettzell tracking station. In those studies the least-squares
batch-processing orbit determination and parameter estimation GEODYN computer program
(Ref. 32) was used. To be able to judge the quality of the Kalman filter estimates, an
orbit solution was generated with GEODYN from the 611 Kootwijk observations. The computed
orbital ephemeris, containing state vectors at the observation times and at regular 300 s
intervals throughout the complete data span, was stored. Because of the very high
accuracies obtainable with GEODYN, that orbit solution could be considered the real-world
orbit of the satellite to which the SORKA results are compared. The state vector
differences, which are interpreted as the SORKA estimate errors, were subsequently
transformed into errors in the classical orbital elements as well as into errors in
radial, cross-track and along-track direction. Orbital differences expressed in these
parameters suit better the physical interpretation of the results rather than the fast
varying rectangular components of the state vector differences.

Table 1: General satellite data.

GEOS-1 GEOS-3

Satellite number 6508901 7502701

Launch date November 6 April 9

Shape octagonal prism octagonal prism
with hemispherical with radar altimeter
crp on dowes nd dish on down end and
and octagonal octagonal pyramid on
pyramid on top top

Dimensions (cm) 132 wide 122 wide
81 high 131 high

Mass (kg) 172.5 345.9

Stabilixation gravity-gradient gravity-gradient
Transmitters TRANSIT and MINI- doppler beacon.

TRACK beacon. C-band and S-band
SECOR and GRAM transponders.
transponders, radar altimeter.

Laser reflectors 322 reflectors on 264 reflectors in
0.18 m2 bottom- conical ring around
mounted flat the periphery of
array bottom side

Orbit (mid 1978)
sed-major axis (km) 8073 7221
eccentricity 0.0717 0.0014
inclination (dog) 59.4 115.0
period (min) 120 102



Fig. 5: The GE03-1 sub-satellite points at the observation
times. The general direction of the satellite's
groundtracks is from west to east.
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Fig. 6: The eemi-major axis errors and standard deviations during the first pass. The
state and its oovarianoe matrix are computed by the pare Kalman filter (top
left), with the reference state iteration scheme (top right) or with both the
iteration scheme and the correlation correction factor (bottom).
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Fig. 7: The radial and along-track state errors and stan-
dard deviations during the first pass.

The results presented in this paper refer only to the first three passes, which are
separated by two and one revolutions, respectively. In this initiel phase of the data arc
all problems are encountered that are characteristic for processing range observations
from a single station, in particular if the initial state is not known accurately. To
simulate this last condition, the initial state as computed by GEODYN in rectangular
coordinates was corrupted with noise of 1 km standard deviation in the position
components and I m/s in the velocity components. For the filtering process this
corresponds more or less to a worst case analysis since, in general, some. state
components will be known to a higher accuracy, in particular those which are related to
the along-track velocity. The formal standard deviation of the observations, which were
known to contain no gross errors, was taken to be 25 cm, corresponding to the accuracy
level of the Kootwijk laser system in 1978. The results can be divided into two
categories, which are governed by different parameters. The first category pertains only
to the first pass. These results are primarily affected by the accuracy of the initial
state estimate and by errors due to non-linearities. The two-revolutions data gap between
the first and the second pass is a transient region. The second category starts at the
beginning of the second pass; these results are primarily influenced by errors in the
orbit perturbations modeling.

Figure 6 shows the effects of the reference state iterations and the application of
the correlation correction factor, r. , on the semi-major axis errors during the first
pass. The solid lines indicate the sf'dard deviations of the semi-major axis estimates,
as provided by the Kalman filter. The value of To, indicated in the plots, refers to the
origin of the time scale; i.e. the time expressed in Modified Julian Days (MJD) of the
first measurement of that pass. The plots show that the basic filter without
modifications leads to divergence where semi-major axis errors of 9 km occur, which are
much larger than the filter estimates for the standard deviation. The introduction or the
reference state iteration scheme yields a much better filter behavior. After reaching a
peak of about 1.5 kcm, the errors decrease rapidly to a level of about 100 m. Applying
also a correction factor Ij a 1.00001 leads to a more stable process where the errors
dearease smoother and no ski of divergence is present. Of course, this is achieved at
the expense of a slower converging process and larger estimated standard deviations. The
evolution of the radial and along-track position and velocity component erfors Is shown
in Pig. 7. These results were obtained from a computation where both the rtterence state
iterations and the correction factor were applied. The radial position error is always
less than 140 iu; the along-track velocity error decreases to an end-of-pass value of 15
cm/a. The radial velocity error increases to an end-of-pass value of about 65 c/s, which
can be understood when It is realized that observations from a single pass do not yield
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Pig. 9: The effects of the assumed state noise at Vile end of the two-revolutions date gap
on the semi-major axis errors and standard deviations durlpS the second pass. The
plot on the left Peters to assumed radial, cross-track and along-track position
and velocity errors of. 20 m and 2 on/a, respectively, the plot on the right to
errors twenty times as larges.

sufficient information on the precise shape of the orbit. A positive radial velocity
error leads to increasing radial pqeltton errors and, according to the equations f'or the
satellite motion, to increasing negative along-track position errors.

The radial and along-track position errors %luring the two revolutions betueen the
f irat and the second pass are plotted In Pig. 8. 1he oscillating along-track position
error remains leas than 3.5 km during this period and is about 0.9 ým at the start or the
second pass. The radial position error Is about 0.'- km at the start or the second pass
and never exceeds 0.8 km during the two revolutions. To compute the stan6ard deviations.
the state oovarionoe matrix has been propagated by applying the series expansion
technique for # and the constant value of" 2.5 a/s/day ror the computation of" Q. Prom Fi.
8 the along-track position accuracy estimate shows up to We rather conservative. Thic•.
partly due to a too pessimistic modeling of the effects of unmodele-1 perturbationsb. ".
for a1 larger part due to the rather large state variances at the end of the first pass
which in turn are a result of the use ot the correlation correction rector during that

paS•
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PFigure 9 depicts ror the second pass the effects ot the assumptions made ror thecomputation etof the stat eo-noise matrix ateer the two-revolutions data gaP."oWhile fo all results presented in thls a pd st ate ne p r after an pntrval between
two passel on computed frrm the assumpt radial, orosrad a, o-track and alons-traik
position and velocity errors of. 20 m and 2 em/s, respectively, in Ptg. 9 also the results
are plotted ror state noise values whiah ave twenty times larger. It is clear that the
semi-major axis errors during the seond pass do not diorit r considerably roe the tyo
earouptlonst In both cases the errors are lers than d0 ac. nhe estimated eate varftnces,
however, are more realistic for the tiler state noise values. e hat the state component
esthmates do not differ a uch In the two cases and that the atouraoy estimates hardly vary
durtnd the pass is characteristic lot the semi-major ax8.. Poe the Other orbital elements
it was iound that, . denerally, the smaller state noise values y.9 ld t ores-accurate testimatev and dereasin8 estimated standard deviations. on

the tat coariace atrx hs ben popaate by pplingtheseris epan~oV
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The inclination errors during the first three passes are shown in Fig. 10. During the
first pass the inclination errors take a nearly constant value of about 0.0070 and show
no decrease with time. This could be expected because range measurements from a single
pass contain almost no information on the orientation of the orbital plane. Consequently,
inclination errors are not filtered out easily. At the beginning of the second pass the
inclination error still has the same value but after the first observations of the second
pass have been processed the error decreases and converges to an end-of-pass value of
about 0.00070. At the end of the third pass the inclination error is even less than
0.000060.

The total position errors Just before the processing of the first observation of the
second and third pass, which are primarily errors in cross-track and along-track
direction, are 1.4 Ion and 0.4 km, respectively. Assuming that the distance of GEOS-1 at
the start of a pass is 2500 km, a position error of 1.5 km corresponds, depending on the
pass geometry, to a topocentric angular error of I to 2 arcminutes. For ranging to
satellites at altitudes below 2500 km the Kootwijk laser station usually applies a beam
divergence of 3 to 10 arcminutes. So, in this example, the Kalman filter position
prediction is so accurate that at the first laser firings during the second and third
pass the satellite is actually within the laser beam and no satellite search process is
required.

The radial, oross-track and along-track position errors during the third pass are
shown in Fig. 11. The errors in radial direction are generally less than 15 me in crons-
track direction generally less than 60 m and in along-track direction about 60 m. These
accuracies fully satisfy the Kr'otwijk laser system requirements mentioned in Section 2
for the application of a small beam divergence and a short time window. Interesting is
the behavior of the along-track position error. The filter computes standard deviations
of about 17 m, while the estimated along-track position contains in reality a nearly
constant error of about -60 m. This Indicates that, just as shown in Fig. 7 for the first
pass, only the first few observations contribute tc the Improvement of the along-track
position component. The computation of the along-track state variances is obviously too
optimistic, indicating that a further tuning of' filter parameters still has to be
performed.

9. CONCLUSIONS

For investigating the possibilities to use laser range observations acquired at the
KootwIjk satellite observatory for (semi-) real-time improvement of the predicted
satellite positions, a computer program called SORKA has been developed. The main
requirements were that SORKA could satisfy both the accuracy level needed for operational
laser ranging and the capabilities of a small local computer. Until now, SORKA runs on an
IBM 370/158 computer and the implementation on a local computer still h~a to be studied.
In the design or SORKA precautions havw been taken to make such an lmplementatoion
possible.

All tests In applying SORXA to simulated and real observations of oGE03-1 nd 00,S-3
look promising and lusttfy the continuation of the efforts to laprove the computations
scheme such that it beat suits the laser ranging system characterltica. It has been
demonstrated that a *table Kalman filter process can be obtained when uoing laser range
measurements from one tracking sttion. It was found that divergence, which vtry easily
may occur when processin only laser range measurements. can efefctively be suppre-ed by
applying a correlation correction factor and an iteration scheme In the observation-
update step.
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SUMMARY

This report presents two methods for determining the optimum state estimate for the angle
only ballistic trajectory problem.

The first method utilizes the techniques of Marquardt matrix conditiorning and explicit
Jacobian in determining the weighted least squares state estimate of a ballistic trajectory.
This Marquardt least squares (MLS) algorithm is a batch or nonrecursive process. A descrip-
tion of a similar least squares batch technique is included in this report for a better
understanding and a means of evaluation by comparison.

The second method applies the explicit Jacobian technique to the recursive Kalman filter
equations. This improved Jacobian-Kalman filter formulation when combined with the MLS
batch process for initialization forms the desired total angle only tracking algorithm.

NOTATION

A Measurement matrix

At Time between measurements

AX Deviations of state from novinal set

A Estimate of AX

AY Deviations of measuremonts from nominal or calculated set (i)

BrT Total energy

ECI Earth centered inertial coordinate system

C Measurement errors

f,g The f and g series values

f1,fifg State vector velocity ccmponents

i f4'fs'f4 Tivo derivative of state vector velocity components

* Gravitational constant

1#,g1 Azimuth, elevation measurements

HH° Kalman gain matrix

£ Identity matrix

J Jacobian matrix

KE Kinetic energy

"Marquardt matrix conditioning factor

N Kass of earth

PE Potvnt iel ener-y

, State transition matrix

ft Range

A Range rote

fR Rang* vector

Radius of earth
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RS Center of earth to sensor radius

_ 11 Center of earth to target radius

,R y,Rz The x,y,z components of R

S Sensor position vector

S,S1
1  State covari~nce matrix

-SxS y,'S ZThe x,y,z components of S

SCT Sensor centered topographic coordinate system

OE One sigma uncertainty in E

000,c One sigma measurement uncertainty in 6,0

T Target position vector

20 Initial target position vector

T x,T y,Tz The x,y,z components of T

tn tn-l.*tnL Time for each measurement

T Time step for f and g series

8,o Azimuth, elevation measurements

First time derivative of 0,0

Second time derivative of 8,0

u0 ,p 0 ,q 0  The f and g series terms

H •0Initial target velocity vector

-R Relative velocity vector (target-sensor)

VS Sensor velocity magnitude

VS Sensor veloc$ty vector

VT Target velocity magnitude

Target velocity vector

W Measurement covariance matrix

-X Time derivative of X

X Estimate of X

XS Sonvor state vector

X'X State vectcr

xy#z State vector position components

E y.5 State vector velocity components

-XE,2Xg State vector position oomponents

*$ StaLo vector velocity components

SxZC Time derivative of state vevtor position components

"Time derivative of state vector velocity components

ER~yR~iRThe x,y,z components of

The x,y~z camponents of

Xa Chi-squared

S Y Estimate of Y

S Y, Measurement vector

* Normalized



1. INTRODUCTION

This report deals with the problem of state estimation of ballistic trajectories with
angle only measurements. This type of problem becomes difficult when the observer is free-
falling and more difficult if the observer is then located in the plane of the observed
trajectory. The methods described in this report are very effective against this most dif-
ficult case, and superior to existing angle only tracking filters in terms of stability,
computational requirements, and tracking performance.

The first method described herein utilizes the methods of Marquardt matrix conditioning'
and explicit Jacobian in determining the weighted least squares state estimate for the non-
linear, time varying, dynamic system of a ballistic trajectory with nonlinear noisy measure-
ments. In this case both the equations of motion and the angle observations are nonlinear
functions of the state. This Marquardt least squares (MLS) technique is a nonrecursive or
batch process in that all the observations must be processed each time a state estimate is
made. The method of incorporating a priori knowledge of the total energy into the MLS algo-
rithm to assist in poor observability problems is also discussed.

The second method takes the explicit Jacobian technique developed for the MLS algorithm
and applies it to the recursive Kalman filter equations. This improved Jacobian-Kalman
filter formulation together with the MLS for initialization form the complete angle only
tracking algorithm.

This report is organized as follows. Section 2 provides the background material and the
step by step development of the equations for the standard weighted least squares batch
filter and MLS algorithms. A discussion of the energy constraint concept and the applica-
tion of the explicit Jacobian method to the Kalman filter is included in this section. Sub-
section 2.1 presents the weighted least squares solution for the general nonlinear system
problem. This serves as a common basis for both the standard weighted least squares batch
filter and the MLS algorithms which are developed in subsections 2.2 and 2.3, respectively.
No attempt is made to make these derivations mathematically rigorous. The energy constraint
concept is discussed in subsection 2.4. The application of the explicit Jacobian technique
to the Kalman filter equations is presented in subsection 2.5. Section 3 gives the perform-
ance results for several ballistic trajectory problem test cases. Section 4 contains the
conclusions.

2. ALGORITHM DESCRIPTION

2.1 Weighted Least Squares Concept

In general, the fundamental problem of concern can be stated as follows. A nonlinear
system can be represented by the linearized model matrix equation:

SAY = AAX + e (2-1)

where AY is an n^x 1 matrix of the deviations of the observations (Y) from the nominal or
calculated set (Y), AX is a k x 1 matrix of deviations of the unknown parameters from a
nominal (known) set, A is an n x k (n ý k) known matrix, and c is an n x 1 matrix of obser-
vation errors (unknown). The problem is: givpn AY and A and the linearized.model of Eq.
(2-1), find the "best" estimate of AX called AX. Once the,"best" estimate AX has been
determined, the "best" estimate of the unknown parameters X may be determined by

X = X + (2-2)

where X is the known or nominal set of parameters. In this case the "best" estimate is
"acheived when the weighted least squares criterion is satisfied; that is, when the sum of
the squares of the components of the weighted residual vector is minimized. This quantity
can be represented by:

AYTW'1AY (2-3)

where W is the known n x n measurement covariance matrix. This weighting matrix accounts
for the difference in confidence between various observations and the possible correlation
between them.

The well known weighted least squares solution (formulated by Gauss in 1794*) to this
problem is

AX , (ATW 'AKLATW-IAY (2-4)

which combined with Eq. (2-2) yields the total expression

X - X + (A'W 1A) ATW 1AY .(2-5)

Given some initial guess of X, this expression is normally iterated as follows until the
current patametew estimates do not vary appreciably from the previous iteration.

*Formulation included only the diagonal terms of W.



Evaluate Aywith X
CalculatejY for X

IX =X + (A W-A)-ATw1AYXX

Eq. (2-5) establishes the basis for both the standard weighted least squares batch filter
and the Marquardt least squares algorithms. The following sections will show how these two
different formulations are derived from this common expression thus demonstrating both their
similarities and differences.

2.2 Standard Weighted Least Squares Batch Filter

For a given set of observation times t t It t the linearized model represented
by Eq. (2-1) can be expanded to give

~n •nAnAXn n

n-l n.AXn-L n-L

AY A AXn~
n-L) -, n-.L) + n-L/(26

For a time-varying "linear" differential equation model, that is,

d AX(t) F(X(t)) AX(t) (2-7)=' dt

the "approximate" solution is given by

AX(t + At) = AX(t) + At F(X(t)) Ax(t) (2-8)

Factoring out AX(t)

AM~ + At) I+ At F(X(t))) AX(t) (2-9)

which yields the following transition relation

AXn-1 = Dn-l,n AXn (2-10)

Note that two approximations were required in arriving at this last expression: (a) the
linear differential equation model and (b) its approximate solution. The significance ofthis will become apparent in the development of the Marquardt weighted least squares algo-rithm in subsection 2.3. Using Eq. (2-10), Eq. (2-6) can be written as

AY n An AXnCn

AY ni An-l 4p-n AXnI en-+ (2-11)

n- -nL on-Li ,n

Now factor out AXn to yield

AY -I cn-Inn-l,n AXn + Q n (2-12)

n-L) ( n -L n I)n-L,)
From Eq. (2-12) the following matrix is defined

An-i n-l,n
)(2-13)

Eq. (2-11) can now be written in the compact form
AY •(n) " Jn Axn + C(n) (-4



The weighted least squares solution for this linearized model can be writen as an exre s11
of Eq. (2-4) to give

n nW(n) J n W(n) A(n)

Similarly, the final expression becomes
^ (jT W-1 - T -1 2-6

X =X +(JnW Jfl J W( AY (2-16)Xn=n n + ~ }J n W(n) Y(n)

which can be iterated by the procedure described in subsection 2.1. While the iterative
solution for this expression essentially represents the standard weighted least squares
batch filter, a few more definitions are required before the final algorithm can be pre-
sented.

For the ballistic trajectory problem, the state (parameter) vector may be expressed in
terms of an earth-centered inertial Cartesian coordinate system

x x
y X
z X

x~ - x~ (2-17)

x6)

For a spherical earth the exoatmospheric trajectory equations of motion are

k2  f, X

.! Gx,Hx~e f, --

GMXI

where G is the gravitational constant, H is the earth's mass, and R is the magnitude of the
position vector.

The first order Taylor series approximation for the transition matrix 0 defined in Eqs.
(2-8), (2-9), and (2-10) is

Sn-l~n 0 1 + 7(X(tn)) (tn - tn)

Sn-2,n • 1 +- (X(tn)) ( 2 -t)

• (2-19)

I 0n-L~n - Z 4 F(Z(t.)) (t,.L - t5 )

! *o.1 ***

[F(X (yn)]ij (2-20)

where f4 are the'derivative functions of the state vector ( -f(X) defined in Eq. (2-10).
The partial derivatives for sq. (2-20) are given in Appendix A. A more accurate method
for determininq the transition matrix is to use the transition matrix determined for the
previous observation tims in determining the transitiol matrix for the current observation
time. This reduces the timm interval over which the transition matrix must be valid and
allows for evaluation of the F matrix vith the updated nominal State. This method produceos
the following set

,__•-,;...•.•,.•,.,.-,..,•,.•,•..,, .... -••.,,•...-.:.•..•.:•?•,,•.. ..; .... ,..,......... ........ ,...,..................,,........................,,...',...'.."-..



fn-1,n = I + F(X(tn)) (tn_1 - t n)

In-2,n II + F(X(tn-1 )) (tn-2 - tn-l)} 4n-l,n
• (2-21)

in-L,n= {I + F(X(tn+lL)) (tnL - tn+lL)} ' ,n+l-L,n+2-L

By this method the magnitude of the time interval is restricted to the time between observa-
tions. If this time interval is still too large, this propagation technique can be further
applied by subdividing the time step between observations. For example, if there are m
subdivided time steps of h then the first expression in Eq. (2-21) would be

ýn-l,n= {I + hF(X(tn))} {I + hF(X(tn - h))}..41 + hF(X(tn - (m-l)h) } (2-22)

The angle-only observation set for the ballistic trajectory problem can be defined as

( (7) (t (2-23)
92 \tn'2R Vx+ Ry'

x
where Rx, Ry, Rz is the relative position vector (target-sensor) in a topographic coordinate
system which is defined in Appendix B. The first order Taylor series approximation for the
measurement matrix An defined in Eq. (2-6) is

"-- 1 ax- " (2-24)
"L]ijn i,Jj X=X(tn) 2_i.

Dx1  axe X=X(tn)

where gj are the functions relating observations to states Y J(X) defined in Eq. (2-23).
The remaining set An... .,AnL are obtained in similar faahi~n using X(tn.I) ... X(tnL). The

partial derivatives in Eq. (2-24) are given in Appendix B.

The weighting or measurement covariance matrix W, assumed in this study, is

[w] 1 (2-25)
0 a

where o0 and a , represent the one sigma uncertainties in the uncorrelated measurement set

One final tezp is required before the final algorithm can be presented. Instead of
building the entire matrix in defined in Zq. (2-13), Eq. (2-16) may be rewritten in the
following form

JT M-b JT M W' a4 2-26)
•n Xn+ J(1)n;l- nn1 n+l-i ¥n+l-i

where J(l) Ant ,Y.) Jn(L+l), AnLtnLn.

All definitions have now been given for the standard weighted least squares batch filter
algorithm which is presented in Figure 1 using the notation defined in this section. This
is essentially the algorithm described by Lincoln Laboratory* and is basically the Gauss
weighted least equares solution defined for the ballistic trajectory problem. The formula-
tion presented in Figure I raeqLrte at least three pairs of angle observations or three
cycles of the measurement loop. For this formulation the nominal state vector is defined
at the final observation point.

In this algorithm some initial state "ss is successively corrected in an attempt to
satisey the weighted least squares -riterion. For observations at times tn~tnl n
this quantity isl

_+l-i " Yn+l-i| Wn+l-i (¥n~l-i -yl--i)

--•. .-- ..............................



- fiX) EaUATIONS OF MOTION

Y-0X) EOUATIONS RELATING OBSERVATIONS TO STATES

- A-- DEFINITIONS:

I IDENTITY MATRIX

S, 5S 1 +tTATw
1
'A A * MEASUREMENT MATRIX

0 W * MEASUREMENT COVARIANrCE MATRIX

1 Y-900- TRANSITION MATRIX
Z S2$+2 ~ ' S--Y) $ - STATE COVARIANCE MATRIX

Fig. 1 Standard weighted least squares batch filter algorithm

If the process is converging, this quantity becomes increasingly smaller at a decreasing
rate as it asymptotically approaches its minimum .a~ue. The process could thus be terminated
when this quantity does not decrease significantly from the previous iteration. Another
criterion for terminating the iterative process is the one shown in Figure 1

y+- M xkUT S M+l XO(2-28)

-I n - NOIA.TAEVCO

Note that in this quantity the measurement residual has been replaced by the difference in
the nominal state vectors for successive iterations and the measurement covariance by thestate covariance. If the process is converging, this quantity approaches zero. Therefore,
termination of the iterative process would be based on the magnitude of this quantity rather
than a change in magnitude as in the previous method. In either case the cutoff point is
established at the level at which tracking performance is unaffected.

Because the weighted least squares batch filter is a batch or nonrecursive process, allof the observations must be processed each time a new measurement pair is added to the
observation set. In addition to this requirement, all the measurements of the observation
set must be processed for each iteration of the least squares procesas indicated in Figure
1. Therefore, termination of the iterative process at the earliest possible point is essen-
tial. The nonrecursive characteristic of the batch filter and resulting processing require-
ments tend to restrict this algorithm to the initialiation of track function. For the ini-
tialization of track function, the resulting weighted least squares state estimate and state
covariance are projected forward to the next observation point where they serve as the ini-
tial state and covariance for a Kalman filter algorithm. The weighted least squares algo-
rithm can also be applied again at this point using these same projected quantities as ini-
tial conditions.

In Section 3 it will be shown that this algorithm does not always converge. Therefore,
a series of tests are made after each iteration to determine if the process is converging.
.he algorithm is determined to be nonconvergent if any of the following tests are truei

1) Too many iterations (15)
2) Position magnitude too large (1.5 x 107m)
3) Velocity magnitude too large (1.0 x 104m/sec)
4) Altitude too low (100 m).

The values listed are possible limits for these tests. If the process is nonconvergent,
then the pair of angle measurements for the next observation point are added to the obser-
vation set and the weighted least squares algorithm is performed again.

Thus far, the problem of obtaining an initial state guess to begin the iterative least
squares process has not been addressed. One possible method for obtaining this initial
state guess is the one described by Lincoln Laboratory' and presented in Figure 2. For
briefness, the derivation of this method is given in Appendix C. In this method the azimuth
and elevation are fit with a second order polynomial for a batch of angle measurement data
(at least three pairs). The azimuth and elevation along with their first and second deriva-
tives are solved for with the polynomial fit at the time of the last observation. These
quantities are then used in an iterative set of energy and geometry equations to solve for
the range and range rate, which are in turn used to estimate the initial guess of the state
vector for the weighted least squares process.

The iterative energy/geometry equations used to establish the range and range rate
require an initial guess of the range and an a priori estimate of the target energy. This
set of equations is cycled until the new estimate of the range does not vary from the pre-
vious estimate by more than some given tolerance. The selection of energy as a constraint
for the initial state guess is made because of its relative constancy over the whole trajec-
tory for a given set of ZCBM threats with the sawe ground range. While the initial state
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Fig. 2 Initial state guess algorithm

guess from this process is constrained in an energy sense, the final state estimate from
the batdh filter algorithm (Figure 1) satisfies the weighted least squares criterion and
is therfore independent from the initial state guess and the a priori energy estimate.

If this initial state guess algorithm fails to converge, then the pair of angle measure-
ments for the next observation point are added to the observation set and the process is
repeated.

2.3 Marquardt weighted Least Squares

The Marquardt weighted least squares (MLS) technique is derived from the same basic least
squares solution as the batch filter algorithm described in subsection 2.2. For clarity
this expression is repeated here

^ T - - T - ( - )Xn = X n + (JnW (n)Jan) JnW (n) AY (n) (-9

where

AEAS

An-1 On-l,nJ n =1 " (2-30)

Y AGn-L 0 n-L,n G

At this point one may deviate from the derivation of the previous section by solving for the
Jacobien matrix [Eq. (2-30)) explicitly, thus eliminating the requirement for a transition
matrix 0 which is based on an approximate solution [Eq. (2-8)] to an approximate model (Eq.
(2-7) ]. This in accomplished by a different interpretation of the measurement matrix A as
defined in Eq. (2-24) and Appendix B. Instead of taking the partial derivatives of thefunctions relating observations to states with respect to eachstate for some instant in

times from thi prcssircntoiecinenerg sotaene the farinals sftate meastimaefrmen

equations at times tpndet n1 thnL with iespect to each state at time tn

X-X n .. .X~n-)
Thif this initia closed foge solution of the equations of motion which is supplied through
f and g series equations for a free falling body. While thois approach requires a tomewhat
cThmbersoe development of equations, the final working algorived will be shown to be a very
precise a t rapid method for calculating the Jaobian matrix explicitly.

For siplirioty in this section the observation set is defined somewhat differently from
the previous secion



[ g) =X) (2-31)
g2  lhin,' (T f)}

where

SR=T-Sor Ry = Ty Sy (2-32)
R Rz Tz S z

where T and S are the ECI position vectors of the target and sensor respectively. Now pro-
ceed to take-the partial derivatives of the measurement equations with respect to each state
(x11x2. ...xs) as specified in Eq. (2-24) keeping in mind the new interpretation of the mea-
surement matrix A.

e x (IR _!yR R (2-33)
_ýX R Dxi Rx 3xi;
Yh aR I : _ Bz Rz(, aRx + Rya Rz (-4

R - RR (
ax IR2  ) Y ++R X Rz -. (-34)

From Eq. (2-32) continue with

aRx = Tx MY = TTy Rz = 3Tza " ax' axi axi. Tj = (2-3i
For some instant in time the solution at this point would be trivial: !- = 1; fX =
DT ax, 3X2

S- 1; all remaining terms are zero. This would be the desired result for the least

squares batch filter described in subsection 2.2. For the general case of interest continue
with the f and g series equations for a free falling body

T - fTo + g9VToUx) ,1V_ - (x • (2-36)
| ttn'x t'tn

Continuing with Eq. (2-36)

-i• x Df •a1T + x. 1, i 2, 3, 5, 6

i~ I ?X

T___ XafI

a - x + f + xDo
K! " x + x4 r- + g

8T
X 2x + x 6, i 1, 3, 4, 6iT i (2-37)

f x8 + f + x6

3T + ~ +

Of a

.2 IX + f + x g
i- 8,T'X_ +xx +Gia1 ,4

I I

In order to coontinue, the eighth order terms for f and g are introucl•ed. 5iut first, define
the terms ui, P., and qe for simplicity.
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U~ I U -,U 3/22x + XI + XI)

Vo * T
Po XX 1 + XSX2 + X6 X 3  (2-38)

I ~ 2~ + x

Ivof 1 - I PuI2 U, x4 + X +iX2

-x + xf + x1 (xi + xzy÷ + XW/2

where p is the product of the gravitational constant and mass of the earth. With these
terms f and g can be defined

f 1- UOT
2 + I~ Uu~POt3  + 7T(3 uoqu - 15 uop~o + ul) r4

+ 1 (7 uupg - 3 uopuqo - ulp,) T'

+ A (630 uopjqo - 24 u2qo - ug - 45 uqj - 945 uop• + 210 uipj) T6•20

1+ 30--4 (882 U2 poqo - 3150 ulpi - 9450 uOplqo

+ 1575 uopuqj + 63 u~po + 10395 uopo) T
7

+ (1107 uOqj - 24570 utp2uqo - 2205 ujp' + 51975 utp4,

- 42525 Uopjqj + 155925 uOptqo + 1575 uoqu1 + 117 'dqo

- 135135 uOpI + UQ) T' , (2-39)

g , - ,.,UOt + ¼* UopO°T + 10 uoq, - 45 uop, + uj) T$

+ 160 (210 uOpj - 90 uopoqo - 15 ujp,) r

1
+ g (3150 uoplqo - 54 ulq0 - 225 ugq- 4725 uop-

+ 630 uIpI - ub) T + M (3024 uQ~pOqo - 12600 uvpI

- 56700 uoplqo + 9450 uopoqj + 62370 Uopi + 126 u~po) x .

Using Eqs. (2-38) and (2-39) continue with
Af at Du + f l u + at 1 SfI.

Tx- N- i~jL T-503xi -q,5xi(2-40)
a~~~~ 132 +uq

iUL _L+ qi&

Solving first for the partials of uo, po, qo with respect to the states

iu (x + x- 3 xl) I i - 1, 2, 3

O_" - 0, 1 - 4, So 6
Tx-i

a'13 2x i (xx + xbx1, 2, 3+xj + -• , ,im
Sxf + x1 + X1+ (XI + X1 + xI) ' I

a x : - 4, 5, 6" x! +xl +x| '(2-41),

S-(XI + xl + xl)2xi 3Px 2
(x 4 ++ -. £

F Ix! XI + x1 + XI) (xI + x| + xi)'/

2x1

3xi A+ +x1 + 41

And finally solving for the partial& of f and g with respct to u,, po, q,

,++,+ .... . . . :. I+';.,,<,+ ..+•, !.,



af 1 2 1 1
__ -f T + f POT, + 2T (3qo - 15 pj + 2u.o) T1

+ 1~(7p) - 3poqo - 2uopo) TO

+710- (630piq. - 48uoqo -3U2 - 45qj - 945pj + 420u~pj)T6

+ -5040 (1764uopuqo -6300uoplu - 9450piqo + 1575poq1 + 189ulpo

+ 103 95pI) T7 + Td (2214u~qj - 4914u~pjqo - 6615uozpi

+ 10395uopt - 42525piqo + 155925ptqo + 1575qj + 351ujqo

- 135135pi + 4uj) To

- . T +IN4 + 1 (9qo - 45pi + 2uo) T35

1* Ir (210pl - 9Op~qo -
30uupo) T'

*5-040 (3150ypuqo - 108uaq* - 225qj - 4725pt + 1260u~pi 3u*) x7

+ 1 (6048uOpoqO - 25200uopl 56700piqo + 9450peqj

+ 6237Opt + 37800pe) TO

4- V ~ (-30uupQ)T" + -1 (2uopol - 3uoqo - ul) Ts

+ I' (1260u~p~qo - 3780uopi + 420uipg) TO (2-42)

5040 (882uiqo - 9450ulpi - 28350uoplq* +e 1575uvqI

+ 63u1 + 5197uopl) T?

TM~ (-49140ujp~q, - 4410ulpo + 207900ulpi - 8505Ou~pcqi

+ 623700uoplq, - 81O810uopj)y*

~;.~u~ ~(-0M, T g (630tjopi - 90u~q* - 15uz) x6

+ (63001Jepoq, - 18900uspi + 126Ou*p#)T 1

4 W (3024U~qu - 37800ulip - 17010Ouopiq.4 +94$0u,,q

+ 311850u#0~ + 126ui) TO

O (U,)1 (-3usps) v 4 (630uspi - 24ia1 - 0qvt

+ ~q (2214ulq# - '2457uipi - 45OS0u~pi + 1SS9 2StUPI

+ 4725ueqI + 14 jv

iq g r (9us)~ It Toj -9Ouspe) 0 wr tlSOuept - 54u:)

-4S0usq*)t' I + (3O24ulpt - S6700uopi + 1R900u,p~qs)31

This complete:+the Coacept~ of explicit 3acobian which is a fundamentally different approach
from the algorl0w 'isoribed in subsection 2.2 where the transition matrix is required. In
the next section the extension of this explicit Jicoblan ooncopt to the Kleman filter formu-
lation is proposed.

The iterative solution method of the weighted least squate* formulation tZq. (2-29)) can
be enhitncad by t~ev method at Marquardt matri contditioning'. basically this method involves
the addition of a variable factor A to the diagonal terms of the state coVariance 4~~
in order to improve the tonvergence proprties of tht iterative solution method



tGauss-Newton). This method results in the following modification of Eq. (2-29)

normalized S* normalized S1
X= X + (�JTW(n)n + JnW(n) AY(n)

denormalized AX

Note that in order to include the factor X, a normalizing/denormalizing procedure is
required. Using the symbol * to indicate normalized, Eq. (2-43) can be represented by thefollowing set of equations which defi e this normalizing procedure.

X - X + AX

S(2-44)

"n .n n,

The Marquardt method approaches the Gauss-Newton method (used in the algorithm described
Sin subsection 2.2) as X-O and the method of steepest descent as A-. In addition, the step

size increases as X*O and decreases as X-a. The strategy is to decrease X if the solution
is converging and to increase ) if it is diverging. This method thus has the ability to
converge from a distant initial guess, and also the ahility to converge rapidly once the
vicinity of the solution is reached.

As discussed in subsection 2.2, one can avoid building the entire matrix n by formula-
ting Eq. (2-43) with its algebraic equivalent

+ I /L+1
n Xn + T (i)W i ti + ýI

i- n n(2-45n
L+l

where Jnl}) Y Jn(2) %-I' A ... Jn(Lel) * A

With the techniqueo of explicit Jacobian• and Marquardt matrix conditioning establiahad,
the final working tIgorith s Tonow presented in Figure 3. The algorithm to presented in t.he
som formt as the standard wbitited sleat square* batch filter• of subsectlon -2.2 (figure 1)
sto that the two methrds c~ih. 4--1€e•.•,1 directly. The absence of a trandition matrix M

the uv of el'rquardt mAtrA. 4riditioninc v. the distinguishing features for this formula-
tion. The use of the clogod form *olut•0i; for Vie equations of motion (f and g series)
required by the espiciv Jacobian tochtiiqois* ise 0 a key element. Also note that the par-
tiWls for the meanai_-a•nL matrix aro the partials oi the measuremcnt equations at times tno
tnl,, e..inL With resct to each stat. at tive t n. This means that the % I•R• terms
in rEq. (2-33) •,d (P-34) art evaluated with the orates st tim tn! tnfl ... tn-L while Eq4.

(2-3$l, (2-30) 4nd tA-41) are evaluated with the state at time t n(n).

The r, thvd for' varying the Marquardt factor A is included in Vtqure 2. The chi-squared
(x') quantity is the criterion used to detexeine if the process •so onvergi.g. If this
quantity imar~oos from the previous iteration, the process iS dett-,%ined to bo diverging
and the factor A is increased by a factvo. of $0. It this quantity de'ieaseu from the pre-
vious iteration, the process is deteraiu;d to be converging and the faitor A Is decreased
by a factor of 10. An initial value for I of 0.0001 is used in this *Iq4.ritbm, Note that
in the dLvrgent case the process is loopedback only to the point where tin, factor I is
added thus ting the se quantities for St and S.

Like the batch filter of the previous section the Marquardt least squares algorit)lm
requires st. least three pairs of angle observations Ithree cycles of measurement loop) and
def•ieo the nominal state vector it the final observation point, Tho W rquardt least
S squares is oleo a batch or nonrecursive process to that oil -o• :th,; ",ataust be pro-
oessed each time a new wiasurement pair is added to thr :.Ne-'14•tio set. toth .AIgoritaw•
produce the ýmoe weighted least squares state estiwr-1.' Oc,,evelt- VWii non. ii-
tieal state gu*ss. A comparison of the two eeithods &1 vhua'rfoe b'" xcvrn e wvti Cu,
stability and the computation reqeiremento of eac,

The Marquardt least squares could use the anw:,i %,natcoi"4~ imtl~ai ntatu gi.isu *Igo-
rithm descrLbed Ln rigure A to supply the intil asat* guess tr besi4n the itoditiv* pPo*e.s.
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Pig. 3 Naxquardt weighted least squares with explicit Jacobia,

A less expensive and simplified method can also be used since the Marquardt least squares
process is very stable and converges for a very wide range of state estimates. This simpli-
fied initial state guess technique is described as follows.

For observation times of t n, tn0 i ... tn.L the following observation set may be defined

-- (2-46)

Using the first (NLl aud lat in) observation points the appxiato angle rates "ae

-6 h -t - n t f)/Itn -. 
(2-47)

(on "n-L /tn t n--)

Tevelocity mglu frtetarget can be alupoximated by tesquare root ofthamo
its omponnt8s squa"ed

V*+ - ( j' - ta* ( 14)'•) ' .(-4 

*)

SolvIng tot the tange rate yields

&*(vI- (ski)~ - 1 11) (2-49)
Given some init4al auess for the velocity manItude V and range facquisitloh ranqe A,),
"the ramqc rate I May be detertined from t0o. (2-49). The rasee at the linal observation
PuOInt may now be determined by

+t *R (to %n-L)

At this point the working coordinate system of Figure 4 IX', T', V) It introduced ua
, tre Stat. Vwctor in this of syete can be copaut.d 4iretly from the quantities An#

. ill'

II 

"*1

+ 

, • 

.'
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Fig. 4 Working coordinate system (X, Y', Z)

The X, Y, Z coordinate system in Figure 4 is the observer centered Cartesian coordinate sys-
tem produced from the d` 'ference in the target and sensor ECI position vectors (X - XS).
The state vector for the tarqet at the final observation point in the working coordinate
system can now be computed directly as

xi0

J; 0
X, = x (2-51)

n

n

The transformation matrix to convert this state vector from the V, Y, Z' system to theX, Y, Z system is

oos coo -sin 0 -sin coo 0

C j cos sin 0 coo s -sin sin0 (2-52)

L sin 0 Cos 00n

The desired state vector at the final observation point in an ECI coordinate system can be
written now

X =CX' +XS *(2-53)

This simplified technique could be used as the primary method for establishing the ini-tial state guess for the Marquardt least squares algorithm, or it could be used as a backup

for the energy constrained iterative algorithm (Figure 2) when it fails to converge.

2.4 Energy Constraint

The problem of state estimation of ballistic trajectories with angle only measurements
becomes difficult wuhen the observer is free-falling and more difficult if the observnr is
then located in the plane of the observed trajectory. This section presents the idea of
incorporating an energy constraint into the angle-only tracking algorithms to assist in
these poor observability problems or to enhance the solution of any type of tracking problem
in general. The selection of energy as a constraint is made because of its relative con-
stancy over the whole trajectory for a given set of ICBM threats with the same ground range.
Thn following energy constraint method can be incorporated into either of the weighted least
squares algorithms discussed in subsection 2.2 or subsection 2.3,

The total energy (per unit mass) of a free-falling body can be expressed as the sum of
the kinetic and potential energy

E - KE + PE V - (2-54)

where V is the velonity magnitude, R is the magnitude of the position vector (earth centered
system), and u is the product of the gravitational constant and the earth's mass. The tUtal
energy difined in Eq. (2-54) is incorporated into the angle only tracking algorlthm by
assuming some a priori knowledge of the enpected magnitude of thlis quantity and its asto-
ciated uncertainty. This expected or mean energy magnitude can be consideied as a pseudo
measurement thus expanding the measurement set of the Marquardt least squares for exam ?3 to



R

Y g2 sin-Tt (2-55)

~E} K:: 1/2 V2 K

In other words the a priori mean energy magnitude serves as the measured energy while the
estimated or calculated energy is determined from Eq. (2-54) using the estimated state vec-
tor. Because the total energy is constant over the whole trajectory its contribution as a
pseudo measurement is utilized only once at a single measurement point.

Reformulating the total energy in terms of the target ECI state vector

x4 + X1 + xf 1
2 (xI + x + )/2(2-56)

the required partials for the Jacobian matrix (subsection 2.3) or measurement matrix (sub-
section 2.2) are obtained

i 1, 2, 3
S(xI + x + x)

(2-57)aE
- i i - 4, 5, 6

N-1

The measurement covariance matrix is alaso expanded to accommodate the expanded measurement

set

020 01

(W] 1  0 02  0 (2-58)

10 0 0

The uncertainty in the energy could be input directly or computed from a uniform distribu-
tion given some maximum and minimum energy values

al - (Emax -gain (2-59)

12

Because the energy constraint concept is based on some a priori energy estimate, the
resulting least squares stake estimate will be biased if this assumed a priori energy is
different from the actual energy. Furthermore, the bias will increase as this difference
ikicreases and as the uncertainty in this pseudo measurement is decreased. An analysis and
possible cure for the energy constraint bias problem is given in subsection 3.2.

2.5 Kalman Filter Application of Explicit Jacobian

Unlike the bAtch least squares process of subsections 2.2 and 2.3 the Kalman filter is
a recursivt minimum varLance filter. Using two angle measurements at each observation
p.',nt, this algorLthm determines the current target state estimate such that the state
covarlance Is minimized. Thus, the state estimate is conditioned on all measurements made
up to that time. The Kalman filter is recursive in the sense that only the current measure-
.nt. need be processed.

The minimum varianed estimate equations can be arrived at through the weighted least
squares conc-'pt, so the mitsimum variance estimate is slso the weighced least squares esti-
mate, and the Kalman filter eln be said to be a recursive form of the batch filter. The
Kalman filter uses the same linearization approximations as the batoh filter of subsection
2.2 for the measurement and transition matrices. However, due to its recursive nature,
errors introduced through thee approximations can build up resulting in a tracking perform-
ancA which tends to deviate from the least squares batch filter results. The improved
Kalaan tilter formulation presented in this section will be shown to match the batch least
aq. %res results.

Using the tcitation developed in the previous sections the linearized model matrix equa-
tion for the reoursive problem is

UAY An On,n-1 •Xn- CC (2-60)



where

AYn -• deviations of the observations (y) from the nominal or calculated
set (ý) at time tn

An = matrix which transforms the state at time tn to equivalent obser-
vation parameters

*n,n-1 transition matrix which transforms the state at time tn_1 to time tn

AXn1 deviations from the estimate of the state at time tn-1 which cor-
respond to AYn

en observation errors.

The well known Kalman filter solution to this problem is presented in Figure 5. As dis-
cussed in subsection 2.2 and repeated here for clarity the transition matrix t in the usual
approach is determined by solving the "linear" differential equation model

AX T(t) =F (X(t)) AX(t) •(2-61)
dt

An "approximate". solution is given by

AX(t + At) = AX(t) + At F (X(t)) AX(t) (2-62)

so that

N(t + At, t) = I + At F (X(t)) (2-63)

or

4n,n-l =I + At F (X(tn)) (2-64)

where

afi ;f"

F [(X(t 0 (2-65)

X X(tn)

ax, ax6 X=X(t n

and
dX

f(X) - (2-66)

As discussed in subsection 2.2 the accuracy of $ can be improved by breaking At up into
equal fractions h - At and using the equation

0'(t + kh,t) I + hF (t + (k - l)h)] s((t + (k - l)h~t) , k 1,2,3... .m. (2-67)
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Fig. 5 Kalman filter algorithm



Additional accuracy can be achieved by adding another term to the approximate solution of
Elq. (2-62)

AM~ + At) =AX(t) + At FMt W.Xt) + --y (P(t) + F2 (t)) AX(t) (2-68)

Another method for attacking the accuracy problem is to solve for the Jacobian matrix
(A v nn) explicitly as was done for the MLS algorithm in subsection 2.3. The partial
(A n,n-1)

derivatives of tho measurement equations with respect to each state for the explicit
Jacobian are identical to those derived in subsection 2.3 for the MLS algorithm. In order
to implement the explicit Jacobi&n into the Kalman filter formulation of Figure 5 one need
only to substitute the Jacobian ufhere ever the pair An *nn- occurs. Using the notation

of Figure 5 the Kalman gain matrix equation can be written as

T TT[ T T W -

_= n,n-l 8nl 4 nnl An n ln,n-1 n-I n,n-1 n

which would yield the following Jacobian formulation

H = nl s jT s 1  T + W (2-70)• n,n-I S-ln-I

In similar fashion the updated state covariance matrix equation can be written as

T TSn = On,n-l Sn-l On,n-l - H An 'n,n-i Sn-I "n,n-l (2-71)

which would yield the following Jacobian formulation

sT T (2-721
n n,n-l n-l n,n-l n-l n,n-l

The resulting Jacobian-Kalman formulation is presented in Figure 6.

This is only an intermediate formulation presented at this point for clarity. From
Figure 6 the equation

Xn =Xn + H(Yn - Yn) (2-73)

can be written as

On,n-l Xn-l On,n-l Xn-1 + H(Yn Yn) (2-74)

or
_•Xn_1 i n_1 + 0 nn- H(Yn i n) (2-75)

n,n-Il n

From Figure 6

H1 S J i (s +) (2-76)
n,n-1 n-l n-l "

Letting H' = $ H and using Eqs. (2-75) and (2-76) the final Jacobian-Kalman algorithmn,n-l
is presented in Figure 7. This final algorithm is very similar to the intermediate result
of Figure 6 but has the following advantages. In the final algorithm the transition matrix
has been eliminated entirely from the equations used to determine the final state estimate.
When the transition matrix is calculated for the state covariance update, it is evaluated
with the final state estimate.
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Fig. 6 Jacobian-KaIman algorithm (intermediate)



For the Kalman filter formulation Eqs. (2-37), (2-38), and (2-41)^are evaluated with Xn-1
while Rx, Ry, Rz terms of Eqs. (2-33) and (2-34) are evaluated with Xn. Note that for
this formulation the state estimate Xn-I must be projected forward to tn each time an
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Fig. 7 Jaoobian-Kalman algorithm (final)

iteration is performed. This is accomplished with the f and g series (Eqs. (2-36) and

(2-39)].

3. PERFORMANCE EVALUATION

3.1 Test Case Description

Five test cases were used to demonstrate the performance of the tracking algorithms pre-sented in this report. These cases represent different degrees of difficulty in terms ofrelative engagement geometry. In each case both the sensor and target are on ballistic tra-
jectories. For cases 3, 4, and 5 the sensor states are identical. The initial ECT state
vectors for these test cases are given in Table I. Some of the initial characteristic tra-
jectory parameters which further describe these five test cases are given in Table II.

3.2 Case 1

In terms of tracking performance this case provides the best results of the five test
cases. The aspect angle in Table II confirms the favorable tracking geometry provided with
this case. The Marquardt least squares (MLS) results for this case are shown in Figure 8
for both the constrained and unconstrained mode. The results are for 50 Monte Carlo trials
and assume an angle measurement accuracy of 20 prad (10). A frame time of 10 sec was used
so the initial results shown at 20 sec track time are for three measurements. For the
energy constrained mode, three sets of results are shown for assumed one sigma energy uncer-
tainties of 10, 20, and 40 percent ( aenerqy x 100) . Note that all constrained cases
approach the unconstrained results.

The standard least squares batch filter results for this same case are shown in Figure 9.
As expected, these agree with the MLS results of Figure 8 since both algorithms provide the
same least squares solution to the problem. The somewhat erratic behavior of the energy
constrained performance appears to be case dependent since almost identical results were
obtained for different sets of measurements simulated with different random number sequences.
Note that the standard least squares batch filter experienced convergence problems for the
unconstrained mode when less than five measurements were utilized while the MLS algorithm
4id not.

In Figure 10 an attempt is made to give some indication of the computational speed of the
two least square algorithms. The algorithms were made equal in terms of state projection
methods and criterion used for termination of the iterative process. The performance is
given in terms of CDC 7600 CPU run time per Monte Carlo trial. No attempt was made to enu-
merate the number of computational operations for the two algorithms. While this is a rough
computational comparison, the results shown in Figure 10 indicate promise and warrant fur-
ther investiqation for what appears to be a faster MLS alqorithm.

The bias error introduced through the a priori estimate of the target energy in the energy
constrained mode was also investigated for this case. In this analysis the effect of the
error in the a priori estimated energy on the resulting bias was examined. The results of



Table I
Test Cases - ECI Initial State Vectors

x Y Z I x
(mn) Wm Wm thdw-.) (M/,•) (m/300)

CASE 1
"-TARGET 20553w7.0 -2486767.2 6363203.= -1137AO -5320.04 -1810.7

SENSOR -362437.1 -3641i.30 6376142.4 251.65 2618'77 -2004.02

CASE 2
TAR43ET 586 -1917635.6 8148127S 171.90 -3871.66 -2046.71
SENSOR -409131.6 -4254290.7 6641171Z- 190.14 1977.13 -974.70

CASE 3
TARGET -216163M -2011906.4 7467062.0 -594.01 -4874.89 -2107.44
SENSOR -33969.8 -44486933 5091404.1 -493.60 -1039.40 2644.72

CASE 4
TARGET -255729.4 -11867730.1 7591101A -566.59 -4828.72 -1896.57
SENSOR -339809.8 -444893.3 5091404.1 -493.60 -1039.40 2544.72

CASE S
TARGET ;198123.0 -1731424.1 7661489.0 -576.84 -4841.16 -1714.CS
SENSOR -339809.8 -4448693.3 5091404.1 -493.60 -1039A0 2544.72

Table II

Test rases - Initial Characteristic Parameters

SENSOR ALTITUDE TARGET ALTITUOE -RANGE W.PECT ANGLE

CASE KFT KM KFT KM NMI' KM I"eg

1 3572 1069 2006 764 1800 2779 44.8

2 6032 1534 4 2027 1490 277M 10.7

3 1322 403 an 13 183 3406 3.3

4 1322 403 4713 1441 1944 3601 &A

5 1322 403 4M17 1419 1WI1 3743 3.2
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this analysis are shown in Figure 11 for a track time of 150 sec and for asswed one sigan
enorgy uncertainties of 10 and 20 percent. As an examlo, if the a priori energy measurement
was 20 percent in error and a one siaa energy untertsinty of 10 percent vas used then the
bias on the range estimate vould be 30o a. One must therefore balance the benefits gained
through the use of smaler energy uncertainties against the resulting increase in bias fur
Lnworrect a priori energy measurements.

In order to eli•inate the bias problem and the high processing requirements of the con-
strained batch process, the ideal approach is to initializo track vith the constrained least
squares batch algorithm Ain then to handour to bthh unconitrained Kalman plter for the con-
tinuous track function. The least quarov batch algorithe n ould olperate in the forey con-
stra•ned mode to improve perfomance and quarantev convergence of the unconstrained Kae=an
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Fig. 11 Bias error due to incorrect assumed energy

filter. Using this method, any bias error introduced through the energy constrained least
squares batch process would be removed by the unconstrained Kalman filter. This method is
especially attractive if the Kalman filter performance matches the least squares batch
results which is the case for Jacobian-Kalman filter formulation.

The Jacobian-Kalman filter results for Case 1 are presented in Figure 12. A five mea-
surement constrained HLS was used to initialize the Jacobian-Kalman filter. Three sets of
results are shown for a 5, 10, and 20 percent one sigma energy uncertainty for initializa-
tion. Also indicated are the MLS results from Figure 8 to show how the Jacobian-Kalman
matches the least squares batch performance when initialized with an energy constrained ZLS
algorithm.
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SFRAME TIME -10 sa•
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In order to 4amonstrate hey the unconstrained Xalman filter ranow" the bias error intro-
dueod through an incorrect a priori energy estimnte in the constrained least squares batch
process the folloving test vwa made with Casm 1. A bias orror was introduced by assmaing
an a pWiorl energy exthuat. tao the fLive masurmeant least equares initializetion algorithm
vwhch Wa 10 percent in ertor. the resulting bias euor after initialiastion (Irue - 40



sec) and after each subsequent measurement processed by the Jacobian-Kalman filter is pre-
sented in Figure 13.
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Fig. 13 Jacobian-Kalman bias - Case 1

3.3 Case 2

This is a more difficult case than the previous one due to its near in-plane geometry.
The MLS results for this case are shown in Figure 14 for both the constrained and uncon-
strained mode. The standard least squares batch filter results for this same case are
given in Figure IS for comparison. Notice that the unconstrained and 40 percent energy
uncertainty constrained cases were omitted for the standard least squares batch filter due
to convergence problems. Also note that in order to ensure convergence for this problem
beyond 100 sec of track, this algorithm must begin track at 10 measurements or less. These
problems were not experienced with the XLS algorithm.

The Jacobian-Kalman filter results for Case 2 are presentr4 in Figure 16, A five mea-
surement HO. algorithm with energy constraints was used for initializat..on. Also indicated
are the XLS results from Figure 14 for comparison.

3.4 Case 3# Case 4, and Case 5

These three cases which are all very similar in geometry proved to be the most difficult.
The aspect angles in Table 3-2 indicate a relative geometry very near to in-plane. The
unconstrained HiS results for these three cases are given in Figure 17. Although no results
are presented for the standard least squares batch filter, convergence problems were again
experienced for both the constrained and unconstrained mode using this algorithm.

The JacobLan-Kalxan filter results for these three oases are presented in Figure 18. A
five **asurement MS algorithm with energy constraints was used for Lnitlalisation. These
roeults match the W.8 performance shown in Figure 17.

4. 00"CLUSIONS

Based on the perfomance results of Section 3, the ALS algorithm is a very stable and
computationally fast algorithm. The L94 aigorithm has been shown to be a superior algorithm
in terms of stability and oniputational requirements when compared to existing least squares
batch algorithms which use both a meausnteent and transition matrix. This algorithm has
haver experienced convergence difficulties against even the most difficult of relative
"engagement geometries. In addition this algorithm hat been shown to converge for a very
wide range of initial state guesses (*50 percent range guest). the use of the explicit
Jaoobian "thod provides for higher accuracy and speed by eliiniating the need for the
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transition matrix used in the usual approach. This improved accuracy along with the tech-
nique of Marquardt matrix conditioning contribute to the enhanced stability of the algo-
rithm. When used in an energy constrained mode this algorithm serves as an ideal initiali-
zation technique for the' Jacobian-Kalman filter algorithm.

Bias errors are introduced in the energy constrained mode of the KLS algorithm when the
a priori estimated energy measurmiont is in error. This biAs becomes greater as the uncer-
tainty in the energy measurement is decreased. Thi3 problem can be eliminated by Initial-
iLing track in the constrained mode and then handing ovtr to the unconstrained Jauobtan-
galimn filter algorithm for the continuous track function. by this method, any bias error
introduced in the energy constriined initialization process is roboved in the wncoustrainod
saloan filter. This approach is especially attractive since the Jacobian-Kaln filter per-

fomrance matches the least squaresbatsch results.

The application of the explicit Jacobian technique to the Kalman filter formulation has
produced a recursive tracking algorithm whose performanco has been shown to match that of
the least squares batch process. This is an improvument over existing Kalna* filter algo-
rithms which require both a measurement and transition matrix which results in a tracking
performance that tends to deviate from tho least squares batch performance bound. For the
test cases described in Section 3. the tracking porformance flo range error) for the
Jacobian-Kalman filter algorithm was consistently 30 to 50 percent better than the per-
fodmance of a tracking algorithm which used this latter type of SaLman filter formulation.

1. Marquardt, Donald !-%, "An Algorithm for Least-Squareas Ectiation o1 Nonlinear Param-
stere," Joutrnalof the society for Industrial and Apied anthsmatics. Vol. 5, No. 1,
watch 1957, pp. 32-35.

2. Chang, C. D., and Dunn, K. P., Asole-Only Trackine Algorithms and Their Performance
Project Report No. B11-153, Lincoln l~aboratory, Massachusetts institute of ?echzw1lOgY.
L ngton, iNasachusetts, 26 October 1979,
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APPENDIX A. TRANSITION EQUATION

State vector
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Equations of motion
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APPENDIX C. DERIVATION OF INITIAL STATE GUESS ALGORITHM
2

Relative State Equations z (UPI TART•E

x = R sin 8 cos ,fI

y = R COs 8 cos

z = R sin 0 *EAM
x R sin 8 cos * - R * sin 0 sin * + R cos 8 cos M -TIAYAiGRAICT) (C-I)

y=Rcos cos - R cos e sin - R cos 8 sin

k=Rsin + R Cos~

Dividing k, y, i by R

a, = sin cos -o sin 0 sin * + Cos 8 cosa

a 2 = = cos 0 cost- cos ( sin - • cos sin (C-2)
R R

as = j= sin + ; Cos 4

Velocity Vector Definitions

VT = Target velocity vector in SCT system

VS = Sensor velocity vector in SCT system

VR = Relative velocity vector (TARGET-SENSOR)

ST = YS + VR

S 1 R + aiRi
Y is + ' ] - + a7R

L: J [R Js + a3R

Target velocity magnitude squared

VXT1 2 . (xs + aSR) 2 + (is + a 2R) + (is+ a R) 2

IXVTV R2Caj + al + al) + R(2ý a, + 2a,+ 2i~a3 ) + (c*' + j3+

Energy equation per unit mass

ET * Ekinetic + Epotentiai - T - (C-4)

where RT - distance from earth center to target and U V gravitational constant x earth's

mass.

Combining Eqs. (C-3) an€ (C-4)

R( + a' + a') + R(2ý ai + 2isa2 + 2isas) + (ý' + a+ ~)- 2ET - 2v * (C- 5)

a b c
Quadratic solution of R

R a.-b + 4* ao
2a (C-6)

From geometry 
low,

RT - (R2 + R1 +2RR sins ,*) l
S 6(C-?)



For a free-falling body
-R= tan •-i•-
R 26

1) Calculate (Eq. (C-8)]

2) Calculate a,, a2, as [Eq. (C-2)]

3) Calculate a, b (Eq. (C-5)]

4) Calculate RT (Eq. (C-7)]

5) Calculate c [Eq. (C-5)]

6) Calculate R [Eq. (C-6)]

7) Repeat 4, 5, 6 until R converges

8) Calculate ( [Eq. (C-8)]

9) Calculate x, y, z, (, y, . [Eq. (C-1)]



NEW SMOOTHING ALGORITHMS FOR DYNAMIIC SYSTEMS
WITH OR WITHOUT INTERFERENCE

Kerim Demirba§

School of Engineering and Applied Science
University of California, Los Angeles

California, USA
1. INTRODUCTION

In target tracking: First, a motion model which describes the motion of the target tracked as
accurately as possible, and an observation model are obtained. In a clear environment (i.e., there
does not exist any interference such as jamming or clutter); these models are in general, discrete and
linear with respect to the disturbance and observation noises. Moreover the observation noise is an
additive Gaussian noise where the Gaussian assumption is due to the Central Limit Theorem. Next,

½ using one of the estimation algorithms already developed in the literature 9 - 1 3 (e.g., the (extended)
Kalman filter algorithm), the target states are estimated.

If either the motion or observation model is nonlinear (in general, this is the case), then the

optimum solution to this estimation problem can not be given due to nonlinear functions in the
models. However, a suboptimal solution is given by using a nonlinear estimation algorithm. By a
nonlinear estimation algorithm (e.g., the extended Kalman filter algorithm), the states are estimated
as follows: First, using a Taylor series expansion, the nonlinear functions are linearized around
some points so that the nonlinear estimation problem is reduced to a linear one. Then using a known
(usually) solution to this linear estimation problem, the states are estimated. Hence, if the nonlinear
functions are not smooth enough for a Taylor series expansion, then the nonlinear estimation algorithm
may produce estimates which are much different from the actual values of the states. Therefore, some
estimation algorithms for an estimation problem with nonlinear functions which are not smooth enough
for a Taylor series expansion are needed.

If both the motion and observation models are linear, we have a problem of state estimation in
a linear discrete time system. The solution to this problem has been treated extensively in the
literatuce.

9 - 1 3

In the tracking of a target in the presence of interference (such as jamming or clutter which
is, in general, not Gaussian noise), an observation model with only additive observation noise may
not be used since it does not account for the possibility of utilizing measurements originating
simultaneously from the interference source and the target. Still, if a classical estimation algorithm
were used to track the target by using an observation model with only observation noise, the estimates
of the target states may diverge from the actual values. Hence, some estimation algorithms are needed
for discrete models with arbitrary random interference as well as an observation noise.

This chapter treats the problem of state estimation for discrete odels with or without interference.
As a result, three new smoothing algorithms are presented so that the need mentioned above is fulfilled.
The main idea for these smoothing algorithms is that of quantizing the states of the models to a finite
set of states. This (approach) reduces the smoothing problem to a multiple (composite) hypothesis
testing problem. Further, using three decoding techniques of information theory, the smoothing
algorithms are developed. The first smoothing algorithm is referred to as Optimum Decoding Based
Smoothing Algorithm, which uses the Viterbi decoding algorithm. The second smoothing algorithm is

-* referred to as Stack Sequential Decoding Based Smoothing Algorithm, which uses a stack sequential
decoding algorithm. The third one is referred to as Suboptimum Decoding Based Smoothing Algorithm,
which uses a suboptimum decoding algorithm.

2. SMOOTHING ALGORITHMS

2.1 Models and Assumptions

Through this section, we deal with the following discrete models

x(k+l) - f(k, x(k), u(k), w(k)) (Motion Modal)S , (2,1.1)
z(k) - g(k, x(k), v(k)) (Observation Model)

for target tracking in a clear environment. In the presence of interference we deal with the following
models.

"y(k+l) - f(k, x(k), u(k), w(k)) (Motion Model)
(2.1.2)

z(k) - g(k, x(k), I(k), v(k)) (Observation Model)

where

x(O) is an n x 1 initial (target) state random vector

x(k) is an n x 1 (target) state vector at time k

u(k) is a q x 1 known pilot-command vector at time k

w(k) is a p x 1 disturbance-noise vector at time k with zero mean and known statistics

v(k) is an L x 1 observation-noise vector at time k with zero mean and known statistics

z(k) is an r x 1 observation vector at time k



Time k is time to + kTo where to and To are the initial time and the observation interval,
respectively.

f(k,x(k),u(k),w(k)), g(k,x(k),I(k),v(k)), and g(k,x(k),v(k)) are (linear or nonlinear) vectvra

with appropriate dimensions.

Furthermore, the random vectors x(O), w(j), w(k), v(9), v(m), I(n), and I(p) are assumed to be indepen-
dent for all J, k, £, m, n, p.

2.2 Quantization of States and Transition Probabilities

This section describes a kind of quantization for targer states and some difficulties in calculating
transition probabilities between quantization levels.

Let us consider the state x(k). It is a random vector whose range is in the Space R (n-dimensional
Euclidean space). Let us divide Rn into nonoverlapping subspaces, Ry'a, and assign a unique value
xqi to each subspace RI where subscript q stands for quantization.

Definition 2.2.1 A function x () A Q{x(.)} is a quantizer for the state x(-) if the following
hold

(a) x(') A Q(x(.)} = x whenever x(.) n()xq qi i*

(b) Xqi is unique for each Rin

Definition 2.2.2 x (-) is the quantized state (vector) at time., and its possible values are
called the quantization levels of the state x(.).

n n
Definition 2.2.3 Subspace Ri is sometimes called Gate (or Cell) Ri.

Defiitio 2.24 x is the quantization level for Gate (Cell) R n

Deiiin .. qi V"
n

Quantization means that whenever a random state vector x(.) falls within a given subspace, say R, the
state x(.) is quantized to the unique value xqi (see Figure 2.2.1). Let us now define the tran~tion

probabilities, which govern the target motion within the gates.

R n

-• .

Figure 2.2.1. Quantization and Tcansition Probabilities

Definition 2.2.5 The transition probability iT m(k) is the probability that the state x(k+l)
will lie in the gate qn when the state x(k) is in the gate Rý, i.e.,

I M(k) A Prob{x(k+l) E Rnlx(k) c Rn) . (2.2.1)

By definition, the conditional probability r W(k) can be rewritten as

j •m



Prob{x(k+l) E Rn, x(k) C Rn)

"Prob{x(k) F-

j1

n({ [J p(x(k+l), x(k)) dx(k+l)] p(x(k)) dx]c)} (2.2.2)np(x(k)) dx(k) Rý R

where
p(x(k+l), x(k)) is the joint probability density function of x(k+l) and x(k)

p(x(k)) is the probability density function of x(k)

p(x(k+l)jx(k)) is the conditional probability density function of x(k+l) given x(k).

It is not usually easy to evaluate the transition probability irjm(k) analytically. The difficulties
arc due to the shapes of the gates (Rn and Rg), the statistics of the disturbance noise vectors
(w(.)'s), and the initial state vector x(O). In order to see this, consider the following linear
motion example

x(k+l) = Ax(k) + w(k) (2.2.3)

where

x(O) is an n x 1 Gaussian initial state vector

x(k) is an n x 1 state vector at time k

w(k) is an n x 1 Gaussian disturbance vector at time k

A is a constant transition matrix with appropriate dimension.

Moreover, the random vectors x(O), w(k), w(k) are assumed to be statistically independent for all k,
Z. Hence x(k+l) and x(k) are linear transformations of the Gaussian random vectors x(O), w(O), w(l),

and w(k). Thus, p(x(k)) and p(x(k+l)Ix(k)) are normal density functions. Therefore the evaluation
of the probability

p{x(k+l) E R n x(k) C R }

is not analytically possible. The problem is more difficult if the motion model is not linear. If
the transition probability iT m(k) needs to be calculated, it should be performed numerically. Even
this may be difficult. In other words, the evaluation of the exact transition probabilities between
gates is not practical. Therefore, the next section discusses an approximate target motion model
obtained by approximating the disturbance noise vector w(k) and the initial state vector x(O) by
discrete random vectors (see Appendix B), and by quantizing the state x(k), as described above, for
all k - 1, 2, .... For this finite state model, the transition probabilities can be calculated easily.

2.3 A Finite State Model for the Target Motion

Throughout this section, gates are assumed to be generalized rectangles such that the zero
vector 0 (origin) is located in the center of a generalized rectangle, say R8 (see Figure 2.3.1).

S....Pdl ()+p{•{k 1"(k)

.•:!+':!'~w~k-vi~ 11~)-•xqk%-ql~~)•j

Xq orgi 'q gil..

Figure 2.3.1. quantization with Generalized Rectangles



Let the lengths of the sides of a generalized rectangle, say Rn, be g 1, g12, ..., gin These lengths
are said to be the sizes of Gate Ry. Moreover, the quantization levels for gates are assumed to be
the center points of the gates, namely

X(. Q{x(.))} -X if x(.) C R n (2.3.1)

where Xqj is the center of the generalized rectangle (gate) R.n

Let us Dow define the finite state model which approximates the target motion model. The flow
chart of this finite state model is in Figure 2.3.2. For each k, the disturbance noise vector w(k)

v(k) ix(O)

Approximate v(k) by a Approximate x(O) by a
discrete random vector discrete random vector

vd(k) with mk-possible Xd(o) with no-possible

values values

"wd(k) f. [wdl(k),-d2(k) ..... mk (k)) xd(O) c (xdl(O),xd2(O),.... X, 0o(0)}

with Prob(v 'N) - wdi(k)1 - pdi(k) with Probxd(o) - x d,(o)l . pdj(O)

i = .. i- 1,2,... no

x(k+ 1) - 1"(k,Vq (k).u(k),wj(k))

i x q(k) x q(0) ý Xd(O)

Quantiter ~ 4) unit i.e.
SXq(O) x ,(O) ror 411 1

Figure 2.3.2. The Flow Chart of the Finite State Model

is approximated by a discrete random vector VA(k) whose possible values are wdl(k), Wd2(k) ... wdmk(k)
the corresponding probabilities are pd(k), Pd2(k)W .... pd"(k), i.e..

Prob{wd(k) - vdi(k)) - pdi(k) I * 1, 2, .... mk

where mk is a positive integer, and the subscript d #tands for discrete (aee Appendix B). Also the
initial stato vector x(O) is approximated Ly a discrete rondom vector x (0) whose possible values are
Xdl(o), Xd2( 0 ), -.., xdnK(0); the c,,rrespottdIng probabilities are pdl(0l, Pd 2 (O) . . Pdn 0(0), i.e.,

Prob(xd (0) - x - t()) I - 1, 2, ... ' n

where no is a positive integer. Further, In the (target) motion model, replacing the digturbance
noise vector w(k) and the initial state vector x(0) by tite discrete random vectorn wd(k) and xd(0)
respectively, and then quantizing the states by Quaetizer (2.3.1), the target motion model is reduced
to the finite state model

x q(k+l) - QU(k, x q(k), u(k), wd(W) (2.3.2)

where
Q(}) is Quant•zer (2.3.1)

x (k) is the quantized state vector at time k, and its possible values (i.e., the
quantization levels of the state vector x(k)) are xqi(k). xq2(.) .... xa (W)
where ng is the number of possible quantization leveIs of the state qnk
vector a(k)

x (0) x (0).(by definition, xit(O) & xdI(0), i - 1, 2, ... , no; in other words, the
qtantization levels of x(O) are assumed to equal the possible values of the discrete

ý..random vector x(0))

u(k) is a known pilot-cormand vector at time k.

Throughout this chapter whenever the target motion model (or the state equations, or the target motion)
is mentioned ve refer to Model (2.3.2)1 i.e., it Is assumed that the target motion is described by
(Finite State) Wodel (2.3.2).

The transition probability wfjt(k). which is defined by the conditional probability that the



quantized state vector xq(k+l) will be equal to the quantization level x £ for Gate R9  given that the
quantized state vector x (k) is equal to the quantization level Xqj for 8ate R, namely,

q q

Tr(k) = Prob{x (k+l) = x= Xk (2.3.3)
J1q Xqgxq~ xqj}

is determined as follows (see Figure 2.3.1).

Let us assume that the quantized state vector xq(k) is equal to the quantization level xqj for
Gate Rn (i.e., the target is in Rn at time k). The transitions from this quantization level to the
others are determined by the discrete random vector wd(k) and the function Q{f(k, Xq(k) - xqj, u(k),
wd(k))}. The disc:ete random vector wd(k) can take any value in the set {wdl(k), wd2(k), ... , Wdk(k))

with corresponding probabilities Pdl(k), Pd 2 (k), ... ' pdmk(k). Thus, the quantized state vector

x (k+l) may be equal to at most mk different quantization levels. If the function f(k, xq(k) - Xqj.
uk), wd(k)) maps Xqj into another gate, say Rn for only one possible value, say wdi(k), of the discrete
random vector wd(k), then the transition probability nji(k) (from Gate Rn to Gate Rn) is the prob-
ability that the possible value wdi(k) of wd(k) occurs, i.e.,

T. wJi(k) - pdi(k)

However, if the function f(k, xq(k) xqj. u(k), wd(k)) maps xqj into another gate, say Rn, for more
than one possible value (say Wdl(k) and wd2(k)) of wd(k), the transition probability Yrg(k) (from
Gate Rn to Gate Rt) is the probability that the discrete random vector wY(k) is equal •o one of these
possible values (wdl(k) or wd2 (k)), i.e.,

f J1(k) - Pd1 (k) - pdl(k) + Pd 2 (k)

where the summation is over all u such that

Q{f(k, x q(k) - Xqj. u(k), wdn(k))) - xq1*

Having determined the finite state model, we can represent the target motion by a diagram called
"* a Trellis diagram for the target motion.

2.4 A Trellis Diagram for the Target Motior

Let us assume that the quantized state vector x (k) hat nk possible values, say, xql(k). X 2()
... , x k(k) where nk is a positive integer. To represent the target motion by a graph. we adot the

following convent ions

(1) Each possible value of xq(k) in represented on the kth column by a point (sometimes
called node) with the corresponding quantization level so that the kth column contains
the possible quantization levels of xq(k) (in other words, the possible Sates in which
the target can lie at time k) where k a 0, 1, 2, ...

(2) The transition from one quantization level to another is represented by a line having
a direction .ndicatingt the direction of the target motion.

Hence, the target motion from time sero to time L can be represented by a directed graph shown in
Figure 2.4.1, which is called the trellis diagram for the target motion from time zero to time L.

Definition 2.4.1 A path in the trellis diagram is any sequence of directed lines where the final
vertex of one is the initial vertex of the next one.

2.S Approximate Observation Models

So far the target motion model has been reduced to a finite state model which uses the quantized
state vectors (xq(()*a). However, the oboervation models in (2.1.1) and (2.1.2) use the target state
vectors (x(.)'s). Thus, in the observation models in (2.1.1) and (2.1.2), replacing the state vector
x(k) by the quantized state vector x q(k), the following approximate observation models are obtained

&(k, x q(k), v(.)) in clear environments

a(k) (2.5.1)

1(k, x (k). I(k), v(k)) in the presence of interference
q
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Figure 2.4.1. The Trellis Diagram for the Target Mution

From now on, whenever the observation model (or the measurement model (equations)) is mentioned,
we refer to the models in (2.5.1). The observation models In (2.5.1) are used in the following
analyses.

Let us consider the trellis diagram in Figure 2.4.1 where it is assumed that, without loss of
generality, the target will be tracked from time zero up to and including time L. Therefore, the
trellis diagram is drawn from time zero to time L. Time zero refers to the initial state. Let us
now define the following which will be used throughout our further analyses.

n is the number of quantization levels for the gates in which the target may lie at
time i, in other words, the number of posaible values ot the quantized state vector
x (W) whore i , 0. 1. 2, .... L
q

1(i) is the set of all the quantization levels for the gates in which the target may lie
at time i. namely.

44~) A {x qli). x q2l W..... x qn IM))

where
I - 0, 1, 2, ... , L

N is the number of possible paths through the trellis diagram- this number is less than
or equal to

LlT nj
J.0

R is the ath path through the trellis diagram, which is indicated by a thick line

X, (i) is the quantization level for the gate in which the target lies at time I when it
q folr-we path li. an other words, the possible value of the quantizd state vector

xq(i) which the mth path passes through. Por ex&,mple, in Trellis diagram 2.4.1,

x (0) - xq2( 0), xm(l) - xq2(l). x2(2) - Mx(2)..
I is the probability that the possible value of the initial state vwctor xj(0) from which

0 the mth path starts occurs, namely, rt Prob(xd(0) - m(O)). For examp e, in Trellis

diagram 2.4.1

it Prob(xq(0) x (q0)
0 4 -

CI'



7i is the transition probability from the (i-1)th gate for the mth path (i.e., the gate
from which the target passes at time i-i when it follows path H') to the ith gate for
the mth path. In other words, it is the transition probability that the target will be
at the ith quantization level (node) of path H, at time i when it is at the i-1
quantization level (node) of Hm at time i-l, that is, i A Prob{xq(i) - x1(i) )Xq(i-) -
xm(i-l)}. For example, in Trellis diagram 2.4.1
q

-im Prob{x (1) - XN(l)IX (0) -x(0)}
1 q q q q

SProb{xq(1) = Xq2 () IXq(0) = Xq2(0))

iT' = Prob{x (2) = '(2)1 x (1) - xM(1)}

SProb{xq(2) - Xq2(2) IXq(1) - Xq2(W))

max is the maximum of the probabilities that the quantization levels at time zero occur,
i.e.,

max

Tro A amxt0) Prob{xq(O) - a}
exaq

IT m is the maximum of the transition probabilities from the quantization levels at time
i-i to the quantization levels at time i (where i - 1, 2, ... , L), that is,

7ra . max Prob{x (i) - aXq (i-1) - b)aE:6(i) q
be•(i-l)

min
7r0 is the minimum of the probabilities that the quantization levels at time zero occur,

i.e.,

70min (0max Prob(xq(O) - a)

rmin is the minimum of the transition probabilities from the quantization levels at time
i-l to the quantization levels at time i (where i - 1, 2, ... , L), namely,

"i ac(i)n Prob(xq(i) * aIXq(i-i) - b}
bcX(i-l)

A (x(O), xm(l, x(L)) which is the sequence of the quantization levels (nodes)
which the m path passes through, obviously,

qxm(i) f 6(1) 1 * 0, 1, 2, ... , L

IL (a(l), z(2), ... , z(L)} is the observation sequence from time 1 to time L

1 (1), [(2), ... , I(L)) is the interference sequence from tize 1 to time L.

Obviously, the target motion occurs along one of the possible path* in the trellis diagram. Hence
our ala is to decide a path in the trellis diagram, which is moat probably followed by the target,
by using the observation sequence zt. Because of randomness in the models, our approach must be
statistical, i.e., a statistical optimization proble. Based on the observations, we shall guess
which path was followed by the target. Hence, a criterion is needed. For a tracking problem, a
suitable criterion say be the minimtm error probability criterion, which is a special case of Bay*s
criterion in Detection Theory. Using this criterion reducei the problem of finding the path moot
probably followed by the trsget to a (Composite) Multiple Hypothesis Testing problem.

2.6 Minimum Error Probability Criterion

In the previous section, we labeled the H possible paths through the trellis diagram Hi, H2 ,
UK. Sometimes these paths are referred to as Hypotheses. Hence, usirn the minimum error probability
criterion and the observation sequence, we would like to decide which hypotheses is true (in other
words, we would like to find the path moat porobably followed by the target). To accomplish this
we develop a decision rule that #ssigns each point in the observation space D to one of the hypotheses.
Therefore, we can view the decision rule as dividing the whole observation space D into M suhspaces
DI, D2, ... , and N (so* Figure 2.6.1). If the observations fall in the subspace Di, we decide that
the target followed path Hi (i.e., Hi is true). Subspace Di is called the decision region for
Hypothesis Hi. Therefore, we must choose the decision regions Dl, D2, ... , and DM in such a way that
the overall error probability is minimized.

The overall urror probability, sometimes called the Bayes risk (R), is defined by

Sa p ,(H P(2L ) dsL} (2.6.1)
1.1 j~l eacOt

' - , : .- . : - : .: .-.
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Figure 2.6.1. Observation Space and Decision Regions

where

i p ecLdIl i in clear envaronmen cns

p(a[H)" (2.6ý2)

L PIaL Hpz Ll) p(l L) dIL, in the presence of interference

p(Hj) is the probability thtat Hypoth~esis Hi| (the pat~h Hi) is true. and it is called
P01 jthe a priori probability of Hypothesis Hj

p(ZLIH) is the conditional probability of the observation acquence aL in clear

environments, given that Hypothesis Rj is true (i.e., the target followed
the path H )

p(AIII L) is the condItional probability of the observation sequence 5L in the presence
of interference, given Hypothesis It and the interference sequenco IL

p(I) it thu joint density function of the interference sequence I

In order to find the optimal decision rule, we vary the decision regions. Dl0 2, ... , and
so that the risk R is ianimsed. lz it well known that the optimum decision rule 14 is

choose Hi if p(Hd) p'(zLilH) > p(0 ) p'(zLIH j) for all j 0 1 (2.6.3)

For a given observation sequence a L, if the Inequality in (2.6.3) becomes an equality for one or
more, Hypotheses, H'1 ., any one of these Hj's and Hi can 4e chosen as the decision. This does not
change the average error probability, :hroughout this chapter for all oboervation sequences, &Lg,
for which the inequality in (2.6.3) becomes an equality, the decision it made at random (e.g.. by
the flip of a fair dime) among the hypotheses satisfying the equality. Hence the optimus decision
region Dt for Hypothesis Hi becomes

Di I (5L p(H1) PIC(LIHd) > p(01) p'(;LIHL) for all J~i, and all the observation sequence*,
&Loa, for which the inequality In (2.6.3) becomps an equality and thtn Hypothesis
Hi has been choR,-n). (2.6,4)

It should be noted that the decision regions are nonoverlapping, namely,

Diej - • for i 0 j

vhere r) and # stand for intersection and the empty set respectively. However, the union of all the
decision regions cover the whole observation space D, that is,

HD. •' Di
1-1



Hence, the optimum decision rule may be interpreted as follows: If the observation sequence z

falls within the optimum decision region Di, then choose Hypothesis (path) Hi as the decision, i.e.,

choose Hi if zL c Di (2.6.5)

Having determined the optimum decision rule (2.6.3) (or (2.6.5)) with respect to the minimum error
probability criterion, we apply it to tracking problems in the next section.

2.7 Optimum Decision Rule for the Target Paths

Let us consider the motion models in both (2.1.1) and (2.1.2) and the observation models in
(2.5.1). The a priori probability of Hypothesis Hi can be rewritten as

L ip(Li -T 71 (2.7.1)

k-O

since the disturbance noise vector w(k) is assumed to be independent of w(j) and x(O) for all j k'
where 1 is as defined in Section 2.5. Further, using the assumption that the interference vector
I(k) is independent of I(Q) for all k 0 J, we can rewrite the joint density function of the interference
sequence IL as

L
p(IL) - fT p(I(k)) (2.7.2)

k-l

where p(I(k)) is the probability density function of the interference vector I(k). Moreover,
recognizing that the sequence ý, defined in Section 2.5, describes Hypothesis Hi completely, and using
(2.7.2) and the asaumption that the observation noise is independent from sample to ample, the
function pI(zLIHi) in (2.6.3) can be rewritten as

TF p'((k)1xI(k)) (2.7.3)
k. q

where

(p(k)jsl(k)) in clear ,nviro)meats

PI(5(k)1 (k)) 1()(2.7.4)

p~a~k~l 1(k).I ) p(I(k)) dl(k) in the presence of Interferencefl(k)q

p(R(k)lxW(k)) Is the couditional probability of the observation s(k) in clear environments in
q (2.5.1), given that x(k) - x (k). i.e..

p(s~)(k)k)I ) A~ p(m(k)jx Wk - xi Wk)
4 q q

p(#(k)xI (k), 1(k)) is the conditional probability of the observation r(k) In the presence of
q uInterference in (2g.). given that aq(k) W xw(k) and l(k). that Is

q q

p(s(k) (k), W.1(k)) p(&(k (k) W x I W. (k))
q q q

Let us now consider the function p'(&(k) Is (k)) in the presence of interference, that ti

p'(slkljxt•(k)) p((kl IlW. 1(k)) M tk(27)

whether or not this Lttgral caa be evaluated In a closed form depends on the function g(kx (k) -
x (k). 1(k), v(k)), and the statistics of the is erference 1(k) end the observation noise v(V). In
Jay cases, a ntmerikal integration sight be used to evaluate It. However, throughout this chapter,
approxiadtiog the interference vector 1(b) by a discrete random vector d (k) whose possible values
are Idl(k), Id2(k), ... , Idrk(k), with corresponding probabilities p(Wdi(k)), P(1 4 2 (k)), ... , and
p(ldrk k)). I.e.,

Prob( d(k) I Idi(k)}), p(Pdi(k))

the integral in (2.7.5) is reduced to a sumation



r k

W ~ zk)Ix (k). 1(k)) p(I(k)) dl(k) Ir~zk l I()I W)p )(276
1(k) p Z-1 di di2

where rk is the number of possible values of the approximating discrete vector Id(k). In other words,
by chainging the interference I(k) to Id(k)wenmake another approximation for the observation model
in the presence of interference in (2.5.1). The observation model becomes

z(k) - g(k. Xq (k), I(k) - Id(k). v(k))

Ag(k. Xq (k), Id(k). v(k)). (2.7.7)

From now on, throughout the chapter, if it is not easy to calculate the integral in (2.7.5), the
integral will be approximated by (2.7.6). In other words, when the integral in (2.7.5) can net be
easiloy evaluated, Observation model (2.7.7). (instead of the observation model in (2.5.1)), will be
used for further analyses.

Substituting (2.7.1) and (2.7.3) into Optimum Decision Rule (2.6.3). we obtain

Choose H it f O L p'(z(k)lx (k)) > NJ L p'(a(k)Ix (k)) for all jii (2.7.8)
k-i T k q OTT k q

Powever, it is frequently more convenient to perform sumations than multiplications. Since the In
function is a monotone ircreaing function, taking the natural logarithms of both sidel of the
i~equalities in (2.7.8), we get

Choose H if In no I+ + In T(z(k)lx (W) > in + (i {in W + t p'(&(k)lx (k)))1 k-I k-I

for all j # t (2.7.9)

where

p(l(k)lx (0k) IQ clear Goviroom ts

P'(&(k)1ti (k)) "•~kp(a(k)[.z(k).I(k)), p(t(k)) dI(k) usIP4 (2.5..1) U nte,.c ~ . 7.10•.u'Zl)q q }In the proeavce of Interitroacq

i-I q(k),ldt(k)) p(I t(k)) usina (2.7.7)

p (k4,ta(kk). W pfa(k)ix Wk - a W.)I(k) *I (IiW) ui~ich to the ronitdoeal probahbility of 4(k)pt q qd i n (2.7.7), given that xq(k) , x1k) aed

Id W - 1dt 41W

Either one of the exprtessioo In (2.7.8) and (2.7.9) with the tonvetnioa in Section 2.6 to the optiuA
d6cilioo rule for decidi% the path wet probably followed by the target.

Now we are 8oing to verify the following equalitioe (or the obeervatLo models in the presnced
of Ifterferance in (2.to1) and (2.7.7).

p 'zk.x I. (M - a xWL

P(a [tlt) 1T) p(s(klxq(k))

k-I

-p (a'irma) (2.7.11)

white

p(s(k) 1a(k)) ts the conditional probability of 1 he observation a(k) in the preence of
X interference, given that aq(k) W , a(k)

q qp(ea H) is the conditional probability of the obeervation sequence a itu the presenceof Interferentce. giv that Itypotheioe III is true (i.e.. the target followed

the path a 1 ).



Let ua see this fact for the observation model in the presence of interference in (2.5.1). From
(2.7.10), we have

P'(z(k)lx (k)) - J p(z(k)lz I(k), 1(k)) p(l(k)) dl(k) (2.7.12)q f(k)q

Using Bayes' rule and the assumption that the interference 1(k) Is independent of the initial state
vector x(O) and of the disturbance noise vector w(j) for all j, k. We obtain

p(z(k), xI(k), I(k))
p(z(k)lq(k), 1(k)) -, p qx-(k p k (2.7.13)

Hence, substituting (2.7.13) into (2.7.12) and recalling that the integration is taken over all the
sample space of 1(k), yields the first equality in (2.7.11). The second equality in (2.7.11) follows
from the assumption that the interference and the observation noise are independent from sample to
sample. The same equalities in (2.7.11) can be verified for Observation Hodel (2.7.7). Hence for all
observation models already considered, the function p'(*i.) is a conditional probability density
function.

Let us give som definition& vhich will be used later on

Definition 2.7.1 The metric, denoted by KN(x (0)). of the initial node x (O) is defined by

Mh(N (0)) - la(Prob(x (0) *x (O)) (2.7.14)
qi q qi

Consequently

WXq 0

Definition 2.7.2 The metric, de•nted by M(x] (k-1) - ) of the braxh which totcaae the

quiantialtion level (node) x (h-I) to the quantiagqiion lesvel sx q ) W A deftne by

WX qj (k-1) x #q1(W) A #IPrab(xkl)W , x q& (k)ixq (N-)

3t •(k-W]l + ýQ pIl(SlWIX W) (,.$

Uefinition 1.1.3 The matric of a path fro& time gero to tie i to the wtvnto•o of the Settr$
of the initial W44 from ,hich tho path *tart* and of the metric* of the bronmes Atih the pAth
cenmicee of. Tot exosepls tho metric. denoted bry M(O(i)). of the portiou between the aodc'; ON()
*WSa OM of the path W~ypothe.sis) %~ iso

WPMi) * IQ V I IQ ilo to .?..l6)k)
q 0 k1 kI~

CoeuGe"A atly, the metric, solm s t esto d by 14(%), of the path %i (throwgh the trellis) is

I lIP01M) P*(g Ltla)) (2.7,1)

whet. a(O) is the end mado of the Path No. p(Mv) m4 p'(sL %i) are &iv*" by (2.7.1). (2.1.)) and
* (2.7,l0;.

Definition 2.7.4 The error probability of s path, say to, in a trellis disifam T with " possible
paths %I. I2, ... , %Is. the probability of deciding a path Ihich is different thea No so the one
soot proba•ly followed by the target when the target actuatly folloved the path Nm . This error

probability is de•ated by either PE6(0i, U2 .... I%4) or Pg(T) vbzre o'•bscript 9 had * a stead for
smot sad the met path. Reace



PI (Hl 'E (T)
In m

A Prob{zL C Ili

i TLn P(zLIH) d(L (2.7.18)
L a

where 0M is the complement of the decision region, D•, for the path Hm, and p(z LH) is e probability
density function of the observation sequence zL when the target actually followed the tpatin H.. Hence
from (2.6.1), the overall error probability for the detection of the patin most probably followed by
the target (denoted by R, PE, PE(H1, .... kH), or PEWT)) can be rkpre.aed in terms of the path error
probabilities as follows

MPS P(H)PE (MI' H. ... , tLH) (2.7.19)

M*1 m

where p(H1) is given by (2.7.1).
a

Definition 2.7.5 The d4-gity fuaction of the observation sequence zL when the target actually
followed the path ttm (I~e.. 9(,LiHm)) is referred to as the likelihood functiqn for the path (hypothesis)
Ha.

Therrefor., the a-titm. dteisitn rule for deciding the path moat probably followed by the target from
time ;-erzr t-,4a L lead us to choosing the path (from time zero to time Q) with largest metric (t~t
cl-. Li 115diagram). This cean be handled by using the Virerbi Decvding Algorithm (VDA) 15, 1 which
Iit ehg optimu-A dcodting algrlthm. The algoritl# which obtains the trellis diagram for the target
Ztion (model), as descrb'ed btfare, 4nd which finds the path most likely follold by the target by
using VDA Is referr-•d ti: as Optimum Decoding bAsed Smootdhig Algorithm (OSA).

-2-g• l 0 tfl ,I D•a-OOIKG USED SOTMING AUXEIl4

Initial Step - reducint the target moten owdrl to a finite stare model, a, described before,j obtai A trollis diagram for the target motion (model) fr thte z#ro to the rime, t ay L.

Until which the target will be trtc:kd, Then assitn to each node its metric.

br4arhea o o ettP! tht stdtial todes to theob e a,:t time oto; adding the: netric: to the
Fi trt s te the tfr ttc l nodea (ri t Uhsih the obserehati al),r erv. fid ath t metrica o theIvrjtlng At the ito at titw ao, label thr path with largovt *Otric (which is rall" the
best path for the 40ode at riae one), then discard the other paths. Ftinally asTsiCgn the
largest Qetric to the nod" At time one (wrh Js Called the netric of the node at time o0).

1Kt Step -f etch 40d0 at tiM k. Using the observation at tite X, calgulate the wetrico of

the branches cowiucting the nwode a! ri"e U-i to the 0n0de at1 time it: a4dditg theme ?Aotrics to
th~e -ý.trlco of tht W•0 at tto k-1 .¢from which the branches start, fin tho a"rtrig of the
i'aths mVetri at the "nod at time kan4d lab1 l the path Vith the laresstt metric (Vhic$ h 1t
€e|114 the ot Pat'% lto•r •live• W •at tie). thou d|0<rd the other pathl. V14411!r a~gign

the largest metric to theO Wde At rtiet k (which i, called thte metric o the node at tlbe i).

UI k * L, stop. and choi"m 4 tnaae L t he oe vith the la•r%*t •etric. t,
d4cidie the beat path for thlis node as the path #allowed by the target.

The followittn mcrtom illustrates the optlava decoding bated secuthlg algaorithm by sarAShle.

2.-.1 An exaple

Lot us Lonsider a target who tsetmotion frtf ti•m zero to tlie I is detsribed Ly figure Z.A.I.
Usitn 004,. we .ould like to find the path to the trellis diagria which was aoet ptobably followed
by the target frum rti sera to tlue 2.

Initll Step - To each ode st tiem zero, Its metric is assigmod. i.e..

Wi(lqj(O)) - Proba4 (0) - (OlI .a * 1( 2, )

Paros mson,. the aitrtri of the mod* aq(iW) is represented by X(m ql(k)).

"First Stee - Consider the node x IMl). The btanches N2(0 ) Nql(1 ) and a 3(0) s0ql) or.- the only
ones corninectit the r44de" 4 tism suro to x i(1). Hence calculatlnj the metrics of thes
bratichos and Othe adding thee metrics to tlie ferres of the iodes q2(0) nda 1 n(0). the
folowinl, are obtalaid

Allta A( 42 (O) * Uq(l)) M *tMS q(0))

£12 A Wx30 xqiW) *04M
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TimeZero Time 2 TimeZero Time2 Time Ze ro Tim 2

WO(X q2(O))j Xq q3(2) M) IqiM(2) )

Xq Iq2 al Xq2
Xq(2) Xq (2) 1qO) q(2)

la (X q2(0)) *(q 2 *)N(
2()

Futhr qsumn thqt All x Ai2 th at Xq2(2)xq) it chocen X~ q2(b2)pthfr

x th3 0) t x q3(0) ts dicte. 3(0o)acs ha h ol igae iial

g. Trellis iagram b. iaga t a et pthe en .Dogart h n

fo hee Tavget ofuc .. 1ba the fistatp of the fecrst step.

Figure 28.1 Diare fodra the Exampl tor the nOpte u De~cdingbased4 Sothen Algtricofthm s

Fur.ther, assumnilng thate nAll c ! 12 the path ic of(0 the . tvdis coe -aa th etpth fr h

nuear l.adAl sasge ~~he nbetai(1 aeit metic,) i q~)*e.,oi

A?.~ A I4(SNjNi) -qi 11)) Pi(ql)

then the path x ~(0) x i(1)ux? is discarded. Let-uss aow, dsuatha thatte follovin aresilay
smlryfoun d for tedfXq

qIq(0) X q2(1) Zq )is the b eet path for aq 1

*HX () HU qI (0) - 2() + II(X ql(i))

Nlonce. we hav Fig.~ture 2.8.1.b at the ead of the seirst step. i dilm ssiSta

Secoii top- Cnaior te nde qi(). ~w ruuc" J M X1(2 Ar X " xql(2)aretheone

tomottr th ua~s t tme at t th noo xl(2. Hncecalclatingthemeticsof hos
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MN(x q2 (2)) > MN(X qi(2))

the path xq2(O) xql(1) xq2(2) is chosen as the path followed by the target from time zero
to time 2.q

Having defined the optimum decoding based smoothing algorithm, its performance should be deter-
mined. This is discussed in the next two sections.

2.8.2 An Upper Bound for the Overall Error Probability

Let us consider a target whose motion from time zero to time L is described by a trellis diagram
with M possible paths HI, H2 , ... , Hm from time zero to time L. The evaluation of the overall error

probability PE for the detection of the path followed by the target from time 0 to time L is conceptual-
ly easy; however, it is in general computationally impractical since it contains multidimensional
integrals. On the other hand, upper bounds on PE are available which in some cases approximate PE
quite well. One of these bounds is presented below.

Let ri be a subset of the observation space D such that

FiA I(zL: M(Hj) > M(HI) for sbme J~i} (2.8.2.1)

where M(Hi) is the metric of the path (hypothesis) Hi and it is given by (2.7.17). Then r contains
the complement, Di, of the optimum decision region Di (since the observation sequences (zLis) for
which the -neq~ialiry in (2.6.4) becomes an equality art resolved at random into the declwton
regions satisfyitig the equalrty). It then follows from (2.7.18) the errnr probability of the path
Hi can be upper bounded by

-P (hiHI' HM < p(z IH) dzL

"E ... < pzLcr u

I L p(zLI i) ,(,L) "-1 (2.8.2.2)

where the functt.on (z L) is defined by

I1 if aL E r

0 elsewhere

Furthermore. 4(t ) can be upper bounded as follows:

if aL C ri, it thae, follow* from (2.8.2.I) that for some J I i, M(H) - (H1, >0. UHace

for some I atd any non-nelative number a. Thus, for any nom-nalativa numbers a and 0 we have

...( C et •HK(H) - (i 1) )P S I for auy us% p > 0 (2.8.2.4)

On the other hand, it &ý 9 ri, them the expressgio on the left hand aide of the inequality In (2.8.2.4)
lA at leaut a oaf-nagative amber. Therefore, for all L, we obtain

(AL) < ( up o[W(Hi) -K J)) for any a, 0 _ 0 (2,8.2.5)

I further, substituting (2.8.2.5) into (2.9.2.2) yields

*8 (a, ., 1 ,r P(.gL.g) cl e*p , i1M ) -N(1P))CO MeL (2.8.2.6)

The inrtrand In (2.8.2.6) Is obviously nou-nasetive. ilnoe eslerging the domain of the intsgratiou
tn (2.8.2.6) aekAs the value of the Integral larger. Therefore, the error probability of•U, can be
futsber uper bouaded by tablin the intagrat o over the ibole obeervation space



19-15

P (H. . HM) f L P(zLIHi) exp - op M(HI)[ d exp a M(H )]P dzL for any a, p > 0 (2.8.2.7)

Since a and p are any arbitrary non-negative numbers, a can be set equal to 1/(1+p). Hence taking
- li(l+p) and further using (2.7.17), (2.7.11), and the following equality

a b e for any a, b E R a > 0

the error probability of the path H1 can be bounded by

L - L L - LEi(H2....H) < ( p'(z(k)lxi(k))]l-P { I (iT rn)+ [[Tr p'(z(k)Mx (k))]+'P}P dzLP E t 2--HM 1T - i"[T{ z k-O k-l J#i k-O k-i

for any p • 0 (2.8.2.8)

i

v..ere p".z\k)Ixq(k)) is given by (2.7.10) and nk is defined in Section 2.5. The bound in (2.6.2.8)
is -.hat of Calla-,er's type. Sub ;ituting this bound for the error probability of the path Hi in
(2.7.19) yields an upper b)und on the overall error probability for the detection of the path followed
by the target..

2.9.3 An Encembie Tipper Bound for the Overall Error Probability

Let us consider a tnrget whose motion is described by a trellis diagram T with M possible paths
Hit 2. fr.m time zero to time L and let Hi pass through the quantization levels xq(0), qX(1),

.. (L) ý(see Figure 2.4.1). In order to derive an ensemble bound, let us start defining the
following symbols, which will be used in the following analyses.

.X is the set of all possible quantization levels from time one to time L, namely

X e A {all possible values of xq(k) for k - 1, 2, ... , LQ

Ne is the number of elements in Xe

e. is the set of all L-tuples of Xe

Sis the ensemble (or set) of all M-tuples of U". Hence .5 contains (Ne)lM elements in it

H is the set of all quantization levels which the path Hi passes through from time one
to time L, i.e.,

H! Ax 1(l), xi(2), *.,i()C HS
i q q q

which is an L-tuple of Xe

Te is the set of all quantization levels from time one to time L in T. In other words,

T U, .... )

fm is the ensemble of all possible trellis diagrams with H possible paths from time zero
to time L, wkich are obtained from the trellis diauran T by replacinr only TO by
elements of H. Rence this ensemble contains (N) elements in it. " Is ]eferred to
as the ensemble of each motioi (or trellis diagram) in itself. Obviously is the
ensemble of T too (since T cEH).

The exact expressions for both the error probability and the upper bound, given in the previous
section, contain multidimensional integrals which are generally very complex to evaluate Therefore,
instead of evaluating these, we consider an average error probability over the ensemble A. Averaging
an error probability over this ensemble is referred to as "Random Coding" which is the central technique
of Information Theory. An upper bound averaged over the ensemble er is celled an ensemble bound, which
turns out to be quite simple to evaluate. Obviously, at least one trellis diagram in SIN must have
an error probability as mall as this ensemble bound (by convention, both error probabilities and error
probability bounds are asslined to the related trellis diagrams). In other words ai ensemube upper
bound will give us in upper bound on the error probability for the best trellis diagram ineN (i.e.,
the trellie diagram with minims error probability LnaO).

In order to derive am ensemble error probability or an ensemble bound, first a probability
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density function Qe(.) is defined on the ensemble e such that

Q e(Te) A IT Q(H')
i-i

L

Q(Hl 1 T q(x (k)) (2.8.3.1)
Sk-i q

where q(.) is an arbitrary probability density function on Xe. Hence Q(.) is a probability density
function on the set Ue. Then an error probability or an error probability bound is averaged with
respect to Qe(.) over the ensemble.

The ensemble error probability, denoted by either FE or PE(T), for the detection of the path
(through a trellis diagram T in CM) most likely followed by the target (associated with T) is defined
by

PE Qe(Te) PE(T)
Ter •

" Tr•' Qe(Te) PE(T) (2.8.3.2)

where P (T) is the overall error probability for the detection of the path (through T) most likely
followed by the target (associated with T) and Te is the set of all quantization levels from time one
to time L in T. Substituting (2.7.19) into (2.8.3.2) and changing the order of summations, the
ensemble error proability can be rewritten in terms of the path ensemble error probabilities as

M
- p(H) (T) (2.8.3.3)

where

= . Qe(Te) p (T) (2.8.3.4)

where PE (T) is the error probability of the path Hi, and PE T) is referred to as the ensemble error
probability of the path Hi. As being noticed, a bar at the top of a quantity (symbol) denotes the
ensemble average of that quantity. Ensemble upper bounds for the detection of the path most probably
followed by the target can be obtained by -weraging upper bounds for the path error probabilities
over the ensemble. Let PEB (T) be an upper bound for the error probability of the path Hio i.e..

P (T) < P~ (T) (2.8.3.5)
E i E

Substituting this bound for the error probability of Hi in (2.8.3.4) yields the following bound for
the enansble error probability of the path Hi

n I< I Qe(Te) P (T)
i T C

P,,. (T)(2.836

woere T is referred to as an enomble upper bound for the error probability of the path HI.
Further, substituting the bound in (2.8.3.6) tot tht ensemble error probability of the path RI in
(2.8.3.3) yields the following bound for the eonmble error probability

Let us now derive an eonmble bound for the overall error probability by using the bound in
(2.8.2.8). Substituti•g the bound in (2.8.2.8) and (2.8.3.1) into (2.8.3.5). we can upper bound the
ensemble error probabtity of the path H1 u
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1 L 1+ 1+ L 1
Pi'-(T eI ... Q(H,) Q(He•.. e Q(p) L bi i+ [p'(zL IHi)]b {' b ( ( H)1) dz

for any p > 0 (2.8.3.8)

where p'(zL8I is defined by (2.7.3) and

L
b T -- k (2.8.3.9)

Changing the order of summations and irtegration, (2.8.3.8) can be rewritten as

S<P Z b: i+p 7 Q(Ho:)lP.(.L IH )]I-•}{ •;;: I OTg Q(H8))[j#I bjl-- (p,(z L IH 1-0]P) (2.8.3.10)

where

-(T f 1
H 1H

Then, p(i) Ia a convex functlone for any n m e 0,1) sInce Its a t onve x pm funetlon for any p 0 1 0,.th

Furthermore, the term in the lant. breace tn (2.8.3.10) bu the yupectstnJn os f(i) wlth respect to the
tollowite probability deasity s, ction

f() R + (iT~z Q(M))P (2.8.3.11)

Jo i j i..

HIr,!"

Therefore. uaina Jensen'. 1naquality1• (If U is a random variable, f(1) is a cnvex 0 function of 1t.

where)isfnie te

1:1

(0 _f(E()) (2.8.3.1)

where S atande for the expectation) end recoglagt/4 thait Ul Is ae~nd over the sam spae 1• lot
R Q(Mb a, (2.8.3.12)

UitMe

we obtain the folloten boud tot e term in the lnst braces In (2.8.3.10).

I i C)(• ~ p('M) 1 ) • + )• ( •[ Q(1:)(,(.t~l1))l•o)o (2.8.3.,3)

follown jrsil it dest function

a JR)is finite. tha

Wo)lot any 10.f 1)

vSubtotuting thls bou nd fAto (1di.l. ) w a a ce..3.10). 14j) tn 140(TT (Xp)JL i lp(&I-1y) 1' 411 b )P4J#1 O j 40 1I
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1+0 e+ p p ,L 1+P 0+1 LbbP] J j Q(TT) (p<(z b[I)) II]+ dz (2.8.3.16)
± joi z ae~

Further, using the following inequalities

L LL min L max
<bi IT<b for all i (2.8.3.17)'T T k _ (283.7

k-O k-O

the term outside the integral in (2.8.3.16) can be further upper bounded by

b b < (-1) (-' for all 1 (2.8.3.18)Ji k T- in

Let us now consider the term in the last brackets in (2.8.3.16). Substituting (2.8.3.1) and (2.7.3)
into this term. and changing the order of sumations and multiplications yield

1 L 1
I Q(Hj*) W(zt(L 1 81))'+') a q(x (11)) (p'zkjx(i+

Ijcu i k. qq

1"1

L

k-l i q e i
q

*TT { qWa (p'(a14)1x) 1 ) 28..9

the last equality follows from the fact that for all I end k, xi(k) ti semed over the sae space Xe.
Substtuting (2.8.3.18) nd (2.8.3.19) into (2.8.3.16) yields tle following easmble upper bound
for the error probability of Hl.

% k-l (k) a

Vn for allI I and anuy o c (0,11 02.8.3.20)

*where pl(a(k)1a I) is iven by (2.1.10), vM ead asti 1 detfined in Section 7,S, and q(-) tosoa
arbitrary density funtion on Xe. Subatitutint tke bourid In (2.8.3.10) Loto (2.s.o.7), sad recogoisicg
that this bound does not depend on I (that Is, the paths) yield

pol a
ji-

aenco, the bound in (2.8.3.20) to also an upper bound for the reamble error probability tot thM
. detection of the path soot probably followed by the tavgst.

If the function gOk,.., .) in the obsarvatioo model be"ik Considered, and the statistics
of the observatton noige v(k) aW the interfereac. 1((k) (in the presence of tottrforeca) are time
invaflant, then the term in braces t1 (2.8.3.20) Ia tise-iuvariast. in.eia thts •iaa, nemble
upper bound in (2.8.3.20) become

•3c(Ml0 (-1 T ( ) (~ [ J q(I ) 4 (as)o(a)IN)L tar say 0 C 10,11 (2.6,3.22)
-- k-o SO) mate

U" e the relation that soptlul - a faor sp a ' 0. the boud in (2.5.3.23) ct# be rwrittsa

sap-L'(c0(p.•) - - . (or amp p C O.al (2,s,3.3)

Oa-(Om 0 L
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where
p 1

E0 (p,q) &-ln{ [ I q(x) (p'(z(k)jx))1+P 0+1) (2.8.3.24)
~ (k) e

z W sac

L
GA IT -min

ku

17
EP(p,q) is referred to as the Gallager function since it was first defined by Gallager . Recalling
th4t p is any arbitrary number in [0,1] and 3(.) is an arbitrary probability density function on Xe

leads us to obtaining the tightest bound on PE by minimizing the right hand side in (2.8.3.23) over
Sad q. This gives us the following bound

P < exp---(M,G,L) (2.8.3.24)

where

-1)0___ " InG
EC.GL max 0.1) [E0(p~q) - Ml(ol li L

oc0,) ~ln(K-1) PlnGmax [(ax )- . P- (2.8.3.25)

As it has been noticed, the maxiiastion is taken over all o E (0.1) and thq set of all possible
probability density functions on X*, In order to evaluate £E(,.GL). it ti necessary to analyze10(pq) as a function of o. The important properties of this function are stated in the following
theorim. The proof of this theorem in presented in Reference (17).

Theorem 2.6.3.1

Assume that the average mutual information, devoted by 1(q), ahich is defined by

Z(•) A q(") p's(k)u) il-• ' de(k) (2.5.3.26)

is oner (L fct J(k) a q(x) p'(a(k)1x)

is nonzero (infact. t(S) is .luvs oo-esativO). Then. O(OWq) has the tolaovitl properties

O(Oq) 0 for o 0 o (2.4.3.27)

10(0.4) 0 for a 0 (2.5.3.28)

0 fot o r 0 (2.0.3.29)

1" .

S.o 4•0 (2.6.3.31)

vitt equality it (2.5.3.31) it MWd otly if

t( (elk) x), I(q) (2.6.3.32)T O(a) P'(0(01) )za•

for all x 2e wA all aft)l possible obrvt at tie k such that

q(t) p'(1(k)40 ) ' 0. Thetofore, for a gives q, (0sq) to a positive iterss.ia• toem n •?u•¢fcii
of a C (0,0) vith a 81"W at the orila equal't.* )" , Also, the foUlVA fu-a ,,n

o + 4Lt
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is a convex n function of p c [0,90). Hence we can easily perform the maximization in (2.8.3.25)
over p e [0,1] for a given q(.) so that E(M,G,L) can be expressed paranetrically as86, 1 7

0 If R > C

maxE (~q) ln(M-.i) -pinG

E(H.GL) ! _ (2.8+3.33)
SIfL

ln(M-1) p- -

-V- E If R < [max E0(Pq)]
0 L- 0 1-i

where

iR n(M-1) + ln
L 4L

(2.9.3.34)

Cmx I (q)

The maximisation of the Gallager function EO(pq) and the averae mutual information I(q) over the
*pace of all possible probability density functions on XO has been treated in the literature. Two
theorems related to this maximization are stated. Their proof can be found In Reference* (16) and (17).

Theorem 2.8.3.2

A probability density function qo(,) on X maximlues the function R(O.q 0 ) for a given 0 ) 0
if an only if the following holds

rk) 1P (ark) Ix)i 1• (catalk),q°)) fP t(ok) ),)
){a(-(k),)0 1+0 for all x (2,8.3. )

with tq.ality toc eli a t X* Lor which q0(a) ) 0 vhere

I

%4(k)Aq ) . qox) (p'(a(k)Ix8)') (,8.).')6

A p4 ... ;.,,, .Y density .uactioo q)(.) on Xe eImiaes the averngo mutuAl information 1(!) If
and oely it the followiag botdo

J p(a( t).) ( W(qO) for all a C to (U.a.3.)7)
(k) 4(W) p'I((k) )

emuallty for all a for which qO(%) N 0.

tt then follows that neither of these theorems In very ueful in (indi•g the Ssaiui of the CaGsl#er
fuactimn or the average mutual Lafteastion. Out both are useful in veritfyin that a hypothesieed
solution It Indeed a solution. or eimple, using these theorems, it can be verified that the uniform
distribution on 10, that Is

qla).- for al• a C (2.6.3.3)

is mot the optlaim (maxalsiaI) diettbutton for either 90 ('0,q) or I(q). In general the aialrtatios
Over the probability density functinse an is met be psrfoim sm rtically. Uree if the optima
(saxisieis) Otobability density function to knows, the evaluation of the Calleag f (futtiu or the
average etual isformation it, Is general, ot easy at all since the related "presion tontali
sultidiseeuioei lntegrele. heoce the evaluation of them muat he perfoamed marktally. tlovho t
this ceptiw, as the eusmble upper boued, the boud usetg p - 1 and the ustfoar distribution few
q(.) is (2.S.3.20) Is UNd by virtue of the *Ite feature arisis8 from the unifors distribution (•hich
Is stated is the ouat theorn) sad the fact that the simplest fuactiom to calculate aw" 13(9.S1 14



EO(l,q). Obviously this bound is, in general, not as tight as the bound in (2.8.3.24). Substituting
P - 1 and (1/Ne) for q(x) in (2.8.3.20), we obtain the following bound for the ensemble upper bound
for the overall error probability

E < D 1 T (p'(z(k)Ix)) 1 /2 ] 2
)

k-i z(k) xcXe

B e (2.8.3.39)

where

L ax

DA (M-l) Tr (k- ) 12 1 )2L (2.8.3.40)
k-i Trmin Nak'l•

If the function g(k...., ,) in the observation model being considered and the statistics of
the observation noise v(k) and the interf*rence l(k) (in the presence of interference) are time-
invariant, then the bound in (2.8.3.39) becomes

Pr_< 0 (J5(k) [ (PI(a(k)lxl/
2 2iL (2.8.3.41)

Let us now prove the follovin theorem which gives us the reason thai a uniformly weighted
enshmble bound (like (2.8.3.39)) Is used as the performance *easure. A uniformly weighred ensemblo
bound Is an ensemble bound obtained by using the unitform 4ensity function Qv(.) on the ensable 6,
i.e.,

qWx) -- • for all x C XNts

Uea• (2.8.3,42)

•s) . for all Te 0 14

(NO)

Tiers 1.8.3.4

for a # vern uniforaly weighed ensemble upper b•ud Ite for the Overall error probability, there
#ilts a subspt, denoted by *N1. t* the evamblm 61 s•tch that E1, t•teeai" at 1e*~t holf of the
elOmmot in CH. and Wery element (trells diAsrem) in Lo# suet hive san overall error probability
vIhch it leas toea or equal to two tcis" 0, i.e.,

p (t) ',4 e for ill T C lew (2.8.3.43)

where PE(t) to the overall earor prothbtlit of T (i.e.. the overall error probability for the detoctiom
of the patb throq4h T ofat lIktly followed by the target associated vith the trellis di4•roa T).

Proof L#1us as~ tb t oi tis Ch eMgl-tamet of evie. I.e.,

P (T) 11 for aoLl C t (.

7 the tnlb'r, denoted by X. of Slanate to ?i is greater than halt of the nWo'bt of el~ote in
(ottsewe thete 14 fothiu to peoeie, i.e.,

Ulne both Q *a) aed P .(T) are pjaitlvs for ell T IW $1, aad to1 i eoatsloaed ia *M, the eassmble
arror rt*Wtkity Ft datteed b1Y (5.55;.2) am be I~er bounded by

~~ OCT*) Py(?)(2..)



Substituting the bound in (2.8.3.44) for the overall error probability of T, t! . cnseble error
probability can be further lower bounded as

FE>2B0 e e (T e (2.8.3.47)

Subaricuciuag (2.8.3.42) into (2.8.3.47) (since the uniformly weighted ensemble bound is considered)

we get

eLM

(N')

r"urther. substituting the lover bound in (2.8.3.45) fur K in (2.8.3.48). the bound in (2.8.3.48)
can again be lower bounded so that: we have

FEBe

This coxidradiets tho assumption tha B is an ensemble upper bound. This co4pletets the proof.

If the ttellia diAgr=m associated with the target being considered is a member ofiem., then
the overall error prebabili~y of thia trellis Is upper bounsled by 28c; otherwise, we do not hA%44
sany idcia abou& th.1% sverAll error probability. Sine$em, contains at leasit half of thr%!v ,n*
Sthe enno~ble 6M. there iv * good chancev that the trellis diagram beolg considered belot*1s to

*I owever, for nonuniformly weighted ensembles, a large subset (ofENt) every element of which
I~ has (% otverall error prohbbility boundo4 by a eonaktant boutud, may nut easily be obtained since the

or~it'r ust inctu44a the- effect -it nmu-niforn weighting.- That Is why uniformly weighted ensemble
betnsd Or# 446ed as t"i pufo`rWcatc MVAnure.

fX95Th% 8~43~tiL DO3ING MsII S"O IN; tWitff
io tracking a targe~t fvxs time- Avgq to tietr L, by using the optlo 40V040 decdin based aaathins

aigorith. 1005A), the path nont likelyr followed by the target I'mtuitplo, (t-oapnste) hypthesis0 testingJ or decoding problem) is do'ided by siXply finding th* path with the largest smerrie through a1 trellis
diwAgrm tras ulne aero to timte I,. gDSA d;oe th~s bwy- usin the Yitert.i devodlug, algorthe-1, vhlch
.yotneatIca' yesaamAces0 (searches) all "041ih,0 pamsthoi the tralijis diagr~a. Hencer, if the okwher}of possible, 0aths in the trell~s diagra is 04 ry large,. 00S re4quires A huge &UKng Of anrty 4ad

Coleputat too.

It thero Were a way to tless# 'tin correCt pathj withot c&Ulata theV Astate of e~etj-Y path i(n
the trellis diagroa, son of the remytatixn% a#d Ymeory rei,"Iiuent in, IOSA w:,4-41 heL avoided. Ovto
way ti tdo to Is to rate a ssoekthing algoriths usialg A stark steta decoding algiorithm 4Vhtrth is
stibOpnsra i.e., It dos noit wininiteV the overall vrrxjr preb-abiity) 15*1 6 . Arwh i fs&-thiet Altorito.
wnic-h at any tiow 4stvp) ttorrs a "soacr" ot already *44tched Paths of earyins lesath orýdered ktcordin't
to their metrics, is presentedJ bolow. Ibis alguritte is referred I cc Starzk SejUs'#tiAl berodia Lamed

Smeothin Stoiph ($SDSA).tt the tArgAet noftion "ate. to a finite state modlr, AsV odO4 ,*rý

timitial Path eptioy Tfstrchs aoadtzj etranodrOw
eetordiag to ttheir tetrics4

R~eusve Step - COwwpte the metrics of the paths whichi ats the alngle-branch continuatIons
of the host path in the statk (no* beflvr4tlons 2.9.1 below) and replace the best path sad Its
metric by thoe# paths and their settles. It amy of the nely added patte,. favr#o; with a PAth
already in the stack, discard the on. with wailer meatric. Thaon reorder the remaining
oaths. It the btwt path In th* mait akteminates in a final node of the trelis diagram.
step sad choese, the beet path Vsa the path most probably followed by the target; otherwise
repeat ams proces (i *.. contimie tou searich by extumdIng the best path to the stack).

N~flatilam 2.9.1 The beat path io a stack of already searched 5'tha of varyvitg length is the one
with the largest msettle. If tOwe As *or tha" oats path with the #we largest settle, then the beat
Path Is the 0on with the longest le04th. It there, Is MOTO than o0e Path with the 901e largest metric
and length, thee the beet path is o4ly 06s of thee. paths (this IS2 chosen at rando").

The following oSmoSis iUtluatra the stackL seUQaoIai decoding4 based smo0thift algOritbe.
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2.9.1 An example

Let us consider a target whose motion from time zero to time 2 is described by Figure 2.9.1.
Using SSDSA, we would like to find the path (through the trellis diagram) most probably followed by
the target from time zero to time 2. Let us first adopt the following conventions.

Time Zero Time1Tm 2

x q1(2

Initia (finaa
*figure 2.9,1. The Trellis fliqraa fur thep ýxample Vot the StaAt Soqueptlal Dec~odin& band4

Smoothing Algorithm

*1. Io a tacha a seAtched path is roprosmncud by the nodeo seveocoti that the path paseca
thriotgh foilowed by it* metric. the suqoeteoc sad this mtric are sepairated by a coma,
The metric of the path to 44%otAW by llSt*) whore the tom 14% parentheses Is* the final
=4#e of the path. Vur~hn~. diI1(teeie oearcbed path# are separteVd by ofsicotests.

11U. A otack is ordared to such a wayj that the bee~t petit Is plAcedl it the eatd of the ftack #ad
*the path Vith the seC0nd lstar#04 Aetric is placed beQfore the tbeet pa.th, etc.

Thee the path east likey folloutd by the t~rgut Is obtained4 as follo"s.

*initial S-tep -AoaiaWn that the metrics of ithe initiol path* (1,... Initial m4IOde %Ji)
(0) -a* suah thlt

Owhe MS(,) A )(* is oaf 1.d by (Z.7.14t), U thfolluwina stack is eb~ttaisd

first 4top - the paths 10~) RA,M( &an wq1 (t) a. ai) are the elrnle-br~aad toot lma astlo ofi ~~the beet~ot path x2(O Ia m ~ iU aaste calo ~iat~ the metric of then path&. chat I*.

miaq(U ) * ~ N(5 2(0) 4 (i)) KS* 4()

MS(N'1 2(l)) M(Nq2(Q) 12 Mq(l) Y4(4 s 42 (0))(..1

bttenIt("~) it do(fined by M(3..11S). ad replaclr* the best path aSW Its awtric 11.#..
4 2(0)- Ws1{2 (0))) by then paths as their metrics, we get

NI s,0)4C (0)) t4 0'S's 0 9x20x1W N M 2 ) Ntq2M(.010

low "qumalms that

tSCA,3 (0)) "5 qZs2(i)) KSt q W~a()) XS(m1 (O) (09..

3



and then reordering-t-he paths in (.i.4according to their metrics -.a obtain the stack

xql(O)445(zq(0));xqz(O)IqL(l)IKS(aql();xqz(Qh2(l).HS(sq2(1)).x3(O).xS(xq3(0)) (2.9.1.6)

Hence, the best path xq3(O) does not terminate in a final node in Figure 2.9.1. Therefore,
ws shall continue, to search by extending the best path x 3 (0) similarly.

Second Step - The paths a ()a ~)ad13 q~)aetesnl-branch continuations
of the test path :q3U) in (2.9.1.6). Thus calculating the metrics of these paths and then
replacing -the beet path and its metric; in (2.9.1.6) by these paths and their metrics yields

x q 0.IS(Xqlo);xq (~xql(1) HS(x qi.(1)) ;x q2(0hxq2l.nS(x zql));xq3 (O)x q1(1).nS(x ql(l));Y.q3 (O)x q2tl).

- MS(Xq 0)). (2.9.1.7)

Cence the newly added paths Xq3(O) xl(1) ant; x (0 xq)(l) merge with the paths xqZ(O) xql(Z)

and £q2J(O) Aqz(l) (Which are already In the stall) respe ctively . Assuming that

S(1)M) of x z(0) xi(l) >. HSX M() of a (0) x '
qlqz qlqlq. qi

the stack

Still, tthe teat path X,20 inqtl c29..8 001k r.Ot t*Mrtt4te in OVe Of the e0" iW4o
at the trellis disa.rý Hence: cte beet Path x q2(o) tqz~l) is "ttendd.

Third Step .. Capocing the aetrica of t1e X42eaq(O) 'q2 0  Kq1I 2  -And *q!(O) X'qz1)X42 .

ht(a2 l qta2 (l) - 4 *2) Ns(vt 9lM) . 91. 9)

replacing the beat pAth' eOd Atits ric io ter..8 byth-At pflhs AMi their *Otrite, an~d
then roottetit4 all the pachs according to their *a-u-ic-s. let oxn anis that the fcliovievg

S1nto the best path xjz(0) ae(i) rnll(2) termlvates in the ftina mbdo 10i) lit the trellis
diagram. It Is teeS4 that th pat kt(f a .,1) at ~() was goel pnZ' IFllwdy theO

Wavi established the stack sequattial decoding baed awothiq4 algorithm, It. pert orna~t is
going, to be discussed to the WlelOvit two uctioon,

2.9.2 AA Uprr tota few tha Overall briar Probability

4 ~Let us conside a toiget whose smtive freti ites woet.o time I. Is described by a trellis di1agram
with M possible paths lit, NJt. ... ' Bod 4 $#to twitE taro to tioa L.. Let % el ad be1to two paths tl~rovgh

* s~he trellis diagram such that H is the Correct Path (1.... it is the 0ce acctually followed by the
t argefl &ad M1, is the Incorrect OWe (see P~jgw. 2.0.0. is is e$sily v*ritievd that since at each
step the stack eeqveutial decoding based nOotttiq alporlcus (SSCIA) cascade Oak* the best pech to
the stack by osly on hr IV she pat #,a canOt he tines a" the me maet probably followed ivY the
target dsst ec afismtas

a so
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SInitial nodes End nodes

Figure 2.9.2. The Trellis Diagram for the Performance Analysis of the Stack Sequential Decoding
based Smoothing Algorithm

Sor
If Y>Rx t(j fo some J C S;
I m q ( ) o

however, the path H , may be chosen as the decision
mt

If M(xq It )) > Ym ior all J C S (2.9.2.2)

wher•e H(x(i)) is the metric of the portion between the nodes X!(o) and x m W of the path ,, which is
d,•.-ined by (2.7.16), and qqI

S (0{, 1, 2,..,}

ym •'min M(Xq(i)) (2.9.2.3)
iis

- !,st rm be a subset of the observation space D such that

(z , {L M(xm (J)) > 'Y for all JcB and all m'Om} (2.9.2.4)

Since -any inc~orrect reth'Hm, (the one which was not followed by the targt'st can be chosen as the
" "decision. only' if (2.9.2.2) Iii valid, the set fm contains the complement. D , of the decision region

D, f for ' the ; ath. k• (.tiet decision region Dm Is by defituition the subset of the observation space such
•that 'whenever th. obvervat-ion sequence :..L fa~ll% within this subset, SSD)$A decide# the path Heu as the

, one most likely followed by. the terser). Let r~m be another subset of the observation space D such that

" ~ ~ ~( Lm = Hs~ t(xm_•) .fralm• (2.9.2.5)

• since the ittequality in (2.9.2.4) implies the inequality in (2.9.2.5) (the converse is not true).
r. is contained in r.m. Hence • sasbe fF.Thirefore, the error probability of the path

m m (set (2.7.10)).can be upperbunded by
q L

Pr(Hit "2''" )- L P(zLI• das

; P(eLI",) $•(&L) dL (2.9.2.6)
- L
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where

1 if
•(sL) _A(2/•.2.7)

*(zL {

0 elsewhere

Moreover, the function V(sL) can be upper bounded by

0(aL) <a exp a(M(Xq (L) Y P for any a, p > 0 (2.9.2.8)

The reason that (2.9.2.3) in valid is as follows: If XL E f.. it follows frco (2.9.2.5) that there
exists at least an a' ÷ a such that

M (e, (L)) Ym 0

Consequently

exp a O(z a (Q)) - y ) > 1 for any a > 0

Therefore the smmation in brackets in (2.9.2.8) is greatar than or ejual to one; obviously any non-
negative power, say p, of it is greater than or equal to oan.. On the other hand if zL j fro, the
term in brackets in (2.9.2.8) is at leset non-nosative. Hance (2.9.2.8) .s valid. Further,
substituting (2.9.2.8) into (2.9.2.6) yields

PK (WISH p2 ..... ) J I p( 3 L 11.) (exp - a ' ( H cp 1 1(xz (1))? IRL for any ip 0 0 (2.9.2.9)

AlSO fr" (2.9.2.3). we have

L
SCWxmexi U M(i)) (2.9.2.10)
i-o q

since at least one term in the suamtion is equal to the left hand side of the inequality and the
other terms in the eumation are at least nou-negative. Substituting (2.9.2.10) into (2.9.2.9), We
$at

L Hlx:(L)) da

PE (H~~i...ld p(s i1)t I. tap _ aW )t(xa(i))jI( e p a B(x '( j'dL

for any a.o _ 0 (2.9.2.11)

Moreover, using (2.7.11), (2.7.16) and the equality

OXP (IPA) At for all a 0,

(2., 2.11) can be ravritten as

A(,,....,,, 4_ , " .IT P'*((-k k)' 4 •. (+') " 1T ,. ,)
t l i s jL 0 k-I 141 kal

"*." *flI P-(Sw )i . ( I t, P.(e(,•)• (k))),,, dae
q j.L4k q .' alk

for any o,p > 0 (2.9.2.12)

Worem -or, uaing the f ollowing inequalities

k k k for all a =4 k (2.9.2.1)

the bound to (2.9.2.L2) can be upper bounded further so that we obmain the following boWid for the
error probability of the path N,.



19-27

r L L.i
E H"1," 2, .... .9m < 0 - • TF p'•(k)jCxk)) + I nE f-- L k

k~i l k-lkli-- k-

for any ci,p > 0 (2.9.2.14)

where p'(z(k)Ix (k)) is given by (2.7.10) and irk T'k, and irk are defined in Section 2.5. Moreover,
substituting thls bound into (2.7.19), we obtain an upper bound for the overall error probability.
Since it contains multidiseusional integrals as in (2.9.2.14), it can not be evaluated easily.
Therefore, an ensemble upper bound on the overall error probability is considered in the next section.

2.9.3 An Ensemble Upper Bound for the Overall Error Probability

Setting ii equal to 1/(I+p), the bou-d for the error probability of the path Hm in (2.9.2.14)
can be rewritten as

P5 (T) B J A(ZL) { X •,(,L))P dtL for any P > 0 (2.9.3.1)
E uau

where

L ~ in L _p 1+
'.4..n- -" -l - -

( Tim" ) l*p T p'(r(k)lx +(k))÷ + j((**() l " ( nik))-k,,l k 1-i. k- k q

Li•T p'(s(a)wx m (j)))

1 .1-1
'm (L I" 1" '+ TT ( •k)Ixm(k))'+ (2.9.3.2)

kal

Averaging this bound over th* enseable tan* ti Section 2.8.3, we obtain the folloving bound for
the ensemble error probability of the path Hu.

L_ 
LL7P LT~T too"Aa')-k-i a'.(' IN

- '. ~ a'drM Q(~ (HP 5 ( 3 )P da' (2.9.3.3)

where v Is any non-nagative number. Mence, restricting P In the interval 10, 1], and using Jensen's
Inequality (a £• Section 2.4.3), thM term Lu braces in (2.9.3.3) con be upper bounded so follows

J~tA, &(a')I I QM) t)Q

jH-L A~ Q (a&* a Q .) 5,.,&L),, d*L for any a e l0,11

The lIAt equality follows from the fact that the suUattoas run over the *sme space F . urter
using (2.8.3.1) %;Ath an anumsot simxla to the on. in Section 2.8.3, we can oaully obtain the
foLlovtfg equalities

I QtM*) ~Amb - (~iU") 1T~* i' tW&$1ix4 + (I " 1o IT sI
kel "1i1 it-I

PI(s(O)it) TT 9.3.?w
II

J-t•1 i
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and
L L

SQ(He,) B,(zL) - [ rT ( )l+P T p'(z(k)(x) 1 +P for any p c [0,1]
He k-O k-l

where

-p (z5 (-k)Tj q(x) p'(z(k)lx)
xexe

pz( C'.:)I X) I+O A z(x) p'(z(k)lx)I+p (2.9.3.6)

where p'(z(k)Ix) is given by (2.7.10), q(.) is an arbitrary probability density function on the set
Xe ane X1 ic de'ined .n 2.8.3. Substituting these equalities into (2.9.3.4), and changing the order
o! integrations and multiplications, we obtain the following bound for the ensemble error probability
of the path H

L L i L
*Pk (T)<F (TT C + I TT (Irn) l+P Tr C for any p C (0,11 (2.9.3.7)

4,1 k i.l k'l k Jki+l

where
1

"C k J p'(z(k)Ix) [p'(z(k)Ix)l-W1P da(k)

rk

z(k)
')k s (k p ' ( s(k)lx dr(k)

z 0 L
m-i T (2.9.3.8)

"k-il

Uax minwhere k k , * M are as defined in Section 2.5.

If the function $(k,., , .) in the obe~rvation model being coriloered, the statistics of the
observation noise v(k), and the interference l(k) (in the presencn of inttrierence) are all time
invariant. then Ck .nd Dk are time inv4aiant, ;-nce tn this ca^e, -he bound in (2.9.3.7) becomes

L p

= *- < F W;Y + lk 11 ) TCP for 814. P E 10.11 (2.9.3.9)

Since the bound in (2.9.3.7) does not depend on the pat'. (i.e., i), tt follow from (2.8.3.3) that
Wthi boun it olso aw upper botwd fo-. the eaeemble error probahiiity •J, for the detection of the

path *oat probably followed by the tergo t being considirA.d Furtheosore, the intetrals in (2.9.3.7)
may not be evaluated for any p r (0.1). Htance the easivet bound to calclate ts the one for 0 a 1.
This fact with the nice feature of the uniformly weighted enserble bound (see Theorea 2.8.3..) leA].
us tc usirt the bound with P - I aad tha uniform density Cunction for q( ) .#., q(.) - Il/H whers
We is defined in Section 28.3)) in (2.9g3 7) as the perfomaoue measure of the stack Sequ•ntial
decoditn baoed oeoothing algorithm.

2. 10 SIJSTOWUU DEIiONG USED Sa3OMNJG ALMOI1hI

As decribtd beWor, in order to decide the path moot Uikely followed by a target from time
treo td time L, the optimun decoding based emiothing algorit.m (OUSA) and the stack etequmLLal
decoding baoed woothLng algorithm ($SS4) first obtain a trellis diagram (denoted b) 1) for the
target vation (model) from time zero to time L; then u•e the Viterbi decoding algorithm (VDA) eMW
etrck seqfential decoding algorithm respectively. The number of paths in the trellis diagram
depends on Las well a, s11 , 1, 2re ... , . and the gets elses uWef to reduce 0. target notion
model to a finite itate model where % and are the number of possible voluas of the discre'e
rand,., vectors xj(() end vd(k) (4ee Section 1.3). I& particular, if I. Is very large (in thar
words, the target Wede to be trecked for a long til) the trellis diagram may captain a huge
souut of "thr. In stch r "see, tS)SA msy require & very large makmry for thL storage of stacks
of seeached paths and comparisons to reorder the paths in stacks accordrU4 to their metrics while
ODSA requires a huge aProry and computation to compare the mer-i.s of all paths in the trellis
dilagrm. Renee, Luse moothing t.lOgrithta ara 1mh.actical. Therefore, a smoothing algorithm
"which requiues a constant emory for the path moat probably followed by the target from time tero
to aay time L is neact.. In this section, such an algurithis is presented. It is based on a sub-
optimm decoding algorithm. tence it does not minimste the overall error probability for tb.
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detection of the path most likely followed by the target. It (smoothing algorithm) is referred to
as Suboptimum Decoding based Smoothing Algorithm (SDSA) which is as follows:

Initial Step - After obtaining the first L(l) observations (i.e., the observation sequence
from time one to time L(l)), using ODSA find the path most probably followed by the
target from time zero to time L(l). Let this path be ft1 (see Figure 2.10.1).

Time Zero Time L(1) Time L(1)+L(2) Time L

SI I1

fqI' ,

AlA

q(L~lxq(LO*l+L(2))

I I

I 1

• -- L(1) + i L (2) ----- " L(q)
SI I I

Initial nodes Finl nodes
(quantization levels)

Figure 2.10.1. The Trellis Diagra for the Suboptimun Decoding based Smoothing Algorithm

First Step - Obtain the next L(2) observations (i.e., the observation sequence from timp
L(1)+l to time L(M) + L(2)) and assume that the target in fact followed the path AT
from time tero to tine L(l) (in other words, assume that the target was at the end point,
denoted by Rq(L(M)), of RI at time L(l) with probability one). Then using ODSA, find
the path most Rrobably followed by the target from time L(l)+l to L(1) + L(2). Let
this path be B.

Second Step - Obtain the following L(3) observations (i.e., the observation as .eAec from
time L(l) + L(2) + I to time L(l) + L(2) + L(3)) and assume that the path Htoo actually
followed by the target from tins zero to time L(1) + L(2) (in other words, assume that
the target was at the and node, denoted by 9 (L(l) + L(2)) of the path A2 with probability
one). Then using ODSA, find the path most p;obably followed b3 the target from time
L(M) + LM2) + I to time L(l) + L(2) + L(3). Let this path be U3. The other steps siailarly
continue until

L ) L(k)
k-A

At the end, decide the path composed of the paths A1, g2 -.. , qa the path (1) most
probably followed by the target from time taro to time L, i.e.,

whers q it the number of observation sequences considered from time zero to time L. Thenombert L(i), of observations in the ith obseevation sequence is chosen such that at the
(I-0t• satp of (S.SA), ODM finds the path fil without requiring a huge mnmory and compute-
tion.

Let us divide the trellis diagram T into q parts such that the first part contains L(l) + I
colmns of quantitation levels, starting from time toeal the second part contains the next L(2)
culuana; the third part contains the following L(3) columns of quantisation levels; and so on.
how we are going to define some symbols which will be used in the analyses (see Figure 2.10.2).
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Time Zero Time L(l) Tim L(l)+L(2) Time L

I T q

T. I

I heend node f -
of q IThe &end, eof

e oHi-lI I Im ISL(l)+1 • L(2) - -- -- ( ) -- _ L(q) ---

Figure 2.10.2. The Trellis Diagram for the Performance Analysis of the Suboptimum Decodin•
based Smoothing Algorithm

th
is the m path through the trellis diagram T

i is the portion of Hi in the ith part of T where ± 1, 2, ... , q

He is the path (throughout T) which SDSA decided that was most probably followed
by the target when the target actually followed the path Hm

± th
is the portion of Hl in the i part of T where i 1, 2, ... , q

T1 is the first part of the trellis diagra T

m~i ts the trellis diagram composed of the paths in the Ith part of T which start
off at the end (final) nods Hi"1 where I * 2, 3, ... 1 q

T is the trellis diagrm which is composed of T1, T, ..... a Tq
m

M is the nmber of possible paths (hypotheses) through T

Sis the number of possible paths through T.

Is the muiltiplication of I4 4,.. and K
a is the set of all quantization levels in Too except the quantization levels

at tise &ero

Ii is the set of all quantiztion levels in T1 except the quantization levels at

time %ero
Zle is the set of all quatiztion levels in T1 where - 2, 3,

is the set of all L(t)-tuplet of

is the cartallan product of the sets and thai

isis the , s. mbla (or set) of all tuples of H

Sise the ensemble (or set) of all tim-tuples of U
-LU.) io the observation sequence us at the (L-I) step of SDA (i.e., the observation

sequence assoclated vith the I Wt of T), that Is

L(,•) A (a(01). K(0+2), .,., s(f.tL()))
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where

n A L(k); by definition, n a 0 for i 1 1
k-l

The performance of the suboptimum decoding based smoothing algorithm is discussed in the next two

sections.

2.10.1 An Upper Bound for the Overall Error probability

Let us start calculating the correct detection probability of the path H., which is defined by
the probability of choosing mn as the path most likely followed by the target when the target in
fact followed the path Un. In other words, the correct detection probability PC,(H1, H2, ... , VM)
is the probability of choosing Ha(-U ... 2 i), given the observation sequence z- and that the
path H. was followed by the target. hence, we have

PC (U 2R .... )_Prob{ 1- H1 , -2 2 -... .q L,

Prob(H q L .1 q-l Hq-

q-1{4~ q- L, 1 1*~ q-2 -q-2 1

Prob{Ij-I -%IH,,,L (2.1..,

O? the other hand, for the suboplium. decoding based smoothing algorithm, the probability of choosing
as the decision (i.e.• I - I,), given the observation sequence zL, that the path H, was followed

by the target, end the corrict detection of th••eaths 14, 1% .... , H 1 , is the probability of
choosin 11, given the observation aequence tLi and that the path-U was followed by the tIrget,

that 
is,

- ~~~- I - LW ii - (. 012

Also we have

Ptob{( i a LW 1 - I( P, (2 T.-

where

Pg(T ) A prab{Ma Ujt)M•) (2.10.1.()

I tb
which is the errol prtubability of when at the (1-1) step of SOSA, ODSA is used for only the
trellis diagram Tt with the observation seqence e First substituting (2.10.1.3) into (2.10.1.2)
A thbm Into (2.wO.l.l). we obtain the correct detection probability .of He

• (,i.Mz.....%).,-, z.M ) ',* 11 - P'(.0o.5)

Moreover. from the definitiou of the correct detection and orror probabilities of the path e (e
Definition 2.7.4), we hawv

* I - , (%V, 2 .. , %) (2.10.1.6)

Nome substier ",' (2.10.1.5) into (2.10.1.6) we &et the error probability of % 41

,• u1, *,., %g) - 11 T - ' % ] •.o..

"Vurthamove, using a bound, dmotad by for the oro probability of tbs error probability

of %, can be upper bounded by
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P 1 2 (H. ) < 1 1 Ri - (T) (2.10.1.8)
m m

i iW
where, for example, B.T,(T) is a bound of Gallager's type for the trellis diiagram T with the
observation sequence zj(I) (see 2.8.2.8). Therefore substituting the bound in (2.10.l.8) for the
error probability of the path H, in (2.7.19) yields a bound for the overall error probability.

2.10.2 An Ensemble Upper Bound for the Overall Error Probability

An ensemble bound for the overall error probability for the detection of the path most likely
followed by the target being considered can be obtained as follows:

First, for every path, say Hm, through the trellis diagram, T, a probability density function
Q;(') is defined on the ensemble em such that

) ie(_ie, e
"(Tie for all T £ ,,m (2.10.2.1)

ie i e

where Q() is a probability density function on the eysemble C1  and Te • Then averaging
the error probability of the path Hi over the ensemble , with respect to the probabi.ity density
fucntion in (2.10.2.1) yields the following ensemble error probability, denoted by Po(T), of the path
He

Em (T e£ (T,) PE (T) (2.10.2.2)
m m E

Further, substituting (2.10.1.7) and (2.10.2,1) into (2.10.2.2), changing the order of multiplications
and summations, and recognizing that the sumations are performed over the entire ensembles, we

obtain

P-(T)-l i- (~I4- ) (2.10.2.3)
Sm a

where

(Ta( a P i V2 1 .2
T C
a

t I
which It the enattsble error probability of the path 11 whon only the trellis diagram T' is considered.
Wn other rorda, It is the ersemble average of the error probability of 14 (when only the trellis
diagraim t4 is considered) over the etsemble el with respect to 4 probability density function41(.) (see Section 2.8.3). Similarly, using (2.l0.l.8). (2.10.2.1), (2.0.2.2), we obtain the
following ensemble bound for the error probability of the path •s.

Sm •P.-• 1-1itl • (2.lo.2.s,

where

A4 .T(Toe i 8(T;) (2.10.2.6)

which ta an enmunblo average of a bound SN(T.) for the error probability of the path oben only
the tv*Ilia diagram lrl is considered. Vurthe,., substitutiog (2.10.2.3) for the anseabl. path error
probabilities In (2.8.3.3) yields an enseable average of the overall error probability for the
detection of the path most likely followd by the tagt•t being c€onidered (i.e., the eausmble error
probability a) -s follows.

m~l tIl
wa(M1 iT1 -?11)
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Similarly substituting (2.10.2.5) for the ensemble path error probabilities in (2.8.3.3), we obtain
the following ensemble bound for the overall error probability for the detection of the path most
likely followed by the target being conaidered.

E All P(Hm) I Bl- m(TIm (2.10.2.8)

where p(H) is as defined in Chapter 2.6.

3. APPLICATIONS OF THE SNOOTHING ALGORITIHS

As discussed before, the new smoothing algorithms developed in the previous chapters, can be
used for (linear or nonliqear) discrete models with arbitrary independent (of each other and from
sample to sample) random interference and noise. The following chapters consider applications of
these smoothing algorithms to some discrete models with Gaussian noise and with or without arbitrary
random interference in the time interval EOL].

3.1 An Example with Gaussian Disturbnnce and Observation Noises

This chapter deals with the following discrete models

x(k+l) - f(k, x(k), v(k), w(k)) (Motion model)

t(k) - g(k, x(k)) + v(k) (Observation Model) (3.1.1)

where

x(O) is an n x 1 initial state Gaussian random vector with mean m0 and covariance
R0

w(k) is a p x 1 Gaussian disturbance noise vector with zero mean and covariance
aR,(k)

x(k),u(k),z(k) and f(xx(k),u(k),w(k)) are as described if C14apter 2.1

g(kx(k)) is an r x I (linear or auoninear) vector

v(k) is an r x I Gaussian observation noise vector with zero mean and covariante
Rv(Ii).

Moreover, the random vectors x(O), w(j), w(k), v(i) and v(s) *rc aumed to be independent for oil
J, k, I. a.

3.1.1 The tetri€ of a Ireh

The observation s(k) in (3.1.1) to a linear function of the Gaussian hbsereation noise v(k).
Nonce the conditional probability density function of &(k), given that %(k) x ,q(k), is a multi-
variate Gaussian density function. ThW we have

p'(.a(k)hs t(k)) Ap(s~t)zxW x K (k))
- g,,, KI T -1exp " (2k) #(k r./ test())I P. (k) Isk) - .(k. a ,.+.

(21s) (dot Ydet

Subatitutiog this into (2..1) yt1ods the metric of the branch betuoue the nodes *I (k-.1) end AtI
as "44

IL*n It.1 ~ r/2 (dot Kv(k)1 112) -(alk) -g(k,x I t))j ~1 4U)&

(3.1,1.2)

3.1.2 The Optiftm beeCodLug based Smoothing Aloritbm
3.1.2.1 A Union Upper band. As mentioned before, the bound for the overall error probability.

given In Chapter 2.8.2 it very complex to evaluate; hencs the amamble bound in Chapter 2.8.3 was
etossiered. aowvevr for the models in (3.1.1), a union bound (which to very easy to evaluate) for the
detection of the path (osat probably followed by the tatget from time sao to time Q. by using ODSA
can be derived as follows.

Let us now tomeider th sat I't dafted by (2.8.2.). SubetitutIn8 (3.1.L.) Ltre the settrc of
the path IM (i.e., (1.7.17)) SuIkutin8 this inetric into (2.6.2.1), we obtain tie set
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r {z L: M'(H j ) > M'(H i) for uome j ~

L {zL: M'(H j) > M'(li)} (3.1.2.1)
J-1

where

14'(Hi 2 In 1rT + 1 (2 In n- W:k) - g(k, x (WI)T 7((k)(z(k) - g(k, x (k)))) (3.1.2.2)
0 k-i q

Recall that the set r contains6 the complement, B.,, of the decision region Nm for the hypothesis
HM~. Then from the axioms of probability, we obtain the follovin& bound for the error probability
of the path H 1

P R (His H 2 -** ~ < ProbiaL L t [,

Substituting P3.1.2.2) for H'(H i we get

Prob{: L M'(H )> MH)I rbJ(3.1.2.4)

where

* L
j±j I 2(g(k, xj(k)) - S(k, x'(k)) )T Rj'(k) a(k)

k.i

It follows that 4 t a linear function of XWh, uhichl.1 a aultivartato (Oaissian density fowctiou
when Hi is given. Nonce, the conditional density function of 3ij given H1s, to a M~ortal dantfty
funct ion with

"oen - 80J1 Jis

- 2tsj(k, Kd(kh ek aS(k )) ~1 (kW &N,~ YO()) 312

en4

vAr(J1 IN% 4 XjJW k) S (k. x~k T R;'(k)t.S(k, xJ(k)) -(k. ~k) 3126

Theef ore we M~ve

Q(' Or f~r III. MW - 3..
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Combining (3.1.2.7), (3.1.2.4), and (3.1.2.3) we obtain the following upper bound for the error
probability of the path IIU

A - 90{iJ IHi)(P E (His K2. ..... H) <-- I Q(AI: r(u jHI (3.1.2.9)

This bound is sometimes referred to as the union bound for the error probability of Hi. Further,
substituting this bound for the path error probabilities in (2.7.19) we obtain an upper bound for
the overall error probability.

3.1.2.2 The Upper Bound for the Overall Error Probability. Setting p equal to one in (2.8.2.8),
and changing the order of multiplication and integration, we get

L L

P E (H 1,H 2 ,".%.H) <~ Lwi L T k)12T [p'(zWk~x I W) p~~~x~) 1/2 zk) (3.1.2.10)
i j~~k O 1T k k-l 1z(k)q 'z)x(kJ

From (3.1.1.1) and (A.4) in Appendix A, we have

B(x I(k), xj(k)) t p'(z(k)lx I(W) p'(zk)IxjOc))) 1 2  x1(k) )-g, OtI

q q f~z(k)q

- ev 8 q ' 31._1

Hence substituting (3.1.2.11) into (3.1.2.10) ye obtain the following bound for the error probability
of the path H•i

L Yr

1 6 1,&y..,1~) % (< -, T/2 (1  k
k -0 ) k- q q

Substituting this bound for the path error probabilities in (2.7.19) yields a bound for the overall

error probability.

3.1.2.3 The Ensmble Upper Bound for the Overall Error Probkbility. The ensemble bound in
(2.8.3.39) is used as the performance swasure for the optimau decoding based smoothlig algorithm.
Using (A.4) vith (3.1.1.1) in thia bound, ve obtain the following bond for the enseble error
probability for the detection of the path mot likely followed by the target being Lonsidered

L
< D - T U9 ) 5M 1 )) (312.3

E - k'l xI X a2 X"

vher D and 5(%,, x ) are SIVi by (2.8.3.40) and (3.1.2.11), repsectively and X is defined in
Section 2.8.3. Tf te function gt(k.) in the obeervation model In (3.1.1) and the statistics of the
observation noise v(k) (i.e,. lt(k)) ar ctim• invariant. thou the ansomble bound In (3.1.2.13)
becomea

i • •(l 2)'(3.1.3.14)

3.1.3 The Stack Seuential Decoding Wsed Soothi Alg-orith)

3.1.3.1 The Roteble Upper Bounmd for the Overall E~rror Probability. tn the boundi It (2.9.3.7).
substituting vot tof 0 AW (Ilik*) for QWx for all 2. we obctan thsr tolloww bound for the otasablo
error p'ebsb~it y

L• L IF P(' rk+ I 1TKk Tr j)0.30
k- -II kol J04

J [ • (l~) Is)ll~l d|(k (3..3.3

S• i) ,(k)
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Substituting (2.9.3.6) with (3.1.1.1) into Ck and then using (A.5) in Appendix A, we get
[/8t(k,x) - (k.x2)]T Rv (k)[g(k~x) - (k~x2)

C (1)2 k2 r/4 E )-•x -T(- 6 (3.1.3.4)
N' (dot R (k))' • 2xe x

Similarly, substituting (2.9.3.6) with (3.1.1.1) into D and using (A.4) we obtain

D (1 2 B(x x2 (3.1.3.5)

where B(xl,x 2 ) is given by (3.1.2.11); No and Xe are defined in Section 2.8.3.

If the covariance matrix (Rv(k)) of the observation sequence v(k) and the function g(k..) are
time invariant, then the bound in (3.1.3.1) becomes

+.~ L _< ,,( mi t - 1I.- /2. 1 L-iiF( •'T"k ' Dk Ci(3.1.3.6)

i-i k-I

3.2 An Example With Interference and Gaussian Disturbance and Observasion Noises

In this section, we consider the following models:

x(k+l) - f(k. x(k), u(k), x(k)) (motion model)

a(k) - g(k, x(k), l(k)) + h(k, x(k), 1(k)) v(k) (Observation Modal) (3.2.1)

where

x(O), x(k). u(k). w(k), a(k) and ((k, x(k). u(k), w(k)) are as described in Section 3.1.

S(k. x(k), 1(k)) and h(k, x(k), l(k)) art r x I and r x t dimonsional (inest or nonitnear)
matrices, respectively,

v(k) tS an JL a I Gauaeian observation noise vector with raro man and covariace KV (k).

l(k) ts on a x I interference vector v•ith k•nwn etatistics.

Furthermore, the following aumlaptions aor uadat

(1) The random vectors %(O), vQ), v(k), v(L), v(4). 1(p) t:d l(p) at* independent for all
J, k, It4 a, , p.

(2) Whk a(k). t(k)) kv(k) hT(k, a(k). 1(k))1 "iota for all k.

3,2.1 The Metric of a brnach

Let us consider the obuervation modol in (3.2.1). The obeervation i(k) it a linear function
of the normal observation notis vector v(k). Therefore, the conditional probability dnsity function
of s(k), Liven that a(k) - ON(k) and l(k) to a aultivar•ate nomal denotty function, uenhly,

q

p(s(k)Ia' (k), I(k)) W p(a(k)it(k) x (k) 1(k))!osp

& (22)-`/ 2 (det0b(k, ax'00, 1(k)) it W bt(k. z'%(). 1(k)) )1Y11

a AS(k) - ,(k,'a(k),.,,),,T ,b(k,,,I ).IWA.,,, ,,) ,,)g(kit,, . a.. .,,,

frmo (2.7.10). we have
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J p(z(k)jxq (k). 1(k)) p(I(k)) dI(k) using (2.5.1)

p'(z(k)Ix (k) (3.2.1.3)
rk

X p(z(k)xW(k), Id(k)) p(I d(k)) usir. (2.7.7)

wh~ere

p(&(k)1x(W, dt (k)) 8pA (k)lx (k). 1(k) - d)

which is given by (3.2.1.1). Substituting (3.2.1.3) into (2.7.15) yields the metric of the branch
betvwen the nodes xi(k-l) and xi(k). i.e.,

II

3.2.2 The Optimum Decodiqg based Smoothing Algorithm
3.2.2.1 An Uipper bound for the Overall Error Probability. Setting P equal to one in (2.8.2.8)

yields the bound in (3.1.2.10). Hlence substituting (3.2.1.3) into (3.1.2.10) ye obtain a bound for
the orror probhebhlity of the path H

? If the observation model Is approximated by (2,M.), thou an upper bound, whi/ch to very easy

to evauate, for the error probeabs lty of Hi c a be obtained as folloate substitut t(e second
equation (3.2.1.3) ento (3.1.2.10) and th.n us1 the follovast wnequality

to obtain the foalovin bound for the orrar probab.iity of the path Hi

"J p s(h)I p(k) .)Z (k)) 9((. I) p(k)) p(k)b) I(-k) sa* )) 0.2.1.5)

w hat* dIdtk) and ldjik) or* summed ever the set of all discrae values of ld(k) (aims Setion 2.1).
The i~tegra! ca be evaluaed by iualr(4 .11 to (A.1) so that we have

w~her•e

A' A (4•d020 + 1-1'-1J) III/2 (dotlk 1 i 114

~~~ I) (dt )
(b A (b (ia;- + jl - ij b1 .- T(k.s(i1),t(kl))a g (k,1•li),:41 (k))

I~~~~~~ T £(k.%j(k)ddO)ai (a(JId~~l

* ~ A kk~a(k) 1
4 (IbJ)Iv(k) kI (k, U(k). W4 ())

11A~ka(k). td(k))#V(k) hT(k.&J(k). I4 Ck))

b~j A j' g~ks(k.), 14(k). d ) + It lik.ka-W. dIk) 32.

Sulbtitalag this bousi for te eroror Vrobteblty Ig 4. (o.f.19). we got an vW6 bowd for tMbovoraUl etuor leobebilty.

ur*1
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3.2.2.2 An Ensemble Upper Bound for the Overall Error Probability. Substituting (3.2.1.3)

with (3.2.1.1) into (2.8.3.39). we obtain an ensmble bound for detecting the path (most likely
followed by the target being considered) by the optimum decoding based smoothing algorithm.

If the observation model is approximated by (2.7.7), then the ensmble bound mentioned above
can be further upper bounded by using the inequality (3.2.1.4) so that we obtain the following
ensemble bound, which is easy to evaluate, for the overall error probability

L tk rk 12
P V• DTT { I I I (P(l(k)) P(Id(k))] [P(x(k)Ixlold (k))P(z(k)Ix2TIdJ) / dz(k)'}

k-1 xl e x2 e i-1 Jl J01

(3.2.2.1)

where D is defined by (2.8.3.40), and the integral is given by (0.2.1.6).

If the functions g(k,',') and h(k,-,.) in the observation model in (3.2.1), th3 covarian"e,
Rv(k), of the observation noise, and the statistics of the interference I(k) are time invariant.
then the bound in (3.2.2.1) becomes

rr
F1 1 D {< IrX I2u de J P ld (k))P(l dj(k))]I /2 ip(*)[ (k)lx l ')di(k))p(z lk)1x2' Id lz' a (k))L

SI i-i -I s(k) (32.2.2)

3,2.3 Tho Stack Sequential Dacodivg based Semothing Algorithm

3.2.3.1 An Ensemble Upper bound for the Overall Error Probability. In the baund in (2.9.3,7),
substituting one for r, ard (1/Ne) for q(x) for all x, and then using (3.2.1.3), we obtain an ensemble
bound 4or the overall error probability for detectiv4 the path (oost likely followed by the target
beiag covsidervd) by the stack sequential decoding based smoothing algorithm.

It the observation modtl Is approxisattd by (2.7,7), then the ensemble bound atntlio"d abovC
can be further upper bounded by usint lneqality (3s.2.) so that we can obt4ao an eftemble bound
which is easy to valuate as follos. WAiS the inequality (3.2.3w1) we get

rk

t-d

ii 112

• Cllk r f4l•))l (,Cath)is1...

ii ()i• • ~ d 1 ~~M k) a {ltk l 141d(b))

'A b

V&re tOne ltasral IA (3.1.3.3) • given by (3,2.1.6) sed the iuatartsl 0 ean 4C46 b* 4,aluoted by
aubeiiwtng3.2L.1.) iab it 60d thee uslt* (A.)) to Appeadis A so ttb-t W~ hw.

1 lll~,lll,){ll~,2 d(k))]|/ da(k) * ,A' ts •. ().2.3.,s
frk) dt 4

A' ~ ~ ~ ~ (4 I dt~t'* 1 )1/ 2 )~ d t f)112 (dot 12) 14/

""At " (doo %; )
i~~l 1 z;1 I IT T : . I • I•lIiL:=:=' iIiI O i•I~ie* II
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Sb1 2Rll1g(k,Xfl Id(k)) + R21Ig(k,x2,Id(k))
b12  1 di 2 +d

-•R, h(k,Xl,I'di(k)) Re( k) h T(k,XItidi (k))

R R2 • h(k x 2 ,ldj(k)) Rv(k) h T(k,x 2 ,Id j(k)).

Finally, substituting these bounds for Ck and Dk in (2.9.3.7), we obtain the following ensemble
bound for the overall error probability

SL b +L ( in )-1/2 b L
"PE <F{ T Ck 7T k k C (3.2.3.5)

-•, k .1=-1 i-iki+l J

where F is as given in (2.9.3.8). If the functions g(k,.,') and h(k,''), and the covariance matrix,
Rv(k), of the observation noise v(k) are time invariant, then Cj and Dt become time invariant. Hence,
in this case, the bound in (3.2.3.5) can be rewritten as follows

E L + i (min-1/2 (Db)i (Cb)L-i} (3.2.3.6)
PE F{(C) k TT (D ) (C]

i-i k=l

4. NWIERICAL EXPERIMENTS

The purpose of simulating was to find out how well the s..oothing algorithms, developed in
Section 2, perform both in a clear environment and in the presence of interference.

In a clear environment, the aim was to compare Y.,e smoothing algorithms with the Kalman filter
algorithm for linear discrete models and the extended Kalman filter algorithm for nonlinear discrete
models. However, in the presence of interferer -, the swoothing algorithms may not be compared with
the (extended) Kalman filter algorithm since it cannot handle the case of interference. Therefore,
the purpose was to discover how good the estimates produced by the smoothing algorithms ar.!, and
also to observe the estimates obtained by :he (extended) Kalman filter algoriti,- (which considers
on!y observation noise, i.e., with zero i terference). All of this was done for both linear and
nonlinear discrete models with interferei.te.

For all simulations, the IBM Systems/370 Model 3033, Fortran IV, and IMSL library were used.
For each simulation, the disturbance ,eise w(k), observation noise v(J), initial state x(O), and
interference I(M) (i.e., in thf presence or interference) wore taken to be white Gaussian and also
indepadent of each other. For a discrete random variable (with a given number of possible values)
which approximates the Gaussian random variable with mean pi and variance 02, the one in (B.9) in
Appendix I- was used. In add.tlon, the approximate observation mode) (2.7.7) was used in all the
ca.-es of interfereuce.

Simulation results are presented in figures. At the top left corner of each figure, the used
models, noise statistics, gate size, and the number of possible values of the discrete random
variables wd(.), Id('), and xd(v) (which approximate the disturbance noise w(.), interference I(-)
and initial state x(O)) are provided.

The fcllowing abbreviatio-s ano, terms are used in the figures:

AAEK represents the average absolute error for the (extended) Kalman filzer estimates,
The sbsolute error at time j and the average absolute error are defined as follows:

ABSOLUTE ERROR (at time J) a fx(j) - £k(JlJ) (4.1)
1L

AA L A+j I jx(j) - k(Jhj)l (4.2)
.- 0

where L is the time which the target was tracked up to and including, 2k01 J) is
the (extended) Kalman esth~ate of the state x(J), O'ven the observation sequence
fron time one to time J.

AAEOP represents the average absoluta irror for the estimates obtained by the smoothing
algorithm used, The absolue irror at time j and the averag4 absolute error are
defined as follows:

Aa,-OLUTE ERROR (at time j) & IxQ) - 9 (iI (4.3)
i L

AAEOP j x(i) - W1i) (4.4)
J-O

where L. is as defined above, and 9 5 (J) is the estimate of the state x(J), obtained
by the smoothing algorithm usid.
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ACTUAT. stands for the actual values of the states

BOUND represents the bound in (%.t.2.14) fir the optimum decoding based smoothing algorithm
(ODSA) usiug an example without interference, the bound in (3.2.2.2) for ODSA using
an .!xample with interference, the bound in (3.1.3.6) for the stack sequential decoding
based smoothing algorithm (SSDSA) using an example without interfercnce, or the
bound in (3.2.3.6) for SSDSA using an ýYpmple with interference.

ER.LOV. reprecwats the estimation error covariancce matrix for the (extended) Kalman filter
algorithm. The estimation error zovariancn matrix at time j is defined by

E{(x(j) - kl)) (xJ) - k(Jlj))T)

where E{ } stards for expectation. Obviously in a scs.lar case, this matrix reduces
to the mean square error

EX.KAL. represents the extended Kalman filter algorithm, used

E(A(.)) stands for the expectation of the random variable A(-)

GATE SIZE represents the gate size used for the quantization

KAIUAN stands for the Kalm.n filter algorithm used

NUM. OF DISC. FOR A() represents the number of possible values of the discrete random variable
(used for the einulation) which approximates the random variable A(-)

OPD stands for the optimum decoding basei smoothing algorithm used

SOD stands for the suboptimum decoding based smoothing algorithm used

SSI' stands for the stack sequential decoding based smoothing algorithm used

VAlk(A(.)) stands for the variance of the random variable A(-).

4.1 The Optimum Decodini Based Smoothing Algorithm

Many examples were simulated with the optimum decoding based smoothing algorithm and the (extended)
K~lman filter algorithm. The simulation results of some of them are presented in Figure 4.1.la-4c.
The simulations were stopped after seven steps because of the exponentially jrowing memory require-
ment of the optimum decoding oased smoothing algorithm. For each example, the simulation results
are presented ..n three figurea.

The first figure presents the variations of the actual snd estimated values of the staites
versus time. The actual values are marked by Symbol () , the (extended) Kalman filter estioates
by Symbol A , and the OPD estimates ti.e., the estimates obtained by the optimum decoding based
smoothing algorithm) by +. The second figure presents the variation of the estimation error co-
variance matrix (for the (extended) Kalman filter algarithm) veruus time as w•ll as the bound 1,

(3.1.2.14) (it the example doe* not have any interterence) or the bound in (3.2.2.2) (if the example
contains interference), This bound is reed as the performarce measure of the optimum decoding
based smoothing algorithm while the error covariance matrix it used as *he performance measure
of th.- (extended) KaLuan filter 4lgorithm. he third figure presents two curves as well as the 4verage
absolute errors for the (extended) Kalman estimates and the OPD estimates. One of these curves showe
the variation of the absolute errors for the (extended) Kal•an estimates versus time and is marked
by A . The other curve shows the varin".ion of the absolute error for the OPD estimates. and is
marked by Symbol +.

4.2 The Stack Sequential Decodin -lased Smoothing Algorithm

A large nunber of examples were simulated with the stack sequential decoding based smoothing
algorithm and the (e"•tended) Kaluan filter algoritta. The simulation results of sme of thee are
presented in Figure 4.2.1a-Ac. For each example, the simulation results are presented in three
figures (as in Section 4.1).

The first figure presents the variations of the actual values, the (extended) Velman estimates,
and the SSO estimates (i e., the estimates obtained by the stack sequential decoding based smoothing
algorithm) of the states versus time. The second figure presents tt.e estimation error covwriance
matrix versus time as well U the bound in (3.1.3.6) (if the exmple does not have any Lnterference)
or the bound in (3,2.3.6) (if the example contains interference). This bound is used at the performace
measure of the stack eequenlal decoding based smoothing algorithm. The third figure presents the
variations of the absolute errors, and the averate absolute errors for the (extended) Kalman
estimates and the SSD estimates.

4.3 The Suboptiamu Decoding Usaed Smoothing Algorithm

Many examples were elialted with the (extended) Kalman filter algorithm and the auboptimum
decoding based smoothing algorithm considering three steps at each of which six obearvationa were
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were used. The simulation results of some of them are presented in Figure 4.3.la-4c. For each
example, the simulation results are presented in three figures (as ir. Section 4.1).

The first figure presents the variations of the actual values, the (extended) Kalman estimates,
and the SOD estimates (i.e., the estimates obtained by the suboptimum decoding based smoothing
algorithm) of the states versus time. The second one presents the variation of the estimation error
covariance matrix for the (extended) Kalman filter algorithm. The third figure presents the average
absolute errors, and the variations of the absolute errors for the (extended) Kalman filter estimates
and the SOD estimates.

4.4 Comments

Let mk, no and rk be the numbers of possible values of the discrete random variables wd(k), xd(O),
and Id(k), which approximate the disturbance noise w(k), initial state x(O), and interference I(k),
respectively. These numbers were taken to be time invariant for all simulations. Definitely, the
performance of the smoothing algorithms depends on these numbers as well as the gate size used. The
smoothing algorithm produces bette;" estimates of the states for a suitable gate size, and larger mk,
n 0 , rk. This follows from the fact that the disturbance noise, initial state, and interference are
approximated better for larger mk, no, and rk. For a large gate size, good estimates of the states
are not expected since more quantization errors are made.

The ensemble bounds of Gallager's type is used as the performance measure of the smoothing
algorithms. The values of these bounds depend on the models as well as the quantization (i.e., gate
size, mk, no, and rk) used. Since some inequalities are used to derive these bounds, they can be
greater than or equal to one for some models or quantization used. It should also be noted that even
in the cases where these ensemble bounds are less than one, they do not give complete information
about the performance of the smoothing algorithms (see Theorem 2.8.3.4).

5. CONCLUSIONS

Three completely new smoothing algorithms have been presented for the following type of discrete
models with or without random interference: they can be linear or nonlinear; the disturbance noise,
observation noise, and interference can be any independent (of each other, and from sample (time)
to sample) not necessarily Gaussian noises; the disturbance noise and interference can affect che
motion (model) and observation (model) in a general and not necessarily linear way; functions which
define the models do not even have to be continuous.

The new smoothing algorithms are based on the quantization of states to a finite set of states
and Decoding Technique of Information Theory. If the quantization errors are neglected, the first
smoothing algorithm, which is referred to as the optimum deccding based smoothing algorithm, is
optimum with respect to the minimum error probability criterion (Bayes' decision rule). However,
this requires an overgrowing mount of memory with time for Its implementation. Hence the second
algorithm, which is referred to as the stack sequential decoding based smoothing algorithm, has
been proposed. Even this algorithm requires a growing mount of memory with time (but not as fast as
the first algorithm) for ito implementation. Therefore, the thied smoothing algorith, which is
referred to as the subopttaus decoding basel smoothing algorithm, has been proposed. This algorithm
requires a finite mount of memory for any time (i.e., no matter how long the target is tracked).

In target tracking, it is very difficult to determine a sotlon model which is analytically tract-
able and, at the same time, satisfactorily close to reality. Therefore, by *aking many approxImationa,
an analytically tractable motion model is obtained. howevet, the moo,*,hing algorithms presented in
this chapter uses this motion model only to determine the transition probabilitieo of the trecked
target from gate to gate. If these tranaititn probabilities can be determined In another way. these
smoothing algorithm# can be used with only an observation model so that the motion model (which ts
approximate) is not necessary any more. Hence the more accurate the transition probabilities are
determined, the more accurate the estimates will be.

The ensemble bounds of Gallager's type have been derived and used as the performance measure of the
new smoothing algorithms. These bounds are *m=timee totally useless since they become numbers which
are greater than or equal to on4.

in order to test the smoothintg algorithms, Digital Computer Simulations have been performed. goma
of the elmulation results are presented in datall. Those results show that for both linear and non-
linear discrete models with interference, these smoothing algorithms perform very veil even though
neither the galnea nor the extecded Kalman filter algorithm is capable of handling interference. Also,
those smoothing algorithms pt. form better than the extended Kalman filter algorithm for som nonlinear
vmodes with Gaussian notess sand without Interference) whilit they perform 0"~ot as w~ell as the Ualu"

filter algorithm for liosar vdela with Gaussian noises (sad without interference).

APftIQ61CF

A. Theom

Let p(|ac1 ). and p(a•s). be two r-dlmenslonal (multivatlate)_ Gausian density taoctlo" such that(a - l(x ))T K- (a - gj))

p(aIll) - ( r10 (det I)4/? ep - )

SU.( i . l
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and

i" p(zlxj) N(g(xl), Rj).

Then the following equalities hold:

I -- J [p(zlxi) P(ZIX )lI/2 dz - A exp{B/4} (A.1)
z

where

A A (det[2(R- 1 + R-1-l)11/2/(det R 1/4 (det R11/4

T 1 +R)) 1 /1 T R-1  - 9(det R ~ lg~))

B A (b (R~ +R) bj &- i T ~ d

-- 1bl 11 R1 8(xi) + R;1 8(xj) (A. 2)

JI -jz p(2Ixi) tpxzIj)]1/ 4: A' exp{B'14} (A. 3)

where

A' A (dot[(R-1 + -L )'a11)I2/4(2)rA (det R )1/2 (dot Rj) 1/4

,T, -ci R -I T~ -1 2sx) " ~ T -1sxj
B' A•, t R 31.) b'v1-÷± 2(xl) R Rj

b3j & 1(xi) + i g(j ).*

If the covaiance matricoe Ri and Rj are equal, "y, RK - A 1, then the equalities aove become

-ii -n * - S(x,,-,) " (x]T RKljS(x 1 ) - A" . ZI:~ ~~ -- L P(:ix1.)P(eI:•)iJl d- .

V - IK1)tP(slx )I/2 da -s p . ..-

(A, )..IV psx)t•l 1 . da 0ep-S - .NI) vIW I N)

Prooft From the defiuiltions of the probability density functions. it is easily obtained that

tpss)P(alx?) '112 c 4m~ D A

where

C A 1 /( 2 ,)t'/ (det Iit/4 (dot 1 j)1/4*

D A (a - s(-•)) K m (& - $( at)) + ( & - Sa )) T RJ'(a - &( .)a

""lAo, U can be rewrittea as

T -l 1"" .-- ) (at1 + t;) (a-. ). a

lv.
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where

a 4 (R 1 + R] 1 )' bij

bi A R1 i&(x + S71 g(x (A. 9)

B is as defined in (A.2).

Therefore, we have

( )T -1 + -1) a)

[p(zlxi )p(zlx) i 1exp/- 4
(2x)ri)](det R-)r/' (det Rj /4 (A.lO)

Multiplying the denominator and numerator by

(det[2(R7' + R)-1 l} 1/2

gives R-1 +R 1

1/2 exp -[( - a)T 1 2 - (z - a)/21
(p(zix )p(zlx)/ - (A exp 1 2 (A.ll)

i j4J(w) r2tdet[2(R- R

It should be noted that the term in the braces is a multivariate Gaussian density function with mean a
and covaria'e - 2(R-1 + R4I)"1. Hence, integrating this term over all a yields one, so that we
obtain theoequality in (A.l).

""Fbr the proof of the equality in (2.3), let us rewrite the integral in (2.3) as

p(axjx.)tp(z1x 3)]' dt - J (p(zlxi) 2 p(six))]2 ds (A.12)

On the otheb hand, f tos the eq aility hat..

I" det, 2r 4t(R/i2) (A.13)

va hove

p2(DJXz) - G , p1(aj1.4) (A.14)

where.

p1l(#ix) 1 •(g(xt), -P
amd

S, 2 lI1'2 (.,,)r/2 (det AI112 A:IS)

Suibtitutifg (A.14) into JA.12) yields

"" ,".i ' (A.. 1 "6.

and muste the quality in (A.1) fot tbh irtJjrj.l on the reiht b&d .s14 it (A.16•), e *a t W ily
obtain the ,quality JA (•.3).
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If Ri - RF A Rv, substituting R, for Ri and R1 in the equalities in (A.1) and (A.3), the
equalities in (A.4) and (A.5) can readily be verifled. This proves the theorem.

B. Approximation of an Absolutely Continuous Random Vector by a Discrete Random Vector

Let n be a given positive integer and let 6m be the set of all distribution functions of all
m x 1 discrete random vectors with n possible values where superscript m stands for the dimensionality
of random vectors. Then the problem of approximating an absolutely continuous m x 1 random vector
Xm with distribution junction F m(-) by an m x 1 discrete random vector with n possible values is
to find a distribution fuctlo m(.) e D" which minimizes the following objective function over theset Dm. Yo

Sm(F -) xf[F(a) - 1 M<() de; F m C DM (B.1)

That is

J(F (.)) m min J(F (')) (B.2)
my F (.)cDm y

0 y

The discrete random vector defined by F (-) is referred to as the optimum discrete random vector
approximating the random vector Xm. yo

Here, the approximation of an absolutely continuous random variable X with distribution FX(.) by a
discrete random variable with n possible values is considered. The necessary conditions that the
optimum discrete random variable approximating X must satisfy is obtained. Finally, discrete random
variables approximating normal random variables are obtained.

Let us now state two theoremas and define some symbols which will be used. The proofs of the
theorma are given in Reference (18).

Theorem 5.118

Let f(y) A f(Y1 , Y2, .... yl) be a real valued function on an open set r of R Z and let f(y)
have finite partial derivatives f(Y)/aYk, k - 1, 2, ... , X at each point of r. If f(y) has a local
minimum at the point yo • (ylO* y21 0. ". yto) in r. then

.k f(y) -0 for each k 1 1, 2, A,
"k "YOy

The•orm 5.218

Let f(y) A f(yl, Y2, ... yg) be a real valued funotion on an open set r of 5. and let ((y)
have continuous second-order partial derivatives on r. Let y0 A (yl.,0 72.0* YL,0) be a point
of r for which

S(y) 0 for ech k i.2 .... ,"u•k Y-Yo

As*=*e that the determinant

J Z d{fV•) ii',ýY)aayJ .yO) 0
where

Let Ga=k be the determinant obtained ftrm 0 by deleting the last k romv d colums. It the a numbere

C1, C;2 . ... 0 OL are all Positive, than f(y) bas a local miniom at 70.

D io the sat of all dietribution ftnctions of aLL diacrete random variables with U pOssible
vaines where m L& S iven positive ineSer.
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S is the set of all step function with n+l steps where a step function with n+l steps (where
n is given) is deflned throughout R (real line) and is constant on each one of n+l non-
intersecting intervals whose union is R. This corstant is zero on the interval containing

and is one on the interval containing -. That is

S A {g(x): g(x) - 0 for x < y1 ; g(x) - Pi for yi - X< Yi+I' Pi C (0,1); g(x) - 1 for

x_> y ; Yi~ > Yl Yc€(•..;i-1 2, .. ,a-11

In order to find an optimum discrete random variable with n possible values twhere n is a given
positive integer) that approximates an absolutely continuous random variable X wi:.h distribution
function Fx('), we must find a distribution function FYO(.) which minimize the following objective
function over the set D

J(FM(.)) • Fx(a) - y(a)]2 do (B.3)

Namely,

J(Fy(.)) m in J(Fy(.)) (B.4)
YO F (*)ED y'

y

The last equality follows from the following arguments. Let a step function go(-) C S minimize

(B.3) over the set S; since the distribution function is nondecreasing, go(-) oust be nondecreasirg,
hence it is a nondecreasing step function (from zero to one); therefore go(-) C D. Thus the aim is
to find a etep function So(-) C S which minimize (B.3) over S . i.e., we would like to minimize
the following function over £ (ymiC ) end Pj £ (0,1) (where i - 1, 2, ... , n; j e I 2, ,.., n-i).y y2 yy 3 n

pJ12 da

J(30)) F X da + (Fx(a) IFa x () P21 do +.. + Jn (it -Po Gl2 dz
dJ "12 

y-U-1
+mJ [Fx(o) -112 do (3.6)

it follow from Theorem 3.1 chatt 11 S0(z) which to 4deifted by

i0, 0

SOWx " i tO It y ,O0-11 Yw+1,; 1 1, 2,.., 0-1S.

is a step function (dietributits fuctioa) whLch &inAitran (3.6). This wmut satitfy the follow0ng
"st of equationa
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P1,0 - 2Fx(Yl 0)

P1.0 + P 2.0 - 2F x(Y2,0)

p +~ p 2Fy )2.0 230 x(Y3,0)

P + P ZF (y )

n-2,0 n-1,0 x 3n-,0

1 + P * 2F1x(Yn)
Y2y0

PI.0(Y2,0- Yl, 0 ) " Fx(a) da

Y3, 0

P2 .0 (y 3,0 - Y2, 0) J Fx(a) da

Y2,0

, • , Yn.oi,
I *1.,0(y .. O- ya-.0,) -F •X(a) da .8

S"~Yn-I .0

Using these equations and Theorem 5.2, the discrete random variables which approximate the
normal random variable with taro mean and unit variance have been nw4trically obtained, and they are
tabulated in Table 1.1.

Let yo be the discrete random variable with n possible values Y1,0. Y2,0 ... $ YnO which
approximate the normal random variable with turo mean and unit variance and let Pt.O be such thtm

Let so be the discrete random variable with a poesibl 3 values a 1. 00 O2 0 , 0 which approxtaates
* the noriual random variable with &ean u sad variance o" and let p bO a. .uch ntha

P!,o A rob(a -to)

Through the equations in (1.8). it can estily be verified chat

a1L0 'OI,0 + U
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TABLE B.1. Discrete Random Variables Approximating the Gaussian Random Variable
with Zero Mean and Unit Variance

Number of

Possible n possible Values and Corresponding Probabi]ities of y*
Values .. ....
of y* i** 1 2 3 4 5 6 7 8

Yi.O 0.000

n-
P ,0 1.000

Yi,0 -0.675 0.675

n-2
P 0.500 0.500

-1.005 0.0 1.005

5-3
P1,0  0.315 0.370 0.315

Yi'O -1.219 -0.355 0.355 1.219

5-4
P 0.223 0.277 0.277 0.223
1,0

Yj'_ -1.376 -0.592 0.0 0.392 1.376
•5

P 0,169 0.216 0.230 0.216 0.169
i,"

YO -1.499 -0.767 -0.242 0.242 0.767 1.499

n6
P ,0 0.134 0.175 0.191 0.191 0.175 0.134

Y1.0 -1.599 -0.905 -0.423 0.0 0.423 0.905 1.599
n-7 ..

P1'0  0.110 0.145 0.162 0.166 0.162 0.145 0.110

Yjo -1.683 -1.018 -0.567 -0.183 0.183 0.567 1.018 1.683

n. ---

? 10 0.093 0.123 0.139 0.145 0.145 0.139 0.123 0.093

*y is the diacret. random variable vith n posilble valuea y O' y2 0 " Y... which approxisateo
Ats •Otl rstd-No variable vtth sero 04an and unit varians.,

**yt,0 oi the Ith possible value of

1 0 A Prob(Y0 Y0
,O)

i],•! i i
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